PETSC_EXTERN void PETSC_STDCALL vecmedian_(Vec Vec1,Vec Vec2,Vec Vec3,Vec VMedian, int *__ierr ){ *__ierr = VecMedian( (Vec)PetscToPointer((Vec1) ), (Vec)PetscToPointer((Vec2) ), (Vec)PetscToPointer((Vec3) ), (Vec)PetscToPointer((VMedian) )); }
static PetscErrorCode TaoSolve_SSILS(Tao tao) { TAO_SSLS *ssls = (TAO_SSLS *)tao->data; PetscReal psi, ndpsi, normd, innerd, t=0; PetscReal delta, rho; PetscInt iter=0,kspits; TaoConvergedReason reason; TaoLineSearchConvergedReason ls_reason; PetscErrorCode ierr; PetscFunctionBegin; /* Assume that Setup has been called! Set the structure for the Jacobian and create a linear solver. */ delta = ssls->delta; rho = ssls->rho; ierr = TaoComputeVariableBounds(tao);CHKERRQ(ierr); ierr = VecMedian(tao->XL,tao->solution,tao->XU,tao->solution);CHKERRQ(ierr); ierr = TaoLineSearchSetObjectiveAndGradientRoutine(tao->linesearch,Tao_SSLS_FunctionGradient,tao);CHKERRQ(ierr); ierr = TaoLineSearchSetObjectiveRoutine(tao->linesearch,Tao_SSLS_Function,tao);CHKERRQ(ierr); /* Calculate the function value and fischer function value at the current iterate */ ierr = TaoLineSearchComputeObjectiveAndGradient(tao->linesearch,tao->solution,&psi,ssls->dpsi);CHKERRQ(ierr); ierr = VecNorm(ssls->dpsi,NORM_2,&ndpsi);CHKERRQ(ierr); while (1) { ierr=PetscInfo3(tao, "iter: %D, merit: %g, ndpsi: %g\n",iter, (double)ssls->merit, (double)ndpsi);CHKERRQ(ierr); /* Check the termination criteria */ ierr = TaoMonitor(tao,iter++,ssls->merit,ndpsi,0.0,t,&reason);CHKERRQ(ierr); if (reason!=TAO_CONTINUE_ITERATING) break; /* Calculate direction. (Really negative of newton direction. Therefore, rest of the code uses -d.) */ ierr = KSPSetOperators(tao->ksp,tao->jacobian,tao->jacobian_pre);CHKERRQ(ierr); ierr = KSPSolve(tao->ksp,ssls->ff,tao->stepdirection);CHKERRQ(ierr); ierr = KSPGetIterationNumber(tao->ksp,&kspits);CHKERRQ(ierr); tao->ksp_its+=kspits; ierr = VecNorm(tao->stepdirection,NORM_2,&normd);CHKERRQ(ierr); ierr = VecDot(tao->stepdirection,ssls->dpsi,&innerd);CHKERRQ(ierr); /* Make sure that we have a descent direction */ if (innerd <= delta*pow(normd, rho)) { ierr = PetscInfo(tao, "newton direction not descent\n");CHKERRQ(ierr); ierr = VecCopy(ssls->dpsi,tao->stepdirection);CHKERRQ(ierr); ierr = VecDot(tao->stepdirection,ssls->dpsi,&innerd);CHKERRQ(ierr); } ierr = VecScale(tao->stepdirection, -1.0);CHKERRQ(ierr); innerd = -innerd; ierr = TaoLineSearchSetInitialStepLength(tao->linesearch,1.0); ierr = TaoLineSearchApply(tao->linesearch,tao->solution,&psi,ssls->dpsi,tao->stepdirection,&t,&ls_reason);CHKERRQ(ierr); ierr = VecNorm(ssls->dpsi,NORM_2,&ndpsi);CHKERRQ(ierr); } PetscFunctionReturn(0); }
/* Push initial point away from bounds */ PetscErrorCode IPMPushInitialPoint(Tao tao) { TAO_IPM *ipmP = (TAO_IPM *)tao->data; PetscErrorCode ierr; PetscFunctionBegin; ierr = TaoComputeVariableBounds(tao);CHKERRQ(ierr); if (tao->XL && tao->XU) { ierr = VecMedian(tao->XL, tao->solution, tao->XU, tao->solution);CHKERRQ(ierr); } if (ipmP->nb > 0) { ierr = VecSet(ipmP->s,ipmP->pushs);CHKERRQ(ierr); ierr = VecSet(ipmP->lamdai,ipmP->pushnu);CHKERRQ(ierr); if (ipmP->mi > 0) { ierr = VecSet(tao->DI,ipmP->pushnu);CHKERRQ(ierr); } } if (ipmP->me > 0) { ierr = VecSet(tao->DE,1.0);CHKERRQ(ierr); ierr = VecSet(ipmP->lamdae,1.0);CHKERRQ(ierr); } PetscFunctionReturn(0); }
static PetscErrorCode TaoLineSearchApply_MT(TaoLineSearch ls, Vec x, PetscReal *f, Vec g, Vec s) { PetscErrorCode ierr; TaoLineSearch_MT *mt; PetscReal xtrapf = 4.0; PetscReal finit, width, width1, dginit, fm, fxm, fym, dgm, dgxm, dgym; PetscReal dgx, dgy, dg, dg2, fx, fy, stx, sty, dgtest; PetscReal ftest1=0.0, ftest2=0.0; PetscInt i, stage1,n1,n2,nn1,nn2; PetscReal bstepmin1, bstepmin2, bstepmax; PetscBool g_computed=PETSC_FALSE; /* to prevent extra gradient computation */ PetscFunctionBegin; PetscValidHeaderSpecific(ls,TAOLINESEARCH_CLASSID,1); PetscValidHeaderSpecific(x,VEC_CLASSID,2); PetscValidScalarPointer(f,3); PetscValidHeaderSpecific(g,VEC_CLASSID,4); PetscValidHeaderSpecific(s,VEC_CLASSID,5); /* comm,type,size checks are done in interface TaoLineSearchApply */ mt = (TaoLineSearch_MT*)(ls->data); ls->reason = TAOLINESEARCH_CONTINUE_ITERATING; /* Check work vector */ if (!mt->work) { ierr = VecDuplicate(x,&mt->work);CHKERRQ(ierr); mt->x = x; ierr = PetscObjectReference((PetscObject)mt->x);CHKERRQ(ierr); } else if (x != mt->x) { ierr = VecDestroy(&mt->work);CHKERRQ(ierr); ierr = VecDuplicate(x,&mt->work);CHKERRQ(ierr); ierr = PetscObjectDereference((PetscObject)mt->x);CHKERRQ(ierr); mt->x = x; ierr = PetscObjectReference((PetscObject)mt->x);CHKERRQ(ierr); } if (ls->bounded) { /* Compute step length needed to make all variables equal a bound */ /* Compute the smallest steplength that will make one nonbinding variable equal the bound */ ierr = VecGetLocalSize(ls->upper,&n1);CHKERRQ(ierr); ierr = VecGetLocalSize(mt->x, &n2);CHKERRQ(ierr); ierr = VecGetSize(ls->upper,&nn1);CHKERRQ(ierr); ierr = VecGetSize(mt->x,&nn2);CHKERRQ(ierr); if (n1 != n2 || nn1 != nn2) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Variable vector not compatible with bounds vector"); ierr = VecScale(s,-1.0);CHKERRQ(ierr); ierr = VecBoundGradientProjection(s,x,ls->lower,ls->upper,s);CHKERRQ(ierr); ierr = VecScale(s,-1.0);CHKERRQ(ierr); ierr = VecStepBoundInfo(x,s,ls->lower,ls->upper,&bstepmin1,&bstepmin2,&bstepmax);CHKERRQ(ierr); ls->stepmax = PetscMin(bstepmax,1.0e15); } ierr = VecDot(g,s,&dginit);CHKERRQ(ierr); if (PetscIsInfOrNanReal(dginit)) { ierr = PetscInfo1(ls,"Initial Line Search step * g is Inf or Nan (%g)\n",(double)dginit);CHKERRQ(ierr); ls->reason=TAOLINESEARCH_FAILED_INFORNAN; PetscFunctionReturn(0); } if (dginit >= 0.0) { ierr = PetscInfo1(ls,"Initial Line Search step * g is not descent direction (%g)\n",(double)dginit);CHKERRQ(ierr); ls->reason = TAOLINESEARCH_FAILED_ASCENT; PetscFunctionReturn(0); } /* Initialization */ mt->bracket = 0; stage1 = 1; finit = *f; dgtest = ls->ftol * dginit; width = ls->stepmax - ls->stepmin; width1 = width * 2.0; ierr = VecCopy(x,mt->work);CHKERRQ(ierr); /* Variable dictionary: stx, fx, dgx - the step, function, and derivative at the best step sty, fy, dgy - the step, function, and derivative at the other endpoint of the interval of uncertainty step, f, dg - the step, function, and derivative at the current step */ stx = 0.0; fx = finit; dgx = dginit; sty = 0.0; fy = finit; dgy = dginit; ls->step=ls->initstep; for (i=0; i< ls->max_funcs; i++) { /* Set min and max steps to correspond to the interval of uncertainty */ if (mt->bracket) { ls->stepmin = PetscMin(stx,sty); ls->stepmax = PetscMax(stx,sty); } else { ls->stepmin = stx; ls->stepmax = ls->step + xtrapf * (ls->step - stx); } /* Force the step to be within the bounds */ ls->step = PetscMax(ls->step,ls->stepmin); ls->step = PetscMin(ls->step,ls->stepmax); /* If an unusual termination is to occur, then let step be the lowest point obtained thus far */ if ((stx!