bool Test_VirtualAlloc() { size_t memsize = 2 * 1024 * 1024; SIZE_T min = 0, max = 0; ::GetProcessWorkingSetSize(::GetCurrentProcess(), &min, &max); printf("min: %u KB, max: %u KB\n", min/1024, max/1024); { BYTE *pBuf = (BYTE*)VirtualAlloc(NULL, memsize, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); printf("VirtualAlloc: %p\n", pBuf); BOOL ret = VirtualLock(pBuf, memsize); printf("VirtualLock: %d\n", ret); memset(pBuf, 0, memsize); // getchar(); void *pa[10]; for (int i = 0; i < 10; i++) { pa[i] = malloc(10 * 1024 * 1024); memset(pa[i], 0, 10 * 1024 * 1024); } getchar(); for (int i = 0; i < 10; i++) { free(pa[i]); } if (ret) VirtualUnlock(pBuf, memsize); VirtualFree(pBuf, memsize, 0); } min += 2 * 1024 * 1024; max += 2 * 1024 * 1024; ::SetProcessWorkingSetSize(::GetCurrentProcess(), min, max); printf("min: %u KB, max: %u KB\n", min / 1024, max / 1024); { BYTE *pBuf = (BYTE*)VirtualAlloc(NULL, memsize, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); printf("VirtualAlloc: %p\n", pBuf); BOOL ret = VirtualLock(pBuf, memsize); printf("VirtualLock: %d\n", ret); memset(pBuf, 0, memsize); // getchar(); if (ret) VirtualUnlock(pBuf, memsize); VirtualFree(pBuf, memsize, 0); } return 0; }
void disk_buffer_pool::free_buffer_impl(char* buf, mutex::scoped_lock& l) { TORRENT_ASSERT(buf); TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(is_disk_buffer(buf, l)); #if defined TORRENT_DISK_STATS || defined TORRENT_STATS --m_allocations; #endif #ifdef TORRENT_DISK_STATS TORRENT_ASSERT(m_categories.find(m_buf_to_category[buf]) != m_categories.end()); std::string const& category = m_buf_to_category[buf]; --m_categories[category]; m_log << log_time() << " " << category << ": " << m_categories[category] << "\n"; m_buf_to_category.erase(buf); #endif #if TORRENT_USE_MLOCK if (m_settings.lock_disk_cache) { #ifdef TORRENT_WINDOWS VirtualUnlock(buf, m_block_size); #else munlock(buf, m_block_size); #endif } #endif #ifdef TORRENT_DISABLE_POOL_ALLOCATOR page_aligned_allocator::free(buf); #else m_pool.free(buf); #endif --m_in_use; }
void MemFreeLocked( PTR ptr, UINT32 uiSize ) { if ( !fMemManagerInit ) DbgMessage( TOPIC_MEMORY_MANAGER, DBG_LEVEL_0, String("MemFreeLocked: Warning -- Memory manager not initialized!!! ") ); if (ptr != NULL) { VirtualUnlock( ptr, uiSize ); VirtualFree( ptr, 0, MEM_RELEASE ); guiMemTotal -= uiSize; guiMemFreed += uiSize; } else { DbgMessage( TOPIC_MEMORY_MANAGER, DBG_LEVEL_0, String("MemFreeLocked ERROR: NULL ptr received, size %d", uiSize) ); } // count even a NULL ptr as a MemFree, not because it's really a memory leak, but because it is still an error of some // sort (nobody should ever be freeing NULL pointers), and this will help in tracking it down if the above DbgMessage // is not noticed. MemDebugCounter--; #ifdef DEBUG_MEM_LEAKS DbgMessage( TOPIC_MEMORY_MANAGER, DBG_LEVEL_1, String("MemFreeLocked %p", ptr) ); #endif }
static void sUnlockMemory( HANDLE hDriver, void * mem, PGPSize numBytes ) { PGPMEMLOCKSTRUCT mls; DWORD dw; BOOL bDIOreturn; if ( IsntNull( hDriver ) ) { mls.pMem = mem; mls.ulNumBytes = numBytes; bDIOreturn = DeviceIoControl( hDriver, IOCTL_PGPMEMLOCK_UNLOCK_MEMORY, &mls, sizeof( mls ), &mls, sizeof( mls ), &dw, NULL ); pgpAssertMsg ( bDIOreturn, "DIOC error from page-locking driver" ); if ( bDIOreturn ) { pgpAssertMsg ( mls.ulError == 0, "Internal error in page-locking driver" ); } } else { VirtualUnlock ( mem, numBytes ); /* call for good measure*/ } }
bool MemoryPageLocker::Unlock(const void* addr, size_t len) { #ifdef WIN32 return VirtualUnlock(const_cast<void*>(addr), len) != 0; #else return munlock(addr, len) == 0; #endif }
bool unlockPage(void* addr, int len){ #if defined(Q_WS_X11) || defined(Q_WS_MAC) return (munlock(addr, len)==0); #elif defined(Q_WS_WIN) return VirtualUnlock(addr, len); #else return false; #endif }
int munlock(const void *addr, size_t len) { if (VirtualUnlock((LPVOID)addr, len)) return 0; errno = __map_mman_error(GetLastError(), EPERM); return -1; }
int munlock(const void *addr, size_t len) { if (VirtualUnlock((void *)addr, len)) return 0; errno = EBADF; return -1; }
int munlock(const void *addr, size_t len) { if (VirtualUnlock((LPVOID)addr, len)) return 0; else { errno = windowsErrorToErrno(GetLastError()); return -1; } }
void MemoryTrunk::DisposeTrunkBuffer() { if (PhysicalMemoryPageLocking) { VirtualUnlock(trunkPtr, head.append_head); } Memory::DecommitMemory(trunkPtr, TrunkLength); //Decommit the whole region head.committed_head = 0; committed_tail = 0; }
BOOL My_VirtualUnlock() { LPVOID lpAddress=NULL; SIZE_T dwSize=NULL; BOOL returnVal_Real = NULL; BOOL returnVal_Intercepted = NULL; DWORD error_Real = 0; DWORD error_Intercepted = 0; __try{ disableInterception(); returnVal_Real = VirtualUnlock (lpAddress,dwSize); error_Real = GetLastError(); enableInterception(); returnVal_Intercepted = VirtualUnlock (lpAddress,dwSize); error_Intercepted = GetLastError(); }__except(puts("in filter"), 1){puts("exception caught");} return ((returnVal_Real == returnVal_Intercepted) && (error_Real == error_Intercepted)); }
int munlock(const void* addr, size_t len) { if (VirtualUnlock((LPVOID)addr, len) != FALSE) { errno = 0; return 0; } errno = last_error(EPERM); return -1; }
void* prim_virtualUnlock(void * arg1,DWORD arg2) { static struct {HsInt gc_failed;HsPtr gc_failstring;} gc_result; int gc_failed; char* gc_failstring; do { BOOL res1=VirtualUnlock(arg1,arg2); if ((gc_failed = ( res1=0 ))) {gc_failstring = ErrorWin("VirtualUnlock") ;} else {gc_failed = 0;} gc_result.gc_failed = gc_failed; gc_result.gc_failstring = gc_failstring; return(&gc_result);} while(0); }
void LMDBCursor::Seek(MDB_cursor_op op) { #ifdef _MSC_VER if (op != MDB_FIRST) VirtualUnlock(mdb_value_.mv_data, mdb_value_.mv_size); #endif int mdb_status = mdb_cursor_get(mdb_cursor_, &mdb_key_, &mdb_value_, op); if (mdb_status == MDB_NOTFOUND) { valid_ = false; } else { MDB_CHECK(mdb_status); valid_ = true; } }
int uMemUnlock(void *addr, size_t size, sys_call_error_fun fun) { #ifdef _WIN32 if (VirtualUnlock(addr, size) == 0) { sys_call_error("VirtualUnlock"); return -1; } else return 0; #else int res = munlock(addr, size); if (res == -1) sys_call_error("munlock"); return res; #endif }