=0) && (((mt->bracket) && (ls->step <= ls->stepmin || ls->step >= ls->stepmax)) || ((mt->bracket) && (ls->stepmax - ls->stepmin <= ls->rtol * ls->stepmax)) || ((ls->nfeval+ls->nfgeval) >= ls->max_funcs - 1) || (mt->infoc == 0))) { ls->step = stx; } ierr = VecCopy(x,mt->work);CHKERRQ(ierr); ierr = VecAXPY(mt->work,ls->step,s);CHKERRQ(ierr); /* W = X + step*S */ if (ls->bounded) { ierr = VecMedian(ls->lower, mt->work, ls->upper, mt->work);CHKERRQ(ierr); } if (ls->usegts) { ierr = TaoLineSearchComputeObjectiveAndGTS(ls,mt->work,f,&dg);CHKERRQ(ierr); g_computed=PETSC_FALSE; } else { ierr = TaoLineSearchComputeObjectiveAndGradient(ls,mt->work,f,g);CHKERRQ(ierr); g_computed=PETSC_TRUE; if (ls->bounded) { ierr = VecDot(g,x,&dg);CHKERRQ(ierr); ierr = VecDot(g,mt->work,&dg2);CHKERRQ(ierr); dg = (dg2 - dg)/ls->step; } else { ierr = VecDot(g,s,&dg);CHKERRQ(ierr); } } if (0 == i) { ls->f_fullstep=*f; } if (PetscIsInfOrNanReal(*f) || PetscIsInfOrNanReal(dg)) { /* User provided compute function generated Not-a-Number, assume domain violation and set function value and directional derivative to infinity. */ *f = PETSC_INFINITY; dg = PETSC_INFINITY; } ftest1 = finit + ls->step * dgtest; if (ls->bounded) { ftest2 = finit + ls->step * dgtest * ls->ftol; } /* Convergence testing */ if (((*f - ftest1 <= 1.0e-10 * PetscAbsReal(finit)) && (PetscAbsReal(dg) + ls->gtol*dginit <= 0.0))) { ierr = PetscInfo(ls, "Line search success: Sufficient decrease and directional deriv conditions hold\n");CHKERRQ(ierr); ls->reason = TAOLINESEARCH_SUCCESS; break; } /* Check Armijo if beyond the first breakpoint */ if (ls->bounded && (*f <= ftest2) && (ls->step >= bstepmin2)) { ierr = PetscInfo(ls,"Line search success: Sufficient decrease.\n");CHKERRQ(ierr); ls->reason = TAOLINESEARCH_SUCCESS; break; } /* Checks for bad cases */ if (((mt->bracket) && (ls->step <= ls->stepmin||ls->step >= ls->stepmax)) || (!mt->infoc)) { ierr = PetscInfo(ls,"Rounding errors may prevent further progress. May not be a step satisfying\n");CHKERRQ(ierr); ierr = PetscInfo(ls,"sufficient decrease and curvature conditions. Tolerances may be too small.\n");CHKERRQ(ierr); ls->reason = TAOLINESEARCH_HALTED_OTHER; break; } if ((ls->step == ls->stepmax) && (*f <= ftest1) && (dg <= dgtest)) { ierr = PetscInfo1(ls,"Step is at the upper bound, stepmax (%g)\n",(double)ls->stepmax);CHKERRQ(ierr); ls->reason = TAOLINESEARCH_HALTED_UPPERBOUND; break; } if ((ls->step == ls->stepmin) && (*f >= ftest1) && (dg >= dgtest)) { ierr = PetscInfo1(ls,"Step is at the lower bound, stepmin (%g)\n",(double)ls->stepmin);CHKERRQ(ierr); ls->reason = TAOLINESEARCH_HALTED_LOWERBOUND; break; } if ((mt->bracket) && (ls->stepmax - ls->stepmin <= ls->rtol*ls->stepmax)){ ierr = PetscInfo1(ls,"Relative width of interval of uncertainty is at most rtol (%g)\n",(double)ls->rtol);CHKERRQ(ierr); ls->reason = TAOLINESEARCH_HALTED_RTOL; break; } /* In the first stage, we seek a step for which the modified function has a nonpositive value and nonnegative derivative */ if ((stage1) && (*f <= ftest1) && (dg >= dginit * PetscMin(ls->ftol, ls->gtol))) { stage1 = 0; } /* A modified function is used to predict the step only if we have not obtained a step for which the modified function has a nonpositive function value and nonnegative derivative, and if a lower function value has been obtained but the decrease is not sufficient */ if ((stage1) && (*f <= fx) && (*f > ftest1)) { fm = *f - ls->step * dgtest; /* Define modified function */ fxm = fx - stx * dgtest; /* and derivatives */ fym = fy - sty * dgtest; dgm = dg - dgtest; dgxm = dgx - dgtest; dgym = dgy - dgtest; /* if (dgxm * (ls->step - stx) >= 0.0) */ /* Update the interval of uncertainty and compute the new step */ ierr = Tao_mcstep(ls,&stx,&fxm,&dgxm,&sty,&fym,&dgym,&ls->step,&fm,&dgm);CHKERRQ(ierr); fx = fxm + stx * dgtest; /* Reset the function and */ fy = fym + sty * dgtest; /* gradient values */ dgx = dgxm + dgtest; dgy = dgym + dgtest; } else { /* Update the interval of uncertainty and compute the new step */ ierr = Tao_mcstep(ls,&stx,&fx,&dgx,&sty,&fy,&dgy,&ls->step,f,&dg);CHKERRQ(ierr); } /* Force a sufficient decrease in the interval of uncertainty */ if (mt->bracket) { if (PetscAbsReal(sty - stx) >= 0.66 * width1) ls->step = stx + 0.5*(sty - stx); width1 = width; width = PetscAbsReal(sty - stx); } } if ((ls->nfeval+ls->nfgeval) > ls->max_funcs) { ierr = PetscInfo2(ls,"Number of line search function evals (%D) > maximum (%D)\n",(ls->nfeval+ls->nfgeval),ls->max_funcs);CHKERRQ(ierr); ls->reason = TAOLINESEARCH_HALTED_MAXFCN; } /* Finish computations */ ierr = PetscInfo2(ls,"%D function evals in line search, step = %g\n",(ls->nfeval+ls->nfgeval),(double)ls->step);CHKERRQ(ierr); /* Set new solution vector and compute gradient if needed */ ierr = VecCopy(mt->work,x);CHKERRQ(ierr); if (!g_computed) { ierr = TaoLineSearchComputeGradient(ls,mt->work,g);CHKERRQ(ierr); } PetscFunctionReturn(0); }
static PetscErrorCode TaoLineSearchApply_GPCG(TaoLineSearch ls, Vec x, PetscReal *f, Vec g, Vec s) { TaoLineSearch_GPCG *neP = (TaoLineSearch_GPCG *)ls->data; PetscErrorCode ierr; PetscInt i; PetscBool g_computed=PETSC_FALSE; /* to prevent extra gradient computation */ PetscReal d1,finit,actred,prered,rho, gdx; PetscFunctionBegin; /* ls->stepmin - lower bound for step */ /* ls->stepmax - upper bound for step */ /* ls->rtol - relative tolerance for an acceptable step */ /* ls->ftol - tolerance for sufficient decrease condition */ /* ls->gtol - tolerance for curvature condition */ /* ls->nfeval - number of function evaluations */ /* ls->nfeval - number of function/gradient evaluations */ /* ls->max_funcs - maximum number of function evaluations */ ls->reason = TAOLINESEARCH_CONTINUE_ITERATING; ls->step = ls->initstep; if (!neP->W2) { ierr = VecDuplicate(x,&neP->W2);CHKERRQ(ierr); ierr = VecDuplicate(x,&neP->W1);CHKERRQ(ierr); ierr = VecDuplicate(x,&neP->Gold);CHKERRQ(ierr); neP->x = x; ierr = PetscObjectReference((PetscObject)neP->x);CHKERRQ(ierr); } else if (x != neP->x) { ierr = VecDestroy(&neP->x);CHKERRQ(ierr); ierr = VecDestroy(&neP->W1);CHKERRQ(ierr); ierr = VecDestroy(&neP->W2);CHKERRQ(ierr); ierr = VecDestroy(&neP->Gold);CHKERRQ(ierr); ierr = VecDuplicate(x,&neP->W1);CHKERRQ(ierr); ierr = VecDuplicate(x,&neP->W2);CHKERRQ(ierr); ierr = VecDuplicate(x,&neP->Gold);CHKERRQ(ierr); ierr = PetscObjectDereference((PetscObject)neP->x);CHKERRQ(ierr); neP->x = x; ierr = PetscObjectReference((PetscObject)neP->x);CHKERRQ(ierr); } ierr = VecDot(g,s,&gdx);CHKERRQ(ierr); if (gdx > 0) { ierr = PetscInfo1(ls,"Line search error: search direction is not descent direction. dot(g,s) = %g\n",(double)gdx);CHKERRQ(ierr); ls->reason = TAOLINESEARCH_FAILED_ASCENT; PetscFunctionReturn(0); } ierr = VecCopy(x,neP->W2);CHKERRQ(ierr); ierr = VecCopy(g,neP->Gold);CHKERRQ(ierr); if (ls->bounded) { /* Compute the smallest steplength that will make one nonbinding variable equal the bound */ ierr = VecStepBoundInfo(x,s,ls->lower,ls->upper,&rho,&actred,&d1);CHKERRQ(ierr); ls->step = PetscMin(ls->step,d1); } rho=0; actred=0; if (ls->step < 0) { ierr = PetscInfo1(ls,"Line search error: initial step parameter %g< 0\n",(double)ls->step);CHKERRQ(ierr); ls->reason = TAOLINESEARCH_HALTED_OTHER; PetscFunctionReturn(0); } /* Initialization */ finit = *f; for (i=0; i< ls->max_funcs; i++) { /* Force the step to be within the bounds */ ls->step = PetscMax(ls->step,ls->stepmin); ls->step = PetscMin(ls->step,ls->stepmax); ierr = VecCopy(x,neP->W2);CHKERRQ(ierr); ierr = VecAXPY(neP->W2,ls->step,s);CHKERRQ(ierr); if (ls->bounded) { /* Make sure new vector is numerically within bounds */ ierr = VecMedian(neP->W2,ls->lower,ls->upper,neP->W2);CHKERRQ(ierr); } /* Gradient is not needed here. Unless there is a separate gradient routine, compute it here anyway to prevent recomputing at the end of the line search */ if (ls->hasobjective) { ierr = TaoLineSearchComputeObjective(ls,neP->W2,f);CHKERRQ(ierr); g_computed=PETSC_FALSE; } else if (ls->usegts){ ierr = TaoLineSearchComputeObjectiveAndGTS(ls,neP->W2,f,&gdx);CHKERRQ(ierr); g_computed=PETSC_FALSE; } else { ierr = TaoLineSearchComputeObjectiveAndGradient(ls,neP->W2,f,g);CHKERRQ(ierr); g_computed=PETSC_TRUE; } if (0 == i) { ls->f_fullstep = *f; } actred = *f - finit; ierr = VecCopy(neP->W2,neP->W1);CHKERRQ(ierr); ierr = VecAXPY(neP->W1,-1.0,x);CHKERRQ(ierr); /* W1 = W2 - X */ ierr = VecDot(neP->W1,neP->Gold,&prered);CHKERRQ(ierr); if (fabs(prered)<1.0e-100) prered=1.0e-12; rho = actred/prered; /* If sufficient progress has been obtained, accept the point. Otherwise, backtrack. */ if (actred > 0) { ierr = PetscInfo(ls,"Step resulted in ascent, rejecting.\n");CHKERRQ(ierr); ls->step = (ls->step)/2; } else if (rho > ls->ftol){ break; } else{ ls->step = (ls->step)/2; } /* Convergence testing */ if (ls->step <= ls->stepmin || ls->step >= ls->stepmax) { ls->reason = TAOLINESEARCH_HALTED_OTHER; ierr = PetscInfo(ls,"Rounding errors may prevent further progress. May not be a step satisfying\n");CHKERRQ(ierr); ierr = PetscInfo(ls,"sufficient decrease and curvature conditions. Tolerances may be too small.\n");CHKERRQ(ierr); break; } if (ls->step == ls->stepmax) { ierr = PetscInfo1(ls,"Step is at the upper bound, stepmax (%g)\n",(double)ls->stepmax);CHKERRQ(ierr); ls->reason = TAOLINESEARCH_HALTED_UPPERBOUND; break; } if (ls->step == ls->stepmin) { ierr = PetscInfo1(ls,"Step is at the lower bound, stepmin (%g)\n",(double)ls->stepmin);CHKERRQ(ierr); ls->reason = TAOLINESEARCH_HALTED_LOWERBOUND; break; } if ((ls->nfeval+ls->nfgeval) >= ls->max_funcs) { ierr = PetscInfo2(ls,"Number of line search function evals (%D) > maximum (%D)\n",ls->nfeval+ls->nfgeval,ls->max_funcs);CHKERRQ(ierr); ls->reason = TAOLINESEARCH_HALTED_MAXFCN; break; } if ((neP->bracket) && (ls->stepmax - ls->stepmin <= ls->rtol*ls->stepmax)){ ierr = PetscInfo1(ls,"Relative width of interval of uncertainty is at most rtol (%g)\n",(double)ls->rtol);CHKERRQ(ierr); ls->reason = TAOLINESEARCH_HALTED_RTOL; break; } } ierr = PetscInfo2(ls,"%D function evals in line search, step = %g\n",ls->nfeval+ls->nfgeval,(double)ls->step);CHKERRQ(ierr); /* set new solution vector and compute gradient if necessary */ ierr = VecCopy(neP->W2, x);CHKERRQ(ierr); if (ls->reason == TAOLINESEARCH_CONTINUE_ITERATING) { ls->reason = TAOLINESEARCH_SUCCESS; } if (!g_computed) { ierr = TaoLineSearchComputeGradient(ls,x,g);CHKERRQ(ierr); } PetscFunctionReturn(0); }
static PetscErrorCode TaoSolve_TRON(Tao tao) { TAO_TRON *tron = (TAO_TRON *)tao->data; PetscErrorCode ierr; PetscInt its; TaoConvergedReason reason = TAO_CONTINUE_ITERATING; TaoLineSearchConvergedReason ls_reason = TAOLINESEARCH_CONTINUE_ITERATING; PetscReal prered,actred,delta,f,f_new,rhok,gdx,xdiff,stepsize; PetscFunctionBegin; tron->pgstepsize=1.0; tao->trust = tao->trust0; /* Project the current point onto the feasible set */ ierr = TaoComputeVariableBounds(tao);CHKERRQ(ierr); ierr = VecMedian(tao->XL,tao->solution,tao->XU,tao->solution);CHKERRQ(ierr); ierr = TaoLineSearchSetVariableBounds(tao->linesearch,tao->XL,tao->XU);CHKERRQ(ierr); ierr = TaoComputeObjectiveAndGradient(tao,tao->solution,&tron->f,tao->gradient);CHKERRQ(ierr); ierr = ISDestroy(&tron->Free_Local);CHKERRQ(ierr); ierr = VecWhichBetween(tao->XL,tao->solution,tao->XU,&tron->Free_Local);CHKERRQ(ierr); /* Project the gradient and calculate the norm */ ierr = VecBoundGradientProjection(tao->gradient,tao->solution, tao->XL, tao->XU, tao->gradient);CHKERRQ(ierr); ierr = VecNorm(tao->gradient,NORM_2,&tron->gnorm);CHKERRQ(ierr); if (PetscIsInfOrNanReal(tron->f) || PetscIsInfOrNanReal(tron->gnorm)) SETERRQ(PETSC_COMM_SELF,1, "User provided compute function generated Inf pr NaN"); if (tao->trust <= 0) { tao->trust=PetscMax(tron->gnorm*tron->gnorm,1.0); } tron->stepsize=tao->trust; ierr = TaoMonitor(tao, tao->niter, tron->f, tron->gnorm, 0.0, tron->stepsize, &reason);CHKERRQ(ierr); while (reason==TAO_CONTINUE_ITERATING){ tao->ksp_its=0; ierr = TronGradientProjections(tao,tron);CHKERRQ(ierr); f=tron->f; delta=tao->trust; tron->n_free_last = tron->n_free; ierr = TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);CHKERRQ(ierr); ierr = ISGetSize(tron->Free_Local, &tron->n_free);CHKERRQ(ierr); /* If no free variables */ if (tron->n_free == 0) { actred=0; ierr = PetscInfo(tao,"No free variables in tron iteration.\n");CHKERRQ(ierr); ierr = VecNorm(tao->gradient,NORM_2,&tron->gnorm);CHKERRQ(ierr); ierr = TaoMonitor(tao, tao->niter, tron->f, tron->gnorm, 0.0, delta, &reason);CHKERRQ(ierr); if (!reason) { reason = TAO_CONVERGED_STEPTOL; ierr = TaoSetConvergedReason(tao,reason);CHKERRQ(ierr); } break; } /* use free_local to mask/submat gradient, hessian, stepdirection */ ierr = TaoVecGetSubVec(tao->gradient,tron->Free_Local,tao->subset_type,0.0,&tron->R);CHKERRQ(ierr); ierr = TaoVecGetSubVec(tao->gradient,tron->Free_Local,tao->subset_type,0.0,&tron->DXFree);CHKERRQ(ierr); ierr = VecSet(tron->DXFree,0.0);CHKERRQ(ierr); ierr = VecScale(tron->R, -1.0);CHKERRQ(ierr); ierr = TaoMatGetSubMat(tao->hessian, tron->Free_Local, tron->diag, tao->subset_type, &tron->H_sub);CHKERRQ(ierr); if (tao->hessian == tao->hessian_pre) { ierr = MatDestroy(&tron->Hpre_sub);CHKERRQ(ierr); ierr = PetscObjectReference((PetscObject)(tron->H_sub));CHKERRQ(ierr); tron->Hpre_sub = tron->H_sub; } else { ierr = TaoMatGetSubMat(tao->hessian_pre, tron->Free_Local, tron->diag, tao->subset_type,&tron->Hpre_sub);CHKERRQ(ierr); } ierr = KSPReset(tao->ksp);CHKERRQ(ierr); ierr = KSPSetOperators(tao->ksp, tron->H_sub, tron->Hpre_sub);CHKERRQ(ierr); while (1) { /* Approximately solve the reduced linear system */ ierr = KSPSTCGSetRadius(tao->ksp,delta);CHKERRQ(ierr); ierr = KSPSolve(tao->ksp, tron->R, tron->DXFree);CHKERRQ(ierr); ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr); tao->ksp_its+=its; tao->ksp_tot_its+=its; ierr = VecSet(tao->stepdirection,0.0);CHKERRQ(ierr); /* Add dxfree matrix to compute step direction vector */ ierr = VecISAXPY(tao->stepdirection,tron->Free_Local,1.0,tron->DXFree);CHKERRQ(ierr); if (0) { PetscReal rhs,stepnorm; ierr = VecNorm(tron->R,NORM_2,&rhs);CHKERRQ(ierr); ierr = VecNorm(tron->DXFree,NORM_2,&stepnorm);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"|rhs|=%g\t|s|=%g\n",(double)rhs,(double)stepnorm);CHKERRQ(ierr); } ierr = VecDot(tao->gradient, tao->stepdirection, &gdx);CHKERRQ(ierr); ierr = PetscInfo1(tao,"Expected decrease in function value: %14.12e\n",(double)gdx);CHKERRQ(ierr); ierr = VecCopy(tao->solution, tron->X_New);CHKERRQ(ierr); ierr = VecCopy(tao->gradient, tron->G_New);CHKERRQ(ierr); stepsize=1.0;f_new=f; ierr = TaoLineSearchSetInitialStepLength(tao->linesearch,1.0);CHKERRQ(ierr); ierr = TaoLineSearchApply(tao->linesearch, tron->X_New, &f_new, tron->G_New, tao->stepdirection,&stepsize,&ls_reason);CHKERRQ(ierr);CHKERRQ(ierr); ierr = TaoAddLineSearchCounts(tao);CHKERRQ(ierr); ierr = MatMult(tao->hessian, tao->stepdirection, tron->Work);CHKERRQ(ierr); ierr = VecAYPX(tron->Work, 0.5, tao->gradient);CHKERRQ(ierr); ierr = VecDot(tao->stepdirection, tron->Work, &prered);CHKERRQ(ierr); actred = f_new - f; if (actred<0) { rhok=PetscAbs(-actred/prered); } else { rhok=0.0; } /* Compare actual improvement to the quadratic model */ if (rhok > tron->eta1) { /* Accept the point */ /* d = x_new - x */ ierr = VecCopy(tron->X_New, tao->stepdirection);CHKERRQ(ierr); ierr = VecAXPY(tao->stepdirection, -1.0, tao->solution);CHKERRQ(ierr); ierr = VecNorm(tao->stepdirection, NORM_2, &xdiff);CHKERRQ(ierr); xdiff *= stepsize; /* Adjust trust region size */ if (rhok < tron->eta2 ){ delta = PetscMin(xdiff,delta)*tron->sigma1; } else if (rhok > tron->eta4 ){ delta= PetscMin(xdiff,delta)*tron->sigma3; } else if (rhok > tron->eta3 ){ delta=PetscMin(xdiff,delta)*tron->sigma2; } ierr = VecBoundGradientProjection(tron->G_New,tron->X_New, tao->XL, tao->XU, tao->gradient);CHKERRQ(ierr); if (tron->Free_Local) { ierr = ISDestroy(&tron->Free_Local);CHKERRQ(ierr); } ierr = VecWhichBetween(tao->XL, tron->X_New, tao->XU, &tron->Free_Local);CHKERRQ(ierr); f=f_new; ierr = VecNorm(tao->gradient,NORM_2,&tron->gnorm);CHKERRQ(ierr); ierr = VecCopy(tron->X_New, tao->solution);CHKERRQ(ierr); ierr = VecCopy(tron->G_New, tao->gradient);CHKERRQ(ierr); break; } else if (delta <= 1e-30) { break; } else { delta /= 4.0; } } /* end linear solve loop */ tron->f=f; tron->actred=actred; tao->trust=delta; tao->niter++; ierr = TaoMonitor(tao, tao->niter, tron->f, tron->gnorm, 0.0, delta, &reason);CHKERRQ(ierr); } /* END MAIN LOOP */ PetscFunctionReturn(0); }
static PetscErrorCode TaoSolve_GPCG(Tao tao) { TAO_GPCG *gpcg = (TAO_GPCG *)tao->data; PetscErrorCode ierr; PetscInt its; PetscReal actred,f,f_new,gnorm,gdx,stepsize,xtb; PetscReal xtHx; TaoConvergedReason reason = TAO_CONTINUE_ITERATING; TaoLineSearchConvergedReason ls_status = TAOLINESEARCH_CONTINUE_ITERATING; PetscFunctionBegin; ierr = TaoComputeVariableBounds(tao);CHKERRQ(ierr); ierr = VecMedian(tao->XL,tao->solution,tao->XU,tao->solution);CHKERRQ(ierr); ierr = TaoLineSearchSetVariableBounds(tao->linesearch,tao->XL,tao->XU);CHKERRQ(ierr); /* Using f = .5*x'Hx + x'b + c and g=Hx + b, compute b,c */ ierr = TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);CHKERRQ(ierr); ierr = TaoComputeObjectiveAndGradient(tao,tao->solution,&f,tao->gradient);CHKERRQ(ierr); ierr = VecCopy(tao->gradient, gpcg->B);CHKERRQ(ierr); ierr = MatMult(tao->hessian,tao->solution,gpcg->Work);CHKERRQ(ierr); ierr = VecDot(gpcg->Work, tao->solution, &xtHx);CHKERRQ(ierr); ierr = VecAXPY(gpcg->B,-1.0,gpcg->Work);CHKERRQ(ierr); ierr = VecDot(gpcg->B,tao->solution,&xtb);CHKERRQ(ierr); gpcg->c=f-xtHx/2.0-xtb; if (gpcg->Free_Local) { ierr = ISDestroy(&gpcg->Free_Local);CHKERRQ(ierr); } ierr = VecWhichBetween(tao->XL,tao->solution,tao->XU,&gpcg->Free_Local);CHKERRQ(ierr); /* Project the gradient and calculate the norm */ ierr = VecCopy(tao->gradient,gpcg->G_New);CHKERRQ(ierr); ierr = VecBoundGradientProjection(tao->gradient,tao->solution,tao->XL,tao->XU,gpcg->PG);CHKERRQ(ierr); ierr = VecNorm(gpcg->PG,NORM_2,&gpcg->gnorm);CHKERRQ(ierr); tao->step=1.0; gpcg->f = f; /* Check Stopping Condition */ ierr=TaoMonitor(tao,tao->niter,f,gpcg->gnorm,0.0,tao->step,&reason);CHKERRQ(ierr); while (reason == TAO_CONTINUE_ITERATING){ tao->ksp_its=0; ierr = GPCGGradProjections(tao);CHKERRQ(ierr); ierr = ISGetSize(gpcg->Free_Local,&gpcg->n_free);CHKERRQ(ierr); f=gpcg->f; gnorm=gpcg->gnorm; ierr = KSPReset(tao->ksp);CHKERRQ(ierr); if (gpcg->n_free > 0){ /* Create a reduced linear system */ ierr = VecDestroy(&gpcg->R);CHKERRQ(ierr); ierr = VecDestroy(&gpcg->DXFree);CHKERRQ(ierr); ierr = TaoVecGetSubVec(tao->gradient,gpcg->Free_Local, tao->subset_type, 0.0, &gpcg->R);CHKERRQ(ierr); ierr = VecScale(gpcg->R, -1.0);CHKERRQ(ierr); ierr = TaoVecGetSubVec(tao->stepdirection,gpcg->Free_Local,tao->subset_type, 0.0, &gpcg->DXFree);CHKERRQ(ierr); ierr = VecSet(gpcg->DXFree,0.0);CHKERRQ(ierr); ierr = TaoMatGetSubMat(tao->hessian, gpcg->Free_Local, gpcg->Work, tao->subset_type, &gpcg->Hsub);CHKERRQ(ierr); if (tao->hessian_pre == tao->hessian) { ierr = MatDestroy(&gpcg->Hsub_pre);CHKERRQ(ierr); ierr = PetscObjectReference((PetscObject)gpcg->Hsub);CHKERRQ(ierr); gpcg->Hsub_pre = gpcg->Hsub; } else { ierr = TaoMatGetSubMat(tao->hessian, gpcg->Free_Local, gpcg->Work, tao->subset_type, &gpcg->Hsub_pre);CHKERRQ(ierr); } ierr = KSPReset(tao->ksp);CHKERRQ(ierr); ierr = KSPSetOperators(tao->ksp,gpcg->Hsub,gpcg->Hsub_pre);CHKERRQ(ierr); ierr = KSPSolve(tao->ksp,gpcg->R,gpcg->DXFree);CHKERRQ(ierr); ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr); tao->ksp_its+=its; tao->ksp_tot_its+=its; ierr = VecSet(tao->stepdirection,0.0);CHKERRQ(ierr); ierr = VecISAXPY(tao->stepdirection,gpcg->Free_Local,1.0,gpcg->DXFree);CHKERRQ(ierr); ierr = VecDot(tao->stepdirection,tao->gradient,&gdx);CHKERRQ(ierr); ierr = TaoLineSearchSetInitialStepLength(tao->linesearch,1.0);CHKERRQ(ierr); f_new=f; ierr = TaoLineSearchApply(tao->linesearch,tao->solution,&f_new,tao->gradient,tao->stepdirection,&stepsize,&ls_status);CHKERRQ(ierr); actred = f_new - f; /* Evaluate the function and gradient at the new point */ ierr = VecBoundGradientProjection(tao->gradient,tao->solution,tao->XL,tao->XU, gpcg->PG);CHKERRQ(ierr); ierr = VecNorm(gpcg->PG, NORM_2, &gnorm);CHKERRQ(ierr); f=f_new; ierr = ISDestroy(&gpcg->Free_Local);CHKERRQ(ierr); ierr = VecWhichBetween(tao->XL,tao->solution,tao->XU,&gpcg->Free_Local);CHKERRQ(ierr); } else { actred = 0; gpcg->step=1.0; /* if there were no free variables, no cg method */ } tao->niter++; ierr = TaoMonitor(tao,tao->niter,f,gnorm,0.0,gpcg->step,&reason);CHKERRQ(ierr); gpcg->f=f;gpcg->gnorm=gnorm; gpcg->actred=actred; if (reason!=TAO_CONTINUE_ITERATING) break; } /* END MAIN LOOP */ PetscFunctionReturn(0); }