/** * Free and wipe memory. Uses SQLites internal sqlite3_free so that memory * can be countend and memory leak detection works in the test suite. * If ptr is not null memory will be freed. * If sz is greater than zero, the memory will be overwritten with zero before it is freed * If sz is > 0, and not compiled with OMIT_MEMLOCK, system will attempt to unlock the * memory segment so it can be paged */ void sqlcipher_free(void *ptr, int sz) { if(ptr) { if(sz > 0) { sqlcipher_memset(ptr, 0, sz); #ifndef OMIT_MEMLOCK #if defined(__unix__) || defined(__APPLE__) munlock(ptr, sz); #elif defined(_WIN32) #if !(defined(WINAPI_FAMILY) && (WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP || WINAPI_FAMILY == WINAPI_FAMILY_APP)) VirtualUnlock(ptr, sz); #endif #endif #endif } sqlite3_free(ptr); } }
static void protected_value_xor (ProtectedValue *pvalue, gboolean to_clear) { if (to_clear) { if (! pvalue->cvalue) { guint i, l; ensure_static_blob_filled (); l = protected_get_length (pvalue->pvalue, pvalue->offset); pvalue->cvalue = malloc (sizeof (gchar) * (l + 1)); for (i = 0; i < l; i++) pvalue->cvalue [i] = pvalue->pvalue [i] ^ random_blob [pvalue->offset + i]; pvalue->cvalue [l] = 0; #ifdef G_OS_WIN32 VirtualLock (pvalue->cvalue, sizeof (gchar) * (l + 1)); #else #ifdef USE_MLOCK mlock (pvalue->cvalue, sizeof (gchar) * (l + 1)); #endif #endif /*g_print ("Unmangled [%s]\n", pvalue->cvalue);*/ } } else { if (pvalue->cvalue) { /*g_print ("Mangled [%s]\n", pvalue->cvalue);*/ guint i; for (i = 0; ; i++) { gchar c; c = pvalue->cvalue[i]; pvalue->cvalue[i] = g_random_int_range (1, 255); if (!c) break; } #ifdef G_OS_WIN32 VirtualUnlock (pvalue->cvalue, sizeof (gchar) * (i + 1)); #else #ifdef USE_MLOCK munlock (pvalue->cvalue, sizeof (gchar) * (i + 1)); #endif #endif free (pvalue->cvalue); pvalue->cvalue = NULL; } } }
/* * Unlock a region so that it can be swapped to disk. * * req: TLV_TYPE_BASE_ADDRESS - The base address to lock * req: TLV_TYPE_LENGTH - The size of the region to lock */ DWORD request_sys_process_memory_unlock(Remote *remote, Packet *packet) { Packet *response = packet_create_response(packet); LPVOID base; SIZE_T size; DWORD result = ERROR_SUCCESS; base = (LPVOID)packet_get_tlv_value_qword(packet, TLV_TYPE_BASE_ADDRESS); size = packet_get_tlv_value_uint(packet, TLV_TYPE_LENGTH); if (!VirtualUnlock(base, size)) result = GetLastError(); // Transmit the response packet_transmit_response(result, remote, response); return ERROR_SUCCESS; }
bool ot_unlockPage(void* addr, int len) { static bool bWarned = false; #ifdef _WIN32 return VirtualUnlock(addr, len); #elif defined(PREDEF_PLATFORM_UNIX) if (munlock(addr, len) && !bWarned) { bWarned = true; OTLog::Error("ot_unlockPage: WARNING: unable to unlock memory used for storing secrets.\n"); } return true; #else OT_ASSERT_MSG(false, "ASSERT: ot_unlockPage unable to unlock secret memory."); #endif return false; }
void MappedMemory::release(void) { if(map) { if(use_mapping) { VirtualUnlock(map, size); UnmapViewOfFile(fd); CloseHandle(fd); map = NULL; fd = INVALID_HANDLE_VALUE; } else { free(map); map = NULL; } } if(erase) { remove(idname); erase = false; } }
void crypto_close (PCRYPTO_INFO cryptoInfo) { #ifndef GST_WINDOWS_BOOT if (cryptoInfo != NULL) { burn (cryptoInfo, sizeof (CRYPTO_INFO)); #ifndef DEVICE_DRIVER VirtualUnlock (cryptoInfo, sizeof (CRYPTO_INFO)); #endif GSTfree (cryptoInfo); } #else // GST_WINDOWS_BOOT burn (&CryptoInfoBuffer, sizeof (CryptoInfoBuffer)); CryptoInfoBufferInUse = FALSE; #endif // GST_WINDOWS_BOOT }
int TCFormatVolume (volatile FORMAT_VOL_PARAMETERS *volParams) { int nStatus; PCRYPTO_INFO cryptoInfo = NULL; HANDLE dev = INVALID_HANDLE_VALUE; DWORD dwError; char header[TC_VOLUME_HEADER_EFFECTIVE_SIZE]; unsigned __int64 num_sectors, startSector; fatparams ft; FILETIME ftCreationTime; FILETIME ftLastWriteTime; FILETIME ftLastAccessTime; BOOL bTimeStampValid = FALSE; BOOL bInstantRetryOtherFilesys = FALSE; char dosDev[TC_MAX_PATH] = { 0 }; char devName[MAX_PATH] = { 0 }; int driveLetter = -1; WCHAR deviceName[MAX_PATH]; uint64 dataOffset, dataAreaSize; LARGE_INTEGER offset; BOOL bFailedRequiredDASD = FALSE; HWND hwndDlg = volParams->hwndDlg; FormatSectorSize = volParams->sectorSize; if (FormatSectorSize < TC_MIN_VOLUME_SECTOR_SIZE || FormatSectorSize > TC_MAX_VOLUME_SECTOR_SIZE || FormatSectorSize % ENCRYPTION_DATA_UNIT_SIZE != 0) { Error ("SECTOR_SIZE_UNSUPPORTED", hwndDlg); return ERR_DONT_REPORT; } /* WARNING: Note that if Windows fails to format the volume as NTFS and the volume size is less than the maximum FAT size, the user is asked within this function whether he wants to instantly retry FAT format instead (to avoid having to re-create the whole container again). If the user answers yes, some of the input parameters are modified, the code below 'begin_format' is re-executed and some destructive operations that were performed during the first attempt must be (and are) skipped. Therefore, whenever adding or modifying any potentially destructive operations below 'begin_format', determine whether they (or their portions) need to be skipped during such a second attempt; if so, use the 'bInstantRetryOtherFilesys' flag to skip them. */ if (volParams->hiddenVol) { dataOffset = volParams->hiddenVolHostSize - TC_VOLUME_HEADER_GROUP_SIZE - volParams->size; } else { if (volParams->size <= TC_TOTAL_VOLUME_HEADERS_SIZE) return ERR_VOL_SIZE_WRONG; dataOffset = TC_VOLUME_DATA_OFFSET; } dataAreaSize = GetVolumeDataAreaSize (volParams->hiddenVol, volParams->size); num_sectors = dataAreaSize / FormatSectorSize; if (volParams->bDevice) { StringCbCopyA ((char *)deviceName, sizeof(deviceName), volParams->volumePath); ToUNICODE ((char *)deviceName, sizeof(deviceName)); driveLetter = GetDiskDeviceDriveLetter (deviceName); } VirtualLock (header, sizeof (header)); nStatus = CreateVolumeHeaderInMemory (hwndDlg, FALSE, header, volParams->ea, FIRST_MODE_OF_OPERATION_ID, volParams->password, volParams->pkcs5, volParams->pim, NULL, &cryptoInfo, dataAreaSize, volParams->hiddenVol ? dataAreaSize : 0, dataOffset, dataAreaSize, 0, volParams->headerFlags, FormatSectorSize, FALSE); if (nStatus != 0) { burn (header, sizeof (header)); VirtualUnlock (header, sizeof (header)); return nStatus; } begin_format: if (volParams->bDevice) { /* Device-hosted volume */ DWORD dwResult; int nPass; if (FakeDosNameForDevice (volParams->volumePath, dosDev, sizeof(dosDev), devName, sizeof(devName), FALSE) != 0) return ERR_OS_ERROR; if (IsDeviceMounted (devName)) { if ((dev = DismountDrive (devName, volParams->volumePath)) == INVALID_HANDLE_VALUE) { Error ("FORMAT_CANT_DISMOUNT_FILESYS", hwndDlg); nStatus = ERR_DONT_REPORT; goto error; } /* Gain "raw" access to the partition (it contains a live filesystem and the filesystem driver would otherwise prevent us from writing to hidden sectors). */ if (!DeviceIoControl (dev, FSCTL_ALLOW_EXTENDED_DASD_IO, NULL, 0, NULL, 0, &dwResult, NULL)) { bFailedRequiredDASD = TRUE; } } else if (IsOSAtLeast (WIN_VISTA) && driveLetter == -1) { // Windows Vista doesn't allow overwriting sectors belonging to an unformatted partition // to which no drive letter has been assigned under the system. This problem can be worked // around by assigning a drive letter to the partition temporarily. char szDriveLetter[] = { 'A', ':', 0 }; char rootPath[] = { 'A', ':', '\\', 0 }; char uniqVolName[MAX_PATH+1] = { 0 }; int tmpDriveLetter = -1; BOOL bResult = FALSE; tmpDriveLetter = GetFirstAvailableDrive (); if (tmpDriveLetter != -1) { rootPath[0] += (char) tmpDriveLetter; szDriveLetter[0] += (char) tmpDriveLetter; if (DefineDosDevice (DDD_RAW_TARGET_PATH, szDriveLetter, volParams->volumePath)) { bResult = GetVolumeNameForVolumeMountPoint (rootPath, uniqVolName, MAX_PATH); DefineDosDevice (DDD_RAW_TARGET_PATH|DDD_REMOVE_DEFINITION|DDD_EXACT_MATCH_ON_REMOVE, szDriveLetter, volParams->volumePath); if (bResult && SetVolumeMountPoint (rootPath, uniqVolName)) { // The drive letter can be removed now DeleteVolumeMountPoint (rootPath); } } } } // For extra safety, we will try to gain "raw" access to the partition. Note that this should actually be // redundant because if the filesystem was mounted, we already tried to obtain DASD above. If we failed, // bFailedRequiredDASD was set to TRUE and therefore we will perform pseudo "quick format" below. However, // for extra safety, in case IsDeviceMounted() failed to detect a live filesystem, we will blindly // send FSCTL_ALLOW_EXTENDED_DASD_IO (possibly for a second time) without checking the result. DeviceIoControl (dev, FSCTL_ALLOW_EXTENDED_DASD_IO, NULL, 0, NULL, 0, &dwResult, NULL); // If DASD is needed but we failed to obtain it, perform open - 'quick format' - close - open // so that the filesystem driver does not prevent us from formatting hidden sectors. for (nPass = (bFailedRequiredDASD ? 0 : 1); nPass < 2; nPass++) { int retryCount; retryCount = 0; // Try exclusive access mode first // Note that when exclusive access is denied, it is worth retrying (usually succeeds after a few tries). while (dev == INVALID_HANDLE_VALUE && retryCount++ < EXCL_ACCESS_MAX_AUTO_RETRIES) { dev = CreateFile (devName, GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL); if (retryCount > 1) Sleep (EXCL_ACCESS_AUTO_RETRY_DELAY); } if (dev == INVALID_HANDLE_VALUE) { // Exclusive access denied -- retry in shared mode dev = CreateFile (devName, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL); if (dev != INVALID_HANDLE_VALUE) { if (!volParams->bForceOperation && (Silent || (IDNO == MessageBoxW (volParams->hwndDlg, GetString ("DEVICE_IN_USE_FORMAT"), lpszTitle, MB_YESNO|MB_ICONWARNING|MB_DEFBUTTON2)))) { nStatus = ERR_DONT_REPORT; goto error; } } else { handleWin32Error (volParams->hwndDlg, SRC_POS); Error ("CANT_ACCESS_VOL", hwndDlg); nStatus = ERR_DONT_REPORT; goto error; } } if (volParams->hiddenVol || bInstantRetryOtherFilesys) break; // The following "quick format" operation would damage the outer volume if (nPass == 0) { char buf [2 * TC_MAX_VOLUME_SECTOR_SIZE]; DWORD bw; // Perform pseudo "quick format" so that the filesystem driver does not prevent us from // formatting hidden sectors memset (buf, 0, sizeof (buf)); if (!WriteFile (dev, buf, sizeof (buf), &bw, NULL)) { nStatus = ERR_OS_ERROR; goto error; } FlushFileBuffers (dev); CloseHandle (dev); dev = INVALID_HANDLE_VALUE; } } if (DeviceIoControl (dev, FSCTL_IS_VOLUME_MOUNTED, NULL, 0, NULL, 0, &dwResult, NULL)) { Error ("FORMAT_CANT_DISMOUNT_FILESYS", hwndDlg); nStatus = ERR_DONT_REPORT; goto error; } } else { /* File-hosted volume */ dev = CreateFile (volParams->volumePath, GENERIC_READ | GENERIC_WRITE, (volParams->hiddenVol || bInstantRetryOtherFilesys) ? (FILE_SHARE_READ | FILE_SHARE_WRITE) : 0, NULL, (volParams->hiddenVol || bInstantRetryOtherFilesys) ? OPEN_EXISTING : CREATE_ALWAYS, 0, NULL); if (dev == INVALID_HANDLE_VALUE) { nStatus = ERR_OS_ERROR; goto error; } DisableFileCompression (dev); if (!volParams->hiddenVol && !bInstantRetryOtherFilesys) { LARGE_INTEGER volumeSize; volumeSize.QuadPart = dataAreaSize + TC_VOLUME_HEADER_GROUP_SIZE; if (volParams->sparseFileSwitch && volParams->quickFormat) { // Create as sparse file container DWORD tmp; if (!DeviceIoControl (dev, FSCTL_SET_SPARSE, NULL, 0, NULL, 0, &tmp, NULL)) { nStatus = ERR_OS_ERROR; goto error; } } // Preallocate the file if (!SetFilePointerEx (dev, volumeSize, NULL, FILE_BEGIN) || !SetEndOfFile (dev) || SetFilePointer (dev, 0, NULL, FILE_BEGIN) != 0) { nStatus = ERR_OS_ERROR; goto error; } } } if (volParams->hiddenVol && !volParams->bDevice && bPreserveTimestamp) { if (GetFileTime ((HANDLE) dev, &ftCreationTime, &ftLastAccessTime, &ftLastWriteTime) == 0) bTimeStampValid = FALSE; else bTimeStampValid = TRUE; } if (volParams->hwndDlg && volParams->bGuiMode) KillTimer (volParams->hwndDlg, TIMER_ID_RANDVIEW); /* Volume header */ // Hidden volume setup if (volParams->hiddenVol) { LARGE_INTEGER headerOffset; // Check hidden volume size if (volParams->hiddenVolHostSize < TC_MIN_HIDDEN_VOLUME_HOST_SIZE || volParams->hiddenVolHostSize > TC_MAX_HIDDEN_VOLUME_HOST_SIZE) { nStatus = ERR_VOL_SIZE_WRONG; goto error; } // Seek to hidden volume header location headerOffset.QuadPart = TC_HIDDEN_VOLUME_HEADER_OFFSET; if (!SetFilePointerEx ((HANDLE) dev, headerOffset, NULL, FILE_BEGIN)) { nStatus = ERR_OS_ERROR; goto error; } } else if (bInstantRetryOtherFilesys) { // The previous file system format failed and the user wants to try again with a different file system. // The volume header had been written successfully so we need to seek to the byte after the header. LARGE_INTEGER offset; offset.QuadPart = TC_VOLUME_DATA_OFFSET; if (!SetFilePointerEx ((HANDLE) dev, offset, NULL, FILE_BEGIN)) { nStatus = ERR_OS_ERROR; goto error; } } if (!bInstantRetryOtherFilesys) { // Write the volume header if (!WriteEffectiveVolumeHeader (volParams->bDevice, dev, header)) { nStatus = ERR_OS_ERROR; goto error; } // To prevent fragmentation, write zeroes to reserved header sectors which are going to be filled with random data if (!volParams->bDevice && !volParams->hiddenVol) { byte buf[TC_VOLUME_HEADER_GROUP_SIZE - TC_VOLUME_HEADER_EFFECTIVE_SIZE]; DWORD bytesWritten; ZeroMemory (buf, sizeof (buf)); if (!WriteFile (dev, buf, sizeof (buf), &bytesWritten, NULL)) { nStatus = ERR_OS_ERROR; goto error; } if (bytesWritten != sizeof (buf)) { nStatus = ERR_PARAMETER_INCORRECT; goto error; } } } if (volParams->hiddenVol) { // Calculate data area position of hidden volume cryptoInfo->hiddenVolumeOffset = dataOffset; // Validate the offset if (dataOffset % FormatSectorSize != 0) { nStatus = ERR_VOL_SIZE_WRONG; goto error; } volParams->quickFormat = TRUE; // To entirely format a hidden volume would be redundant } /* Data area */ startSector = dataOffset / FormatSectorSize; // Format filesystem switch (volParams->fileSystem) { case FILESYS_NONE: case FILESYS_NTFS: if (volParams->bDevice && !StartFormatWriteThread()) { nStatus = ERR_OS_ERROR; goto error; } nStatus = FormatNoFs (hwndDlg, startSector, num_sectors, dev, cryptoInfo, volParams->quickFormat); if (volParams->bDevice) StopFormatWriteThread(); break; case FILESYS_FAT: if (num_sectors > 0xFFFFffff) { nStatus = ERR_VOL_SIZE_WRONG; goto error; } // Calculate the fats, root dir etc ft.num_sectors = (unsigned int) (num_sectors); #if TC_MAX_VOLUME_SECTOR_SIZE > 0xFFFF #error TC_MAX_VOLUME_SECTOR_SIZE > 0xFFFF #endif ft.sector_size = (uint16) FormatSectorSize; ft.cluster_size = volParams->clusterSize; memcpy (ft.volume_name, "NO NAME ", 11); GetFatParams (&ft); *(volParams->realClusterSize) = ft.cluster_size * FormatSectorSize; if (volParams->bDevice && !StartFormatWriteThread()) { nStatus = ERR_OS_ERROR; goto error; } nStatus = FormatFat (hwndDlg, startSector, &ft, (void *) dev, cryptoInfo, volParams->quickFormat); if (volParams->bDevice) StopFormatWriteThread(); break; default: nStatus = ERR_PARAMETER_INCORRECT; goto error; } if (nStatus != ERR_SUCCESS) goto error; // Write header backup offset.QuadPart = volParams->hiddenVol ? volParams->hiddenVolHostSize - TC_HIDDEN_VOLUME_HEADER_OFFSET : dataAreaSize + TC_VOLUME_HEADER_GROUP_SIZE; if (!SetFilePointerEx ((HANDLE) dev, offset, NULL, FILE_BEGIN)) { nStatus = ERR_OS_ERROR; goto error; } nStatus = CreateVolumeHeaderInMemory (hwndDlg, FALSE, header, volParams->ea, FIRST_MODE_OF_OPERATION_ID, volParams->password, volParams->pkcs5, volParams->pim, cryptoInfo->master_keydata, &cryptoInfo, dataAreaSize, volParams->hiddenVol ? dataAreaSize : 0, dataOffset, dataAreaSize, 0, volParams->headerFlags, FormatSectorSize, FALSE); if (!WriteEffectiveVolumeHeader (volParams->bDevice, dev, header)) { nStatus = ERR_OS_ERROR; goto error; } // Fill reserved header sectors (including the backup header area) with random data if (!volParams->hiddenVol) { nStatus = WriteRandomDataToReservedHeaderAreas (hwndDlg, dev, cryptoInfo, dataAreaSize, FALSE, FALSE); if (nStatus != ERR_SUCCESS) goto error; } #ifndef DEBUG if (volParams->quickFormat && volParams->fileSystem != FILESYS_NTFS) Sleep (500); // User-friendly GUI #endif error: dwError = GetLastError(); burn (header, sizeof (header)); VirtualUnlock (header, sizeof (header)); if (dev != INVALID_HANDLE_VALUE) { if (!volParams->bDevice && !volParams->hiddenVol && nStatus != 0) { // Remove preallocated part before closing file handle if format failed if (SetFilePointer (dev, 0, NULL, FILE_BEGIN) == 0) SetEndOfFile (dev); } FlushFileBuffers (dev); if (bTimeStampValid) SetFileTime (dev, &ftCreationTime, &ftLastAccessTime, &ftLastWriteTime); CloseHandle (dev); dev = INVALID_HANDLE_VALUE; } if (nStatus != 0) { SetLastError(dwError); goto fv_end; } if (volParams->fileSystem == FILESYS_NTFS) { // Quick-format volume as NTFS int driveNo = GetLastAvailableDrive (); MountOptions mountOptions; int retCode; ZeroMemory (&mountOptions, sizeof (mountOptions)); if (driveNo == -1) { if (!Silent) { MessageBoxW (volParams->hwndDlg, GetString ("NO_FREE_DRIVES"), lpszTitle, ICON_HAND); MessageBoxW (volParams->hwndDlg, GetString ("FORMAT_NTFS_STOP"), lpszTitle, ICON_HAND); } nStatus = ERR_NO_FREE_DRIVES; goto fv_end; } mountOptions.ReadOnly = FALSE; mountOptions.Removable = FALSE; mountOptions.ProtectHiddenVolume = FALSE; mountOptions.PreserveTimestamp = bPreserveTimestamp; mountOptions.PartitionInInactiveSysEncScope = FALSE; mountOptions.UseBackupHeader = FALSE; if (MountVolume (volParams->hwndDlg, driveNo, volParams->volumePath, volParams->password, volParams->pkcs5, volParams->pim, FALSE, FALSE, TRUE, &mountOptions, FALSE, TRUE) < 1) { if (!Silent) { MessageBoxW (volParams->hwndDlg, GetString ("CANT_MOUNT_VOLUME"), lpszTitle, ICON_HAND); MessageBoxW (volParams->hwndDlg, GetString ("FORMAT_NTFS_STOP"), lpszTitle, ICON_HAND); } nStatus = ERR_VOL_MOUNT_FAILED; goto fv_end; } if (!Silent && !IsAdmin () && IsUacSupported ()) retCode = UacFormatNtfs (volParams->hwndDlg, driveNo, volParams->clusterSize); else retCode = FormatNtfs (driveNo, volParams->clusterSize); if (retCode != TRUE) { if (!UnmountVolumeAfterFormatExCall (volParams->hwndDlg, driveNo) && !Silent) MessageBoxW (volParams->hwndDlg, GetString ("CANT_DISMOUNT_VOLUME"), lpszTitle, ICON_HAND); if (dataAreaSize <= TC_MAX_FAT_SECTOR_COUNT * FormatSectorSize) { if (AskErrYesNo ("FORMAT_NTFS_FAILED_ASK_FAT", hwndDlg) == IDYES) { // NTFS format failed and the user wants to try FAT format immediately volParams->fileSystem = FILESYS_FAT; bInstantRetryOtherFilesys = TRUE; volParams->quickFormat = TRUE; // Volume has already been successfully TC-formatted volParams->clusterSize = 0; // Default cluster size goto begin_format; } } else Error ("FORMAT_NTFS_FAILED", hwndDlg); nStatus = ERR_DONT_REPORT; goto fv_end; } if (!UnmountVolumeAfterFormatExCall (volParams->hwndDlg, driveNo) && !Silent) MessageBoxW (volParams->hwndDlg, GetString ("CANT_DISMOUNT_VOLUME"), lpszTitle, ICON_HAND); } fv_end: dwError = GetLastError(); if (dosDev[0]) RemoveFakeDosName (volParams->volumePath, dosDev); crypto_close (cryptoInfo); SetLastError (dwError); return nStatus; }