static PetscErrorCode QPIPSetInitialPoint(TAO_BQPIP *qp, Tao tao) { PetscErrorCode ierr; PetscReal two=2.0,p01=1; PetscReal gap1,gap2,fff,mu; PetscFunctionBegin; /* Compute function, Gradient R=Hx+b, and Hessian */ ierr = TaoComputeVariableBounds(tao);CHKERRQ(ierr); ierr = VecMedian(qp->XL, tao->solution, qp->XU, tao->solution);CHKERRQ(ierr); ierr = MatMult(tao->hessian, tao->solution, tao->gradient);CHKERRQ(ierr); ierr = VecCopy(qp->C0, qp->Work);CHKERRQ(ierr); ierr = VecAXPY(qp->Work, 0.5, tao->gradient);CHKERRQ(ierr); ierr = VecAXPY(tao->gradient, 1.0, qp->C0);CHKERRQ(ierr); ierr = VecDot(tao->solution, qp->Work, &fff);CHKERRQ(ierr); qp->pobj = fff + qp->c; /* Initialize Primal Vectors */ /* T = XU - X; G = X - XL */ ierr = VecCopy(qp->XU, qp->T);CHKERRQ(ierr); ierr = VecAXPY(qp->T, -1.0, tao->solution);CHKERRQ(ierr); ierr = VecCopy(tao->solution, qp->G);CHKERRQ(ierr); ierr = VecAXPY(qp->G, -1.0, qp->XL);CHKERRQ(ierr); ierr = VecSet(qp->GZwork, p01);CHKERRQ(ierr); ierr = VecSet(qp->TSwork, p01);CHKERRQ(ierr); ierr = VecPointwiseMax(qp->G, qp->G, qp->GZwork);CHKERRQ(ierr); ierr = VecPointwiseMax(qp->T, qp->T, qp->TSwork);CHKERRQ(ierr); /* Initialize Dual Variable Vectors */ ierr = VecCopy(qp->G, qp->Z);CHKERRQ(ierr); ierr = VecReciprocal(qp->Z);CHKERRQ(ierr); ierr = VecCopy(qp->T, qp->S);CHKERRQ(ierr); ierr = VecReciprocal(qp->S);CHKERRQ(ierr); ierr = MatMult(tao->hessian, qp->Work, qp->RHS);CHKERRQ(ierr); ierr = VecAbs(qp->RHS);CHKERRQ(ierr); ierr = VecSet(qp->Work, p01);CHKERRQ(ierr); ierr = VecPointwiseMax(qp->RHS, qp->RHS, qp->Work);CHKERRQ(ierr); ierr = VecPointwiseDivide(qp->RHS, tao->gradient, qp->RHS);CHKERRQ(ierr); ierr = VecNorm(qp->RHS, NORM_1, &gap1);CHKERRQ(ierr); mu = PetscMin(10.0,(gap1+10.0)/qp->m); ierr = VecScale(qp->S, mu);CHKERRQ(ierr); ierr = VecScale(qp->Z, mu);CHKERRQ(ierr); ierr = VecSet(qp->TSwork, p01);CHKERRQ(ierr); ierr = VecSet(qp->GZwork, p01);CHKERRQ(ierr); ierr = VecPointwiseMax(qp->S, qp->S, qp->TSwork);CHKERRQ(ierr); ierr = VecPointwiseMax(qp->Z, qp->Z, qp->GZwork);CHKERRQ(ierr); qp->mu=0;qp->dinfeas=1.0;qp->pinfeas=1.0; while ( (qp->dinfeas+qp->pinfeas)/(qp->m+qp->n) >= qp->mu ){ ierr = VecScale(qp->G, two);CHKERRQ(ierr); ierr = VecScale(qp->Z, two);CHKERRQ(ierr); ierr = VecScale(qp->S, two);CHKERRQ(ierr); ierr = VecScale(qp->T, two);CHKERRQ(ierr); ierr = QPIPComputeResidual(qp,tao);CHKERRQ(ierr); ierr = VecCopy(tao->solution, qp->R3);CHKERRQ(ierr); ierr = VecAXPY(qp->R3, -1.0, qp->G);CHKERRQ(ierr); ierr = VecAXPY(qp->R3, -1.0, qp->XL);CHKERRQ(ierr); ierr = VecCopy(tao->solution, qp->R5);CHKERRQ(ierr); ierr = VecAXPY(qp->R5, 1.0, qp->T);CHKERRQ(ierr); ierr = VecAXPY(qp->R5, -1.0, qp->XU);CHKERRQ(ierr); ierr = VecNorm(qp->R3, NORM_INFINITY, &gap1);CHKERRQ(ierr); ierr = VecNorm(qp->R5, NORM_INFINITY, &gap2);CHKERRQ(ierr); qp->pinfeas=PetscMax(gap1,gap2); /* Compute the duality gap */ ierr = VecDot(qp->G, qp->Z, &gap1);CHKERRQ(ierr); ierr = VecDot(qp->T, qp->S, &gap2);CHKERRQ(ierr); qp->gap = (gap1+gap2); qp->dobj = qp->pobj - qp->gap; if (qp->m>0) qp->mu=qp->gap/(qp->m); else qp->mu=0.0; qp->rgap=qp->gap/( PetscAbsReal(qp->dobj) + PetscAbsReal(qp->pobj) + 1.0 ); } PetscFunctionReturn(0); }
extern PetscErrorCode MatLMVMUpdate(Mat M, Vec x, Vec g) { MatLMVMCtx *ctx; PetscReal rhotemp, rhotol; PetscReal y0temp, s0temp; PetscReal yDy, yDs, sDs; PetscReal sigmanew, denom; PetscErrorCode ierr; PetscInt i; PetscBool same; PetscReal yy_sum=0.0, ys_sum=0.0, ss_sum=0.0; PetscFunctionBegin; PetscValidHeaderSpecific(x,VEC_CLASSID,2); PetscValidHeaderSpecific(g,VEC_CLASSID,3); ierr = PetscObjectTypeCompare((PetscObject)M,MATSHELL,&same);CHKERRQ(ierr); if (!same) SETERRQ(PETSC_COMM_SELF,1,"Matrix M is not type MatLMVM"); ierr = MatShellGetContext(M,(void**)&ctx);CHKERRQ(ierr); if (!ctx->allocated) { ierr = MatLMVMAllocateVectors(M, x); CHKERRQ(ierr); } if (0 == ctx->iter) { ierr = MatLMVMReset(M);CHKERRQ(ierr); } else { ierr = VecAYPX(ctx->Gprev,-1.0,g);CHKERRQ(ierr); ierr = VecAYPX(ctx->Xprev,-1.0,x);CHKERRQ(ierr); ierr = VecDot(ctx->Gprev,ctx->Xprev,&rhotemp);CHKERRQ(ierr); ierr = VecDot(ctx->Gprev,ctx->Gprev,&y0temp);CHKERRQ(ierr); rhotol = ctx->eps * y0temp; if (rhotemp > rhotol) { ++ctx->nupdates; ctx->lmnow = PetscMin(ctx->lmnow+1, ctx->lm); ierr=PetscObjectDereference((PetscObject)ctx->S[ctx->lm]);CHKERRQ(ierr); ierr=PetscObjectDereference((PetscObject)ctx->Y[ctx->lm]);CHKERRQ(ierr); for (i = ctx->lm-1; i >= 0; --i) { ctx->S[i+1] = ctx->S[i]; ctx->Y[i+1] = ctx->Y[i]; ctx->rho[i+1] = ctx->rho[i]; } ctx->S[0] = ctx->Xprev; ctx->Y[0] = ctx->Gprev; PetscObjectReference((PetscObject)ctx->S[0]); PetscObjectReference((PetscObject)ctx->Y[0]); ctx->rho[0] = 1.0 / rhotemp; /* Compute the scaling */ switch(ctx->scaleType) { case MatLMVM_Scale_None: break; case MatLMVM_Scale_Scalar: /* Compute s^T s */ ierr = VecDot(ctx->Xprev,ctx->Xprev,&s0temp);CHKERRQ(ierr); /* Scalar is positive; safeguards are not required. */ /* Save information for scalar scaling */ ctx->yy_history[(ctx->nupdates - 1) % ctx->scalar_history] = y0temp; ctx->ys_history[(ctx->nupdates - 1) % ctx->scalar_history] = rhotemp; ctx->ss_history[(ctx->nupdates - 1) % ctx->scalar_history] = s0temp; /* Compute summations for scalar scaling */ yy_sum = 0; /* No safeguard required; y^T y > 0 */ ys_sum = 0; /* No safeguard required; y^T s > 0 */ ss_sum = 0; /* No safeguard required; s^T s > 0 */ for (i = 0; i < PetscMin(ctx->nupdates, ctx->scalar_history); ++i) { yy_sum += ctx->yy_history[i]; ys_sum += ctx->ys_history[i]; ss_sum += ctx->ss_history[i]; } if (0.0 == ctx->s_alpha) { /* Safeguard ys_sum */ if (0.0 == ys_sum) { ys_sum = TAO_ZERO_SAFEGUARD; } sigmanew = ss_sum / ys_sum; } else if (1.0 == ctx->s_alpha) { /* Safeguard yy_sum */ if (0.0 == yy_sum) { yy_sum = TAO_ZERO_SAFEGUARD; } sigmanew = ys_sum / yy_sum; } else { denom = 2*ctx->s_alpha*yy_sum; /* Safeguard denom */ if (0.0 == denom) { denom = TAO_ZERO_SAFEGUARD; } sigmanew = ((2*ctx->s_alpha-1)*ys_sum + PetscSqrtScalar((2*ctx->s_alpha-1)*(2*ctx->s_alpha-1)*ys_sum*ys_sum - 4*(ctx->s_alpha)*(ctx->s_alpha-1)*yy_sum*ss_sum)) / denom; } switch(ctx->limitType) { case MatLMVM_Limit_Average: if (1.0 == ctx->mu) { ctx->sigma = sigmanew; } else if (ctx->mu) { ctx->sigma = ctx->mu * sigmanew + (1.0 - ctx->mu) * ctx->sigma; } break; case MatLMVM_Limit_Relative: if (ctx->mu) { ctx->sigma = TaoMid((1.0 - ctx->mu) * ctx->sigma, sigmanew, (1.0 + ctx->mu) * ctx->sigma); } break; case MatLMVM_Limit_Absolute: if (ctx->nu) { ctx->sigma = TaoMid(ctx->sigma - ctx->nu, sigmanew, ctx->sigma + ctx->nu); } break; default: ctx->sigma = sigmanew; break; } break; case MatLMVM_Scale_Broyden: /* Original version */ /* Combine DFP and BFGS */ /* This code appears to be numerically unstable. We use the */ /* original version because this was used to generate all of */ /* the data and because it may be the least unstable of the */ /* bunch. */ /* P = Q = inv(D); */ ierr = VecCopy(ctx->D,ctx->P);CHKERRQ(ierr); ierr = VecReciprocal(ctx->P);CHKERRQ(ierr); ierr = VecCopy(ctx->P,ctx->Q);CHKERRQ(ierr); /* V = y*y */ ierr = VecPointwiseMult(ctx->V,ctx->Gprev,ctx->Gprev);CHKERRQ(ierr); /* W = inv(D)*s */ ierr = VecPointwiseMult(ctx->W,ctx->Xprev,ctx->P);CHKERRQ(ierr); ierr = VecDot(ctx->W,ctx->Xprev,&sDs);CHKERRQ(ierr); /* Safeguard rhotemp and sDs */ if (0.0 == rhotemp) { rhotemp = TAO_ZERO_SAFEGUARD; } if (0.0 == sDs) { sDs = TAO_ZERO_SAFEGUARD; } if (1.0 != ctx->phi) { /* BFGS portion of the update */ /* U = (inv(D)*s)*(inv(D)*s) */ ierr = VecPointwiseMult(ctx->U,ctx->W,ctx->W);CHKERRQ(ierr); /* Assemble */ ierr = VecAXPY(ctx->P,1.0/rhotemp,ctx->V);CHKERRQ(ierr); ierr = VecAXPY(ctx->P,-1.0/sDs,ctx->U);CHKERRQ(ierr); } if (0.0 != ctx->phi) { /* DFP portion of the update */ /* U = inv(D)*s*y */ ierr = VecPointwiseMult(ctx->U, ctx->W, ctx->Gprev);CHKERRQ(ierr); /* Assemble */ ierr = VecAXPY(ctx->Q,1.0/rhotemp + sDs/(rhotemp*rhotemp), ctx->V);CHKERRQ(ierr); ierr = VecAXPY(ctx->Q,-2.0/rhotemp,ctx->U);CHKERRQ(ierr); } if (0.0 == ctx->phi) { ierr = VecCopy(ctx->P,ctx->U);CHKERRQ(ierr); } else if (1.0 == ctx->phi) { ierr = VecCopy(ctx->Q,ctx->U);CHKERRQ(ierr); } else { /* Broyden update U=(1-phi)*P + phi*Q */ ierr = VecCopy(ctx->Q,ctx->U);CHKERRQ(ierr); ierr = VecAXPBY(ctx->U,1.0-ctx->phi, ctx->phi, ctx->P);CHKERRQ(ierr); } /* Obtain inverse and ensure positive definite */ ierr = VecReciprocal(ctx->U);CHKERRQ(ierr); ierr = VecAbs(ctx->U);CHKERRQ(ierr); switch(ctx->rScaleType) { case MatLMVM_Rescale_None: break; case MatLMVM_Rescale_Scalar: case MatLMVM_Rescale_GL: if (ctx->rScaleType == MatLMVM_Rescale_GL) { /* Gilbert and Lemarachal use the old diagonal */ ierr = VecCopy(ctx->D,ctx->P);CHKERRQ(ierr); } else { /* The default version uses the current diagonal */ ierr = VecCopy(ctx->U,ctx->P);CHKERRQ(ierr); } /* Compute s^T s */ ierr = VecDot(ctx->Xprev,ctx->Xprev,&s0temp);CHKERRQ(ierr); /* Save information for special cases of scalar rescaling */ ctx->yy_rhistory[(ctx->nupdates - 1) % ctx->rescale_history] = y0temp; ctx->ys_rhistory[(ctx->nupdates - 1) % ctx->rescale_history] = rhotemp; ctx->ss_rhistory[(ctx->nupdates - 1) % ctx->rescale_history] = s0temp; if (0.5 == ctx->r_beta) { if (1 == PetscMin(ctx->nupdates, ctx->rescale_history)) { ierr = VecPointwiseMult(ctx->V,ctx->Y[0],ctx->P);CHKERRQ(ierr); ierr = VecDot(ctx->V,ctx->Y[0],&yy_sum);CHKERRQ(ierr); ierr = VecPointwiseDivide(ctx->W,ctx->S[0],ctx->P);CHKERRQ(ierr); ierr = VecDot(ctx->W,ctx->S[0],&ss_sum);CHKERRQ(ierr); ys_sum = ctx->ys_rhistory[0]; } else { ierr = VecCopy(ctx->P,ctx->Q);CHKERRQ(ierr); ierr = VecReciprocal(ctx->Q);CHKERRQ(ierr); /* Compute summations for scalar scaling */ yy_sum = 0; /* No safeguard required */ ys_sum = 0; /* No safeguard required */ ss_sum = 0; /* No safeguard required */ for (i = 0; i < PetscMin(ctx->nupdates, ctx->rescale_history); ++i) { ierr = VecPointwiseMult(ctx->V,ctx->Y[i],ctx->P);CHKERRQ(ierr); ierr = VecDot(ctx->V,ctx->Y[i],&yDy);CHKERRQ(ierr); yy_sum += yDy; ierr = VecPointwiseMult(ctx->W,ctx->S[i],ctx->Q);CHKERRQ(ierr); ierr = VecDot(ctx->W,ctx->S[i],&sDs);CHKERRQ(ierr); ss_sum += sDs; ys_sum += ctx->ys_rhistory[i]; } } } else if (0.0 == ctx->r_beta) { if (1 == PetscMin(ctx->nupdates, ctx->rescale_history)) { /* Compute summations for scalar scaling */ ierr = VecPointwiseDivide(ctx->W,ctx->S[0],ctx->P);CHKERRQ(ierr); ierr = VecDot(ctx->W, ctx->Y[0], &ys_sum);CHKERRQ(ierr); ierr = VecDot(ctx->W, ctx->W, &ss_sum);CHKERRQ(ierr); yy_sum += ctx->yy_rhistory[0]; } else { ierr = VecCopy(ctx->Q, ctx->P);CHKERRQ(ierr); ierr = VecReciprocal(ctx->Q);CHKERRQ(ierr); /* Compute summations for scalar scaling */ yy_sum = 0; /* No safeguard required */ ys_sum = 0; /* No safeguard required */ ss_sum = 0; /* No safeguard required */ for (i = 0; i < PetscMin(ctx->nupdates, ctx->rescale_history); ++i) { ierr = VecPointwiseMult(ctx->W, ctx->S[i], ctx->Q);CHKERRQ(ierr); ierr = VecDot(ctx->W, ctx->Y[i], &yDs);CHKERRQ(ierr); ys_sum += yDs; ierr = VecDot(ctx->W, ctx->W, &sDs);CHKERRQ(ierr); ss_sum += sDs; yy_sum += ctx->yy_rhistory[i]; } } } else if (1.0 == ctx->r_beta) { /* Compute summations for scalar scaling */ yy_sum = 0; /* No safeguard required */ ys_sum = 0; /* No safeguard required */ ss_sum = 0; /* No safeguard required */ for (i = 0; i < PetscMin(ctx->nupdates, ctx->rescale_history); ++i) { ierr = VecPointwiseMult(ctx->V, ctx->Y[i], ctx->P);CHKERRQ(ierr); ierr = VecDot(ctx->V, ctx->S[i], &yDs);CHKERRQ(ierr); ys_sum += yDs; ierr = VecDot(ctx->V, ctx->V, &yDy);CHKERRQ(ierr); yy_sum += yDy; ss_sum += ctx->ss_rhistory[i]; } } else { ierr = VecCopy(ctx->Q, ctx->P);CHKERRQ(ierr); ierr = VecPow(ctx->P, ctx->r_beta);CHKERRQ(ierr); ierr = VecPointwiseDivide(ctx->Q, ctx->P, ctx->Q);CHKERRQ(ierr); /* Compute summations for scalar scaling */ yy_sum = 0; /* No safeguard required */ ys_sum = 0; /* No safeguard required */ ss_sum = 0; /* No safeguard required */ for (i = 0; i < PetscMin(ctx->nupdates, ctx->rescale_history); ++i) { ierr = VecPointwiseMult(ctx->V, ctx->P, ctx->Y[i]);CHKERRQ(ierr); ierr = VecPointwiseMult(ctx->W, ctx->Q, ctx->S[i]);CHKERRQ(ierr); ierr = VecDot(ctx->V, ctx->V, &yDy);CHKERRQ(ierr); ierr = VecDot(ctx->V, ctx->W, &yDs);CHKERRQ(ierr); ierr = VecDot(ctx->W, ctx->W, &sDs);CHKERRQ(ierr); yy_sum += yDy; ys_sum += yDs; ss_sum += sDs; } } if (0.0 == ctx->r_alpha) { /* Safeguard ys_sum */ if (0.0 == ys_sum) { ys_sum = TAO_ZERO_SAFEGUARD; } sigmanew = ss_sum / ys_sum; } else if (1.0 == ctx->r_alpha) { /* Safeguard yy_sum */ if (0.0 == yy_sum) { ys_sum = TAO_ZERO_SAFEGUARD; } sigmanew = ys_sum / yy_sum; } else { denom = 2*ctx->r_alpha*yy_sum; /* Safeguard denom */ if (0.0 == denom) { denom = TAO_ZERO_SAFEGUARD; } sigmanew = ((2*ctx->r_alpha-1)*ys_sum + PetscSqrtScalar((2*ctx->r_alpha-1)*(2*ctx->r_alpha-1)*ys_sum*ys_sum - 4*ctx->r_alpha*(ctx->r_alpha-1)*yy_sum*ss_sum)) / denom; } /* If Q has small values, then Q^(r_beta - 1) */ /* can have very large values. Hence, ys_sum */ /* and ss_sum can be infinity. In this case, */ /* sigmanew can either be