int FormatNoFs (HWND hwndDlg, unsigned __int64 startSector, __int64 num_sectors, void * dev, PCRYPTO_INFO cryptoInfo, BOOL quickFormat) { int write_buf_cnt = 0; char sector[TC_MAX_VOLUME_SECTOR_SIZE], *write_buf; unsigned __int64 nSecNo = startSector; int retVal = 0; DWORD err; char temporaryKey[MASTER_KEYDATA_SIZE]; char originalK2[MASTER_KEYDATA_SIZE]; LARGE_INTEGER startOffset; LARGE_INTEGER newOffset; // Seek to start sector startOffset.QuadPart = startSector * FormatSectorSize; if (!SetFilePointerEx ((HANDLE) dev, startOffset, &newOffset, FILE_BEGIN) || newOffset.QuadPart != startOffset.QuadPart) { return ERR_OS_ERROR; } write_buf = (char *)TCalloc (FormatWriteBufferSize); if (!write_buf) return ERR_OUTOFMEMORY; VirtualLock (temporaryKey, sizeof (temporaryKey)); VirtualLock (originalK2, sizeof (originalK2)); memset (sector, 0, sizeof (sector)); // Remember the original secondary key (XTS mode) before generating a temporary one memcpy (originalK2, cryptoInfo->k2, sizeof (cryptoInfo->k2)); /* Fill the rest of the data area with random data */ if(!quickFormat) { /* Generate a random temporary key set to be used for "dummy" encryption that will fill the free disk space (data area) with random data. This is necessary for plausible deniability of hidden volumes. */ // Temporary master key if (!RandgetBytes (hwndDlg, temporaryKey, EAGetKeySize (cryptoInfo->ea), FALSE)) goto fail; // Temporary secondary key (XTS mode) if (!RandgetBytes (hwndDlg, cryptoInfo->k2, sizeof cryptoInfo->k2, FALSE)) goto fail; retVal = EAInit (cryptoInfo->ea, temporaryKey, cryptoInfo->ks); if (retVal != ERR_SUCCESS) goto fail; if (!EAInitMode (cryptoInfo)) { retVal = ERR_MODE_INIT_FAILED; goto fail; } while (num_sectors--) { if (WriteSector (dev, sector, write_buf, &write_buf_cnt, &nSecNo, cryptoInfo) == FALSE) goto fail; } if (!FlushFormatWriteBuffer (dev, write_buf, &write_buf_cnt, &nSecNo, cryptoInfo)) goto fail; } else nSecNo = num_sectors; UpdateProgressBar (nSecNo * FormatSectorSize); // Restore the original secondary key (XTS mode) in case NTFS format fails and the user wants to try FAT immediately memcpy (cryptoInfo->k2, originalK2, sizeof (cryptoInfo->k2)); // Reinitialize the encryption algorithm and mode in case NTFS format fails and the user wants to try FAT immediately retVal = EAInit (cryptoInfo->ea, cryptoInfo->master_keydata, cryptoInfo->ks); if (retVal != ERR_SUCCESS) goto fail; if (!EAInitMode (cryptoInfo)) { retVal = ERR_MODE_INIT_FAILED; goto fail; } burn (temporaryKey, sizeof(temporaryKey)); burn (originalK2, sizeof(originalK2)); VirtualUnlock (temporaryKey, sizeof (temporaryKey)); VirtualUnlock (originalK2, sizeof (originalK2)); TCfree (write_buf); return 0; fail: err = GetLastError(); burn (temporaryKey, sizeof(temporaryKey)); burn (originalK2, sizeof(originalK2)); VirtualUnlock (temporaryKey, sizeof (temporaryKey)); VirtualUnlock (originalK2, sizeof (originalK2)); TCfree (write_buf); SetLastError (err); return (retVal ? retVal : ERR_OS_ERROR); }
/************************************************* * Unlock a previously locked region of memory * *************************************************/ void unlock_mem(void* ptr, u32bit bytes) { VirtualUnlock(ptr, bytes); }
void disk_buffer_pool::free_buffer_impl(char* buf, mutex::scoped_lock& l) { TORRENT_ASSERT(buf); TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(m_settings_set); TORRENT_ASSERT(is_disk_buffer(buf, l)); #if TORRENT_USE_MLOCK if (m_lock_disk_cache) { #ifdef TORRENT_WINDOWS VirtualUnlock(buf, m_block_size); #else munlock(buf, m_block_size); #endif } #endif #if TORRENT_HAVE_MMAP if (m_cache_pool) { TORRENT_ASSERT(buf >= m_cache_pool); TORRENT_ASSERT(buf < m_cache_pool + boost::uint64_t(m_max_use) * 0x4000); int slot_index = (buf - m_cache_pool) / 0x4000; m_free_list.push_back(slot_index); #if defined MADV_FREE // tell the virtual memory system that we don't actually care // about the data in these pages anymore. If this block was // swapped out to the SSD, it (hopefully) means it won't have // to be read back in once we start writing our new data to it madvise(buf, 0x4000, MADV_FREE); #elif defined MADV_DONTNEED && defined TORRENT_LINUX // rumor has it that MADV_DONTNEED is in fact destructive // on linux (i.e. it won't flush it to disk or re-read from disk) // http://kerneltrap.org/mailarchive/linux-kernel/2007/5/1/84410 madvise(buf, 0x4000, MADV_DONTNEED); #endif } else #endif { #if defined TORRENT_DISABLE_POOL_ALLOCATOR #if TORRENT_USE_PURGABLE_CONTROL vm_deallocate( mach_task_self(), reinterpret_cast<vm_address_t>(buf), 0x4000 ); #else page_aligned_allocator::free(buf); #endif // TORRENT_USE_PURGABLE_CONTROL #else if (m_using_pool_allocator) m_pool.free(buf); else page_aligned_allocator::free(buf); #endif // TORRENT_DISABLE_POOL_ALLOCATOR } #if defined TORRENT_DEBUG std::set<char*>::iterator i = m_buffers_in_use.find(buf); TORRENT_ASSERT(i != m_buffers_in_use.end()); m_buffers_in_use.erase(i); #endif --m_in_use; #ifndef TORRENT_DISABLE_POOL_ALLOCATOR // should we switch which allocator to use? if (m_in_use == 0 && m_want_pool_allocator != m_using_pool_allocator) { m_pool.release_memory(); m_using_pool_allocator = m_want_pool_allocator; } #endif }
/// /// Note: if there are Keyfiles, these must be applied already to the password! /// int __declspec(dllexport) __stdcall CheckVolumeHeaderPassword (BOOL bBoot, char *encryptedHeader, Password *password) int __declspec(dllexport) __cdecl CheckVolumeHeaderPassword (BOOL bBoot, char *encryptedHeader, Password *password) { char header[TC_VOLUME_HEADER_EFFECTIVE_SIZE]; KEY_INFO keyInfo; PCRYPTO_INFO cryptoInfo; char dk[MASTER_KEYDATA_SIZE]; int enqPkcs5Prf, pkcs5_prf; uint16 headerVersion; int status = ERR_PARAMETER_INCORRECT; int primaryKeyOffset; TC_EVENT keyDerivationCompletedEvent; TC_EVENT noOutstandingWorkItemEvent; KeyDerivationWorkItem *keyDerivationWorkItems; KeyDerivationWorkItem *item; int pkcs5PrfCount = LAST_PRF_ID - FIRST_PRF_ID + 1; size_t encryptionThreadCount = GetEncryptionThreadCount(); size_t queuedWorkItems = 0; LONG outstandingWorkItemCount = 0; int i; cryptoInfo = crypto_open(); if (cryptoInfo == NULL) return ERR_OUTOFMEMORY; if (encryptionThreadCount > 1) { keyDerivationWorkItems = TCalloc (sizeof (KeyDerivationWorkItem) * pkcs5PrfCount); if (!keyDerivationWorkItems) return ERR_OUTOFMEMORY; for (i = 0; i < pkcs5PrfCount; ++i) keyDerivationWorkItems[i].Free = TRUE; keyDerivationCompletedEvent = CreateEvent (NULL, FALSE, FALSE, NULL); if (!keyDerivationCompletedEvent) { TCfree (keyDerivationWorkItems); return ERR_OUTOFMEMORY; } noOutstandingWorkItemEvent = CreateEvent (NULL, FALSE, TRUE, NULL); if (!noOutstandingWorkItemEvent) { CloseHandle (keyDerivationCompletedEvent); TCfree (keyDerivationWorkItems); return ERR_OUTOFMEMORY; } } VirtualLock (&keyInfo, sizeof (keyInfo)); VirtualLock (&dk, sizeof (dk)); crypto_loadkey (&keyInfo, password->Text, (int) password->Length); // PKCS5 is used to derive the primary header key(s) and secondary header key(s) (XTS mode) from the password memcpy (keyInfo.salt, encryptedHeader + HEADER_SALT_OFFSET, PKCS5_SALT_SIZE); // Test all available PKCS5 PRFs for (enqPkcs5Prf = FIRST_PRF_ID; enqPkcs5Prf <= LAST_PRF_ID || queuedWorkItems > 0; ++enqPkcs5Prf) { BOOL lrw64InitDone = FALSE; // Deprecated/legacy BOOL lrw128InitDone = FALSE; // Deprecated/legacy if (encryptionThreadCount > 1) { // Enqueue key derivation on thread pool if (queuedWorkItems < encryptionThreadCount && enqPkcs5Prf <= LAST_PRF_ID) { for (i = 0; i < pkcs5PrfCount; ++i) { item = &keyDerivationWorkItems[i]; if (item->Free) { item->Free = FALSE; item->KeyReady = FALSE; item->Pkcs5Prf = enqPkcs5Prf; EncryptionThreadPoolBeginKeyDerivation (&keyDerivationCompletedEvent, &noOutstandingWorkItemEvent, &item->KeyReady, &outstandingWorkItemCount, enqPkcs5Prf, keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, get_pkcs5_iteration_count (enqPkcs5Prf, bBoot), item->DerivedKey); ++queuedWorkItems; break; } } if (enqPkcs5Prf < LAST_PRF_ID) continue; } else --enqPkcs5Prf; // Wait for completion of a key derivation while (queuedWorkItems > 0) { for (i = 0; i < pkcs5PrfCount; ++i) { item = &keyDerivationWorkItems[i]; if (!item->Free && InterlockedExchangeAdd (&item->KeyReady, 0) == TRUE) { pkcs5_prf = item->Pkcs5Prf; keyInfo.noIterations = get_pkcs5_iteration_count (pkcs5_prf, bBoot); memcpy (dk, item->DerivedKey, sizeof (dk)); item->Free = TRUE; --queuedWorkItems; goto KeyReady; } } if (queuedWorkItems > 0) TC_WAIT_EVENT (keyDerivationCompletedEvent); } continue; KeyReady: ; } else { pkcs5_prf = enqPkcs5Prf; keyInfo.noIterations = get_pkcs5_iteration_count (enqPkcs5Prf, bBoot); switch (pkcs5_prf) { case RIPEMD160: derive_key_ripemd160 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; case SHA512: derive_key_sha512 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; case SHA1: // Deprecated/legacy derive_key_sha1 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; case WHIRLPOOL: derive_key_whirlpool (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; default: // Unknown/wrong ID TC_THROW_FATAL_EXCEPTION; } } // Test all available modes of operation for (cryptoInfo->mode = FIRST_MODE_OF_OPERATION_ID; cryptoInfo->mode <= LAST_MODE_OF_OPERATION; cryptoInfo->mode++) { switch (cryptoInfo->mode) { case LRW: case CBC: case INNER_CBC: case OUTER_CBC: // For LRW (deprecated/legacy), copy the tweak key // For CBC (deprecated/legacy), copy the IV/whitening seed memcpy (cryptoInfo->k2, dk, LEGACY_VOL_IV_SIZE); primaryKeyOffset = LEGACY_VOL_IV_SIZE; break; default: primaryKeyOffset = 0; } // Test all available encryption algorithms for (cryptoInfo->ea = EAGetFirst (); cryptoInfo->ea != 0; cryptoInfo->ea = EAGetNext (cryptoInfo->ea)) { int blockSize; if (!EAIsModeSupported (cryptoInfo->ea, cryptoInfo->mode)) continue; // This encryption algorithm has never been available with this mode of operation blockSize = CipherGetBlockSize (EAGetFirstCipher (cryptoInfo->ea)); status = EAInit (cryptoInfo->ea, dk + primaryKeyOffset, cryptoInfo->ks); if (status == ERR_CIPHER_INIT_FAILURE) goto err; // Init objects related to the mode of operation if (cryptoInfo->mode == XTS) { // Copy the secondary key (if cascade, multiple concatenated) memcpy (cryptoInfo->k2, dk + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea)); // Secondary key schedule if (!EAInitMode (cryptoInfo)) { status = ERR_MODE_INIT_FAILED; goto err; } } else if (cryptoInfo->mode == LRW && (blockSize == 8 && !lrw64InitDone || blockSize == 16 && !lrw128InitDone)) { // Deprecated/legacy if (!EAInitMode (cryptoInfo)) { status = ERR_MODE_INIT_FAILED; goto err; } if (blockSize == 8) lrw64InitDone = TRUE; else if (blockSize == 16) lrw128InitDone = TRUE; } // Copy the header for decryption memcpy (header, encryptedHeader, sizeof (header)); // Try to decrypt header DecryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET, HEADER_ENCRYPTED_DATA_SIZE, cryptoInfo); // Magic 'TRUE' if (GetHeaderField32 (header, TC_HEADER_OFFSET_MAGIC) == 0x54525545){ status = ERR_SUCCESS; goto ret; } } } } status = ERR_PASSWORD_WRONG; err: ret: burn (&keyInfo, sizeof (keyInfo)); burn (dk, sizeof(dk)); VirtualUnlock (&keyInfo, sizeof (keyInfo)); VirtualUnlock (&dk, sizeof (dk)); if (encryptionThreadCount > 1) { // TC_WAIT_EVENT (noOutstandingWorkItemEvent); burn (keyDerivationWorkItems, sizeof (KeyDerivationWorkItem) * pkcs5PrfCount); TCfree (keyDerivationWorkItems); CloseHandle (keyDerivationCompletedEvent); CloseHandle (noOutstandingWorkItemEvent); } return status; }