not-a-number or infinity. */ if (PetscIsInfOrNanReal(sigmanew)) { /* sigmanew is not-a-number; skip rescaling */ } else if (!sigmanew) { /* sigmanew is zero; this is a bad case; skip rescaling */ } else { /* sigmanew is positive */ ierr = VecScale(ctx->U, sigmanew);CHKERRQ(ierr); } break; } /* Modify for previous information */ switch(ctx->limitType) { case MatLMVM_Limit_Average: if (1.0 == ctx->mu) { ierr = VecCopy(ctx->D, ctx->U);CHKERRQ(ierr); } else if (ctx->mu) { ierr = VecAXPBY(ctx->D,ctx->mu, 1.0-ctx->mu,ctx->U);CHKERRQ(ierr); } break; case MatLMVM_Limit_Relative: if (ctx->mu) { /* P = (1-mu) * D */ ierr = VecAXPBY(ctx->P, 1.0-ctx->mu, 0.0, ctx->D);CHKERRQ(ierr); /* Q = (1+mu) * D */ ierr = VecAXPBY(ctx->Q, 1.0+ctx->mu, 0.0, ctx->D);CHKERRQ(ierr); ierr = VecMedian(ctx->P, ctx->U, ctx->Q, ctx->D);CHKERRQ(ierr); } break; case MatLMVM_Limit_Absolute: if (ctx->nu) { ierr = VecCopy(ctx->P, ctx->D);CHKERRQ(ierr); ierr = VecShift(ctx->P, -ctx->nu);CHKERRQ(ierr); ierr = VecCopy(ctx->D, ctx->Q);CHKERRQ(ierr); ierr = VecShift(ctx->Q, ctx->nu);CHKERRQ(ierr); ierr = VecMedian(ctx->P, ctx->U, ctx->Q, ctx->P);CHKERRQ(ierr); } break; default: ierr = VecCopy(ctx->U, ctx->D);CHKERRQ(ierr); break; } break; } ierr = PetscObjectDereference((PetscObject)ctx->Xprev);CHKERRQ(ierr); ierr = PetscObjectDereference((PetscObject)ctx->Gprev);CHKERRQ(ierr); ctx->Xprev = ctx->S[ctx->lm]; ctx->Gprev = ctx->Y[ctx->lm]; ierr = PetscObjectReference((PetscObject)ctx->S[ctx->lm]);CHKERRQ(ierr); ierr = PetscObjectReference((PetscObject)ctx->Y[ctx->lm]);CHKERRQ(ierr); } else { ++ctx->nrejects; } } ++ctx->iter; ierr = VecCopy(x, ctx->Xprev);CHKERRQ(ierr); ierr = VecCopy(g, ctx->Gprev);CHKERRQ(ierr); PetscFunctionReturn(0); }
/* @ TaoApply_Armijo - This routine performs a linesearch. It backtracks until the (nonmonotone) Armijo conditions are satisfied. Input Parameters: + tao - Tao context . X - current iterate (on output X contains new iterate, X + step*S) . S - search direction . f - merit function evaluated at X . G - gradient of merit function evaluated at X . W - work vector - step - initial estimate of step length Output parameters: + f - merit function evaluated at new iterate, X + step*S . G - gradient of merit function evaluated at new iterate, X + step*S . X - new iterate - step - final step length @ */ static PetscErrorCode TaoLineSearchApply_Armijo(TaoLineSearch ls, Vec x, PetscReal *f, Vec g, Vec s) { TaoLineSearch_ARMIJO *armP = (TaoLineSearch_ARMIJO *)ls->data; PetscErrorCode ierr; PetscInt i; PetscReal fact, ref, gdx; PetscInt idx; PetscBool g_computed=PETSC_FALSE; /* to prevent extra gradient computation */ PetscFunctionBegin; ls->reason = TAOLINESEARCH_CONTINUE_ITERATING; if (!armP->work) { ierr = VecDuplicate(x,&armP->work);CHKERRQ(ierr); armP->x = x; ierr = PetscObjectReference((PetscObject)armP->x);CHKERRQ(ierr); } else if (x != armP->x) { /* If x has changed, then recreate work */ ierr = VecDestroy(&armP->work);CHKERRQ(ierr); ierr = VecDuplicate(x,&armP->work);CHKERRQ(ierr); ierr = PetscObjectDereference((PetscObject)armP->x);CHKERRQ(ierr); armP->x = x; ierr = PetscObjectReference((PetscObject)armP->x);CHKERRQ(ierr); } /* Check linesearch parameters */ if (armP->alpha < 1) { ierr = PetscInfo1(ls,"Armijo line search error: alpha (%g) < 1\n", (double)armP->alpha);CHKERRQ(ierr); ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER; } else if ((armP->beta <= 0) || (armP->beta >= 1)) { ierr = PetscInfo1(ls,"Armijo line search error: beta (%g) invalid\n", (double)armP->beta);CHKERRQ(ierr); ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER; } else if ((armP->beta_inf <= 0) || (armP->beta_inf >= 1)) { ierr = PetscInfo1(ls,"Armijo line search error: beta_inf (%g) invalid\n", (double)armP->beta_inf);CHKERRQ(ierr); ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER; } else if ((armP->sigma <= 0) || (armP->sigma >= 0.5)) { ierr = PetscInfo1(ls,"Armijo line search error: sigma (%g) invalid\n", (double)armP->sigma);CHKERRQ(ierr); ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER; } else if (armP->memorySize < 1) { ierr = PetscInfo1(ls,"Armijo line search error: memory_size (%D) < 1\n", armP->memorySize);CHKERRQ(ierr); ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER; } else if ((armP->referencePolicy != REFERENCE_MAX) && (armP->referencePolicy != REFERENCE_AVE) && (armP->referencePolicy != REFERENCE_MEAN)) { ierr = PetscInfo(ls,"Armijo line search error: reference_policy invalid\n");CHKERRQ(ierr); ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER; } else if ((armP->replacementPolicy != REPLACE_FIFO) && (armP->replacementPolicy != REPLACE_MRU)) { ierr = PetscInfo(ls,"Armijo line search error: replacement_policy invalid\n");CHKERRQ(ierr); ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER; } else if (PetscIsInfOrNanReal(*f)) { ierr = PetscInfo(ls,"Armijo line search error: initial function inf or nan\n");CHKERRQ(ierr); ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER; } if (ls->reason != TAOLINESEARCH_CONTINUE_ITERATING) { PetscFunctionReturn(0); } /* Check to see of the memory has been allocated. If not, allocate the historical array and populate it with the initial function values. */ if (!armP->memory) { ierr = PetscMalloc1(armP->memorySize, &armP->memory );CHKERRQ(ierr); } if (!armP->memorySetup) { for (i = 0; i < armP->memorySize; i++) { armP->memory[i] = armP->alpha*(*f); } armP->current = 0; armP->lastReference = armP->memory[0]; armP->memorySetup=PETSC_TRUE; } /* Calculate reference value (MAX) */ ref = armP->memory[0]; idx = 0; for (i = 1; i < armP->memorySize; i++) { if (armP->memory[i] > ref) { ref = armP->memory[i]; idx = i; } } if (armP->referencePolicy == REFERENCE_AVE) { ref = 0; for (i = 0; i < armP->memorySize; i++) { ref += armP->memory[i]; } ref = ref / armP->memorySize; ref = PetscMax(ref, armP->memory[armP->current]); } else if (armP->referencePolicy == REFERENCE_MEAN) { ref = PetscMin(ref, 0.5*(armP->lastReference + armP->memory[armP->current])); } ierr = VecDot(g,s,&gdx);CHKERRQ(ierr); if (PetscIsInfOrNanReal(gdx)) { ierr = PetscInfo1(ls,"Initial Line Search step * g is Inf or Nan (%g)\n",(double)gdx);CHKERRQ(ierr); ls->reason=TAOLINESEARCH_FAILED_INFORNAN; PetscFunctionReturn(0); } if (gdx >= 0.0) { ierr = PetscInfo1(ls,"Initial Line Search step is not descent direction (g's=%g)\n",(double)gdx);CHKERRQ(ierr); ls->reason = TAOLINESEARCH_FAILED_ASCENT; PetscFunctionReturn(0); } if (armP->nondescending) { fact = armP->sigma; } else { fact = armP->sigma * gdx; } ls->step = ls->initstep; while (ls->step >= ls->stepmin && (ls->nfeval+ls->nfgeval) < ls->max_funcs) { /* Calculate iterate */ ierr = VecCopy(x,armP->work);CHKERRQ(ierr); ierr = VecAXPY(armP->work,ls->step,s);CHKERRQ(ierr); if (ls->bounded) { ierr = VecMedian(ls->lower,armP->work,ls->upper,armP->work);CHKERRQ(ierr); } /* Calculate function at new iterate */ if (ls->hasobjective) { ierr = TaoLineSearchComputeObjective(ls,armP->work,f);CHKERRQ(ierr); g_computed=PETSC_FALSE; } else if (ls->usegts) { ierr = TaoLineSearchComputeObjectiveAndGTS(ls,armP->work,f,&gdx);CHKERRQ(ierr); g_computed=PETSC_FALSE; } else { ierr = TaoLineSearchComputeObjectiveAndGradient(ls,armP->work,f,g);CHKERRQ(ierr); g_computed=PETSC_TRUE; } if (ls->step == ls->initstep) { ls->f_fullstep = *f; } if (PetscIsInfOrNanReal(*f)) { ls->step *= armP->beta_inf; } else { /* Check descent condition */ if (armP->nondescending && *f <= ref - ls->step*fact*ref) break; if (!armP->nondescending && *f <= ref + ls->step*fact) { break; } ls->step *= armP->beta; } } /* Check termination */ if (PetscIsInfOrNanReal(*f)) { ierr = PetscInfo(ls, "Function is inf or nan.\n");CHKERRQ(ierr); ls->reason = TAOLINESEARCH_FAILED_INFORNAN; } else if (ls->step < ls->stepmin) { ierr = PetscInfo(ls, "Step length is below tolerance.\n");CHKERRQ(ierr); ls->reason = TAOLINESEARCH_HALTED_RTOL; } else if ((ls->nfeval+ls->nfgeval) >= ls->max_funcs) { ierr = PetscInfo2(ls, "Number of line search function evals (%D) > maximum allowed (%D)\n",ls->nfeval+ls->nfgeval, ls->max_funcs);CHKERRQ(ierr); ls->reason = TAOLINESEARCH_HALTED_MAXFCN; } if (ls->reason) { PetscFunctionReturn(0); } /* Successful termination, update memory */ ls->reason = TAOLINESEARCH_SUCCESS; armP->lastReference = ref; if (armP->replacementPolicy == REPLACE_FIFO) { armP->memory[armP->current++] = *f; if (armP->current >= armP->memorySize) { armP->current = 0; } } else { armP->current = idx; armP->memory[idx] = *f; } /* Update iterate and compute gradient */ ierr = VecCopy(armP->work,x);CHKERRQ(ierr); if (!g_computed) { ierr = TaoLineSearchComputeGradient(ls, x, g);CHKERRQ(ierr); } ierr = PetscInfo2(ls, "%D function evals in line search, step = %g\n",ls->nfeval, (double)ls->step);CHKERRQ(ierr); PetscFunctionReturn(0); }
static PetscErrorCode TaoSolve_BLMVM(Tao tao) { PetscErrorCode ierr; TAO_BLMVM *blmP = (TAO_BLMVM *)tao->data; TaoConvergedReason reason = TAO_CONTINUE_ITERATING; TaoLineSearchConvergedReason ls_status = TAOLINESEARCH_CONTINUE_ITERATING; PetscReal f, fold, gdx, gnorm; PetscReal stepsize = 1.0,delta; PetscFunctionBegin; /* Project initial point onto bounds */ ierr = TaoComputeVariableBounds(tao);CHKERRQ(ierr); ierr = VecMedian(tao->XL,tao->solution,tao->XU,tao->solution);CHKERRQ(ierr); ierr = TaoLineSearchSetVariableBounds(tao->linesearch,tao->XL,tao->XU);CHKERRQ(ierr); /* Check convergence criteria */ ierr = TaoComputeObjectiveAndGradient(tao, tao->solution,&f,blmP->unprojected_gradient);CHKERRQ(ierr); ierr = VecBoundGradientProjection(blmP->unprojected_gradient,tao->solution, tao->XL,tao->XU,tao->gradient);CHKERRQ(ierr); ierr = TaoGradientNorm(tao, tao->gradient,NORM_2,&gnorm);CHKERRQ(ierr); if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(gnorm)) SETERRQ(PETSC_COMM_SELF,1, "User provided compute function generated Inf pr NaN"); ierr = TaoMonitor(tao, tao->niter, f, gnorm, 0.0, stepsize, &reason);CHKERRQ(ierr); if (reason != TAO_CONTINUE_ITERATING) PetscFunctionReturn(0); /* Set initial scaling for the function */ if (f != 0.0) { delta = 2.0*PetscAbsScalar(f) / (gnorm*gnorm); } else { delta = 2.0 / (gnorm*gnorm); } ierr = MatLMVMSetDelta(blmP->M,delta);CHKERRQ(ierr); /* Set counter for gradient/reset steps */ blmP->grad = 0; blmP->reset = 0; /* Have not converged; continue with Newton method */ while (reason == TAO_CONTINUE_ITERATING) { /* Compute direction */ ierr = MatLMVMUpdate(blmP->M, tao->solution, tao->gradient);CHKERRQ(ierr); ierr = MatLMVMSolve(blmP->M, blmP->unprojected_gradient, tao->stepdirection);CHKERRQ(ierr); ierr = VecBoundGradientProjection(tao->stepdirection,tao->solution,tao->XL,tao->XU,tao->gradient);CHKERRQ(ierr); /* Check for success (descent direction) */ ierr = VecDot(blmP->unprojected_gradient, tao->gradient, &gdx);CHKERRQ(ierr); if (gdx <= 0) { /* Step is not descent or solve was not successful Use steepest descent direction (scaled) */ ++blmP->grad; if (f != 0.0) { delta = 2.0*PetscAbsScalar(f) / (gnorm*gnorm); } else { delta = 2.0 / (gnorm*gnorm); } ierr = MatLMVMSetDelta(blmP->M,delta);CHKERRQ(ierr); ierr = MatLMVMReset(blmP->M);CHKERRQ(ierr); ierr = MatLMVMUpdate(blmP->M, tao->solution, blmP->unprojected_gradient);CHKERRQ(ierr); ierr = MatLMVMSolve(blmP->M,blmP->unprojected_gradient, tao->stepdirection);CHKERRQ(ierr); } ierr = VecScale(tao->stepdirection,-1.0);CHKERRQ(ierr); /* Perform the linesearch */ fold = f; ierr = VecCopy(tao->solution, blmP->Xold);CHKERRQ(ierr); ierr = VecCopy(blmP->unprojected_gradient, blmP->Gold);CHKERRQ(ierr); ierr = TaoLineSearchSetInitialStepLength(tao->linesearch,1.0);CHKERRQ(ierr); ierr = TaoLineSearchApply(tao->linesearch, tao->solution, &f, blmP->unprojected_gradient, tao->stepdirection, &stepsize, &ls_status);CHKERRQ(ierr); ierr = TaoAddLineSearchCounts(tao);CHKERRQ(ierr); if (ls_status != TAOLINESEARCH_SUCCESS && ls_status != TAOLINESEARCH_SUCCESS_USER) { /* Linesearch failed Reset factors and use scaled (projected) gradient step */ ++blmP->reset; f = fold; ierr = VecCopy(blmP->Xold, tao->solution);CHKERRQ(ierr); ierr = VecCopy(blmP->Gold, blmP->unprojected_gradient);CHKERRQ(ierr); if (f != 0.0) { delta = 2.0* PetscAbsScalar(f) / (gnorm*gnorm); } else { delta = 2.0/ (gnorm*gnorm); } ierr = MatLMVMSetDelta(blmP->M,delta);CHKERRQ(ierr); ierr = MatLMVMReset(blmP->M);CHKERRQ(ierr); ierr = MatLMVMUpdate(blmP->M, tao->solution, blmP->unprojected_gradient);CHKERRQ(ierr); ierr = MatLMVMSolve(blmP->M, blmP->unprojected_gradient, tao->stepdirection);CHKERRQ(ierr); ierr = VecScale(tao->stepdirection, -1.0);CHKERRQ(ierr); /* This may be incorrect; linesearch has values fo stepmax and stepmin that should be reset. */ ierr = TaoLineSearchSetInitialStepLength(tao->linesearch,1.0);CHKERRQ(ierr); ierr = TaoLineSearchApply(tao->linesearch,tao->solution,&f, blmP->unprojected_gradient, tao->stepdirection, &stepsize, &ls_status);CHKERRQ(ierr); ierr = TaoAddLineSearchCounts(tao);CHKERRQ(ierr); if (ls_status != TAOLINESEARCH_SUCCESS && ls_status != TAOLINESEARCH_SUCCESS_USER) { tao->reason = TAO_DIVERGED_LS_FAILURE; break; } } /* Check for converged */ ierr = VecBoundGradientProjection(blmP->unprojected_gradient, tao->solution, tao->XL, tao->XU, tao->gradient);CHKERRQ(ierr); ierr = TaoGradientNorm(tao, tao->gradient, NORM_2, &gnorm);CHKERRQ(ierr); if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(gnorm)) SETERRQ(PETSC_COMM_SELF,1, "User provided compute function generated Not-a-Number"); tao->niter++; ierr = TaoMonitor(tao, tao->niter, f, gnorm, 0.0, stepsize, &reason);CHKERRQ(ierr); } PetscFunctionReturn(0); }