static void unlockMemory( INOUT MEM_INFO_HEADER *memHdrPtr ) { MEM_INFO_HEADER *currentBlockPtr; PTR_TYPE block1PageAddress, block2PageAddress; const int pageSize = getSysVar( SYSVAR_PAGESIZE ); assert( isWritePtr( memHdrPtr, sizeof( MEM_INFO_HEADER ) ) ); /* If the memory block isn't locked, there's nothing to do */ if( !( memHdrPtr->flags & MEM_FLAG_LOCKED ) ) return; /* Because VirtualLock() works on a per-page basis, we can't unlock a memory block if there's another locked block on the same page. The only way to manage this is to walk the block list checking to see whether there's another block allocated on the same page. Although in theory this could make freeing memory rather slow, in practice there are only a small number of allocated blocks to check so it's relatively quick, especially compared to the overhead imposed by the lethargic VC++ allocator. The only real disadvantage is that the allocation objects remain locked while we do the free, but this isn't any worse than the overhead of touchAllocatedPages(). Note that the following code assumes that an allocated block will never cover more than two pages, which is always the case. First we calculate the addresses of the page(s) in which the memory block resides */ block1PageAddress = getPageStartAddress( memHdrPtr ); block2PageAddress = getPageEndAddress( memHdrPtr, memHdrPtr->size ); if( block1PageAddress == block2PageAddress ) block2PageAddress = 0; /* Walk down the block list checking whether the page(s) contain another locked block */ for( currentBlockPtr = krnlData->allocatedListHead; \ currentBlockPtr != NULL; currentBlockPtr = currentBlockPtr->next ) { const PTR_TYPE currentPage1Address = \ getPageStartAddress( currentBlockPtr ); PTR_TYPE currentPage2Address = \ getPageEndAddress( currentBlockPtr, currentBlockPtr->size ); if( currentPage1Address == currentPage2Address ) currentPage2Address = 0; /* If there's another block allocated on either of the pages, don't unlock it */ if( block1PageAddress == currentPage1Address || \ block1PageAddress == currentPage2Address ) { block1PageAddress = 0; if( !block2PageAddress ) break; } if( block2PageAddress == currentPage1Address || \ block2PageAddress == currentPage2Address ) { block2PageAddress = 0; if( !block1PageAddress ) break; } } /* Finally, if either page needs unlocking, do so. The supplied size is irrelevant since the entire page the memory is on is unlocked */ if( block1PageAddress ) VirtualUnlock( ( void * ) block1PageAddress, 16 ); if( block2PageAddress ) VirtualUnlock( ( void * ) block2PageAddress, 16 ); }
void Win32LockedPageAllocator::FreeLocked(void* addr, size_t len) { len = align_up(len, page_size); memory_cleanse(addr, len); VirtualUnlock(const_cast<void*>(addr), len); }
/* ================ Sys_UnlockMemory ================ */ bool Sys_UnlockMemory( void *ptr, int bytes ) { return ( VirtualUnlock( ptr, (SIZE_T)bytes ) != FALSE ); }
int ReadVolumeHeader (BOOL bBoot, char *encryptedHeader, Password *password, PCRYPTO_INFO *retInfo, CRYPTO_INFO *retHeaderCryptoInfo) { char header[TC_VOLUME_HEADER_EFFECTIVE_SIZE]; KEY_INFO keyInfo; PCRYPTO_INFO cryptoInfo; char dk[MASTER_KEYDATA_SIZE]; int enqPkcs5Prf, pkcs5_prf; uint16 headerVersion; int status = ERR_PARAMETER_INCORRECT; int primaryKeyOffset; TC_EVENT keyDerivationCompletedEvent; TC_EVENT noOutstandingWorkItemEvent; KeyDerivationWorkItem *keyDerivationWorkItems; KeyDerivationWorkItem *item; int pkcs5PrfCount = LAST_PRF_ID - FIRST_PRF_ID + 1; size_t encryptionThreadCount = GetEncryptionThreadCount(); size_t queuedWorkItems = 0; LONG outstandingWorkItemCount = 0; int i; if (retHeaderCryptoInfo != NULL) { cryptoInfo = retHeaderCryptoInfo; } else { cryptoInfo = *retInfo = crypto_open (); if (cryptoInfo == NULL) return ERR_OUTOFMEMORY; } if (encryptionThreadCount > 1) { keyDerivationWorkItems = TCalloc (sizeof (KeyDerivationWorkItem) * pkcs5PrfCount); if (!keyDerivationWorkItems) return ERR_OUTOFMEMORY; for (i = 0; i < pkcs5PrfCount; ++i) keyDerivationWorkItems[i].Free = TRUE; #ifdef DEVICE_DRIVER KeInitializeEvent (&keyDerivationCompletedEvent, SynchronizationEvent, FALSE); KeInitializeEvent (&noOutstandingWorkItemEvent, SynchronizationEvent, TRUE); #else keyDerivationCompletedEvent = CreateEvent (NULL, FALSE, FALSE, NULL); if (!keyDerivationCompletedEvent) { TCfree (keyDerivationWorkItems); return ERR_OUTOFMEMORY; } noOutstandingWorkItemEvent = CreateEvent (NULL, FALSE, TRUE, NULL); if (!noOutstandingWorkItemEvent) { CloseHandle (keyDerivationCompletedEvent); TCfree (keyDerivationWorkItems); return ERR_OUTOFMEMORY; } #endif } #ifndef DEVICE_DRIVER VirtualLock (&keyInfo, sizeof (keyInfo)); VirtualLock (&dk, sizeof (dk)); #endif crypto_loadkey (&keyInfo, password->Text, (int) password->Length); // PKCS5 is used to derive the primary header key(s) and secondary header key(s) (XTS mode) from the password memcpy (keyInfo.salt, encryptedHeader + HEADER_SALT_OFFSET, PKCS5_SALT_SIZE); // Test all available PKCS5 PRFs for (enqPkcs5Prf = FIRST_PRF_ID; enqPkcs5Prf <= LAST_PRF_ID || queuedWorkItems > 0; ++enqPkcs5Prf) { BOOL lrw64InitDone = FALSE; // Deprecated/legacy BOOL lrw128InitDone = FALSE; // Deprecated/legacy if (encryptionThreadCount > 1) { // Enqueue key derivation on thread pool if (queuedWorkItems < encryptionThreadCount && enqPkcs5Prf <= LAST_PRF_ID) { for (i = 0; i < pkcs5PrfCount; ++i) { item = &keyDerivationWorkItems[i]; if (item->Free) { item->Free = FALSE; item->KeyReady = FALSE; item->Pkcs5Prf = enqPkcs5Prf; EncryptionThreadPoolBeginKeyDerivation (&keyDerivationCompletedEvent, &noOutstandingWorkItemEvent, &item->KeyReady, &outstandingWorkItemCount, enqPkcs5Prf, keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, get_pkcs5_iteration_count (enqPkcs5Prf, bBoot), item->DerivedKey); ++queuedWorkItems; break; } } if (enqPkcs5Prf < LAST_PRF_ID) continue; } else --enqPkcs5Prf; // Wait for completion of a key derivation while (queuedWorkItems > 0) { for (i = 0; i < pkcs5PrfCount; ++i) { item = &keyDerivationWorkItems[i]; if (!item->Free && InterlockedExchangeAdd (&item->KeyReady, 0) == TRUE) { pkcs5_prf = item->Pkcs5Prf; keyInfo.noIterations = get_pkcs5_iteration_count (pkcs5_prf, bBoot); memcpy (dk, item->DerivedKey, sizeof (dk)); item->Free = TRUE; --queuedWorkItems; goto KeyReady; } } if (queuedWorkItems > 0) TC_WAIT_EVENT (keyDerivationCompletedEvent); } continue; KeyReady: ; } else { pkcs5_prf = enqPkcs5Prf; keyInfo.noIterations = get_pkcs5_iteration_count (enqPkcs5Prf, bBoot); switch (pkcs5_prf) { case RIPEMD160: derive_key_ripemd160 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; case SHA512: derive_key_sha512 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; case SHA1: // Deprecated/legacy derive_key_sha1 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; case WHIRLPOOL: derive_key_whirlpool (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; default: // Unknown/wrong ID TC_THROW_FATAL_EXCEPTION; } } // Test all available modes of operation for (cryptoInfo->mode = FIRST_MODE_OF_OPERATION_ID; cryptoInfo->mode <= LAST_MODE_OF_OPERATION; cryptoInfo->mode++) { switch (cryptoInfo->mode) { case LRW: case CBC: case INNER_CBC: case OUTER_CBC: // For LRW (deprecated/legacy), copy the tweak key // For CBC (deprecated/legacy), copy the IV/whitening seed memcpy (cryptoInfo->k2, dk, LEGACY_VOL_IV_SIZE); primaryKeyOffset = LEGACY_VOL_IV_SIZE; break; default: primaryKeyOffset = 0; } // Test all available encryption algorithms for (cryptoInfo->ea = EAGetFirst (); cryptoInfo->ea != 0; cryptoInfo->ea = EAGetNext (cryptoInfo->ea)) { int blockSize; if (!EAIsModeSupported (cryptoInfo->ea, cryptoInfo->mode)) continue; // This encryption algorithm has never been available with this mode of operation blockSize = CipherGetBlockSize (EAGetFirstCipher (cryptoInfo->ea)); status = EAInit (cryptoInfo->ea, dk + primaryKeyOffset, cryptoInfo->ks); if (status == ERR_CIPHER_INIT_FAILURE) goto err; // Init objects related to the mode of operation if (cryptoInfo->mode == XTS) { // Copy the secondary key (if cascade, multiple concatenated) memcpy (cryptoInfo->k2, dk + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea)); // Secondary key schedule if (!EAInitMode (cryptoInfo)) { status = ERR_MODE_INIT_FAILED; goto err; } } else if (cryptoInfo->mode == LRW && (blockSize == 8 && !lrw64InitDone || blockSize == 16 && !lrw128InitDone)) { // Deprecated/legacy if (!EAInitMode (cryptoInfo)) { status = ERR_MODE_INIT_FAILED; goto err; } if (blockSize == 8) lrw64InitDone = TRUE; else if (blockSize == 16) lrw128InitDone = TRUE; } // Copy the header for decryption memcpy (header, encryptedHeader, sizeof (header)); // Try to decrypt header DecryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET, HEADER_ENCRYPTED_DATA_SIZE, cryptoInfo); // Magic 'TRUE' if (GetHeaderField32 (header, TC_HEADER_OFFSET_MAGIC) != 0x54525545) continue; // Header version headerVersion = GetHeaderField16 (header, TC_HEADER_OFFSET_VERSION); if (headerVersion > VOLUME_HEADER_VERSION) { status = ERR_NEW_VERSION_REQUIRED; goto err; } // Check CRC of the header fields if (!ReadVolumeHeaderRecoveryMode && headerVersion >= 4 && GetHeaderField32 (header, TC_HEADER_OFFSET_HEADER_CRC) != GetCrc32 (header + TC_HEADER_OFFSET_MAGIC, TC_HEADER_OFFSET_HEADER_CRC - TC_HEADER_OFFSET_MAGIC)) continue; // Required program version cryptoInfo->RequiredProgramVersion = GetHeaderField16 (header, TC_HEADER_OFFSET_REQUIRED_VERSION); cryptoInfo->LegacyVolume = cryptoInfo->RequiredProgramVersion < 0x600; // Check CRC of the key set if (!ReadVolumeHeaderRecoveryMode && GetHeaderField32 (header, TC_HEADER_OFFSET_KEY_AREA_CRC) != GetCrc32 (header + HEADER_MASTER_KEYDATA_OFFSET, MASTER_KEYDATA_SIZE)) continue; // Now we have the correct password, cipher, hash algorithm, and volume type // Check the version required to handle this volume if (cryptoInfo->RequiredProgramVersion > VERSION_NUM) { status = ERR_NEW_VERSION_REQUIRED; goto err; } // Header version cryptoInfo->HeaderVersion = headerVersion; // Volume creation time (legacy) cryptoInfo->volume_creation_time = GetHeaderField64 (header, TC_HEADER_OFFSET_VOLUME_CREATION_TIME).Value; // Header creation time (legacy) cryptoInfo->header_creation_time = GetHeaderField64 (header, TC_HEADER_OFFSET_MODIFICATION_TIME).Value; // Hidden volume size (if any) cryptoInfo->hiddenVolumeSize = GetHeaderField64 (header, TC_HEADER_OFFSET_HIDDEN_VOLUME_SIZE).Value; // Hidden volume status cryptoInfo->hiddenVolume = (cryptoInfo->hiddenVolumeSize != 0); // Volume size cryptoInfo->VolumeSize = GetHeaderField64 (header, TC_HEADER_OFFSET_VOLUME_SIZE); // Encrypted area size and length cryptoInfo->EncryptedAreaStart = GetHeaderField64 (header, TC_HEADER_OFFSET_ENCRYPTED_AREA_START); cryptoInfo->EncryptedAreaLength = GetHeaderField64 (header, TC_HEADER_OFFSET_ENCRYPTED_AREA_LENGTH); // Flags cryptoInfo->HeaderFlags = GetHeaderField32 (header, TC_HEADER_OFFSET_FLAGS); // Sector size if (headerVersion >= 5) cryptoInfo->SectorSize = GetHeaderField32 (header, TC_HEADER_OFFSET_SECTOR_SIZE); else cryptoInfo->SectorSize = TC_SECTOR_SIZE_LEGACY; if (cryptoInfo->SectorSize < TC_MIN_VOLUME_SECTOR_SIZE || cryptoInfo->SectorSize > TC_MAX_VOLUME_SECTOR_SIZE || cryptoInfo->SectorSize % ENCRYPTION_DATA_UNIT_SIZE != 0) { status = ERR_PARAMETER_INCORRECT; goto err; } // Preserve scheduled header keys if requested if (retHeaderCryptoInfo) { if (retInfo == NULL) { cryptoInfo->pkcs5 = pkcs5_prf; cryptoInfo->noIterations = keyInfo.noIterations; goto ret; } cryptoInfo = *retInfo = crypto_open (); if (cryptoInfo == NULL) { status = ERR_OUTOFMEMORY; goto err; } memcpy (cryptoInfo, retHeaderCryptoInfo, sizeof (*cryptoInfo)); } // Master key data memcpy (keyInfo.master_keydata, header + HEADER_MASTER_KEYDATA_OFFSET, MASTER_KEYDATA_SIZE); memcpy (cryptoInfo->master_keydata, keyInfo.master_keydata, MASTER_KEYDATA_SIZE); // PKCS #5 memcpy (cryptoInfo->salt, keyInfo.salt, PKCS5_SALT_SIZE); cryptoInfo->pkcs5 = pkcs5_prf; cryptoInfo->noIterations = keyInfo.noIterations; // Init the cipher with the decrypted master key status = EAInit (cryptoInfo->ea, keyInfo.master_keydata + primaryKeyOffset, cryptoInfo->ks); if (status == ERR_CIPHER_INIT_FAILURE) goto err; switch (cryptoInfo->mode) { case LRW: case CBC: case INNER_CBC: case OUTER_CBC: // For LRW (deprecated/legacy), the tweak key // For CBC (deprecated/legacy), the IV/whitening seed memcpy (cryptoInfo->k2, keyInfo.master_keydata, LEGACY_VOL_IV_SIZE); break; default: // The secondary master key (if cascade, multiple concatenated) memcpy (cryptoInfo->k2, keyInfo.master_keydata + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea)); } if (!EAInitMode (cryptoInfo)) { status = ERR_MODE_INIT_FAILED; goto err; } status = ERR_SUCCESS; goto ret; } } } status = ERR_PASSWORD_WRONG; err: if (cryptoInfo != retHeaderCryptoInfo) { crypto_close(cryptoInfo); *retInfo = NULL; } ret: burn (&keyInfo, sizeof (keyInfo)); burn (dk, sizeof(dk)); #ifndef DEVICE_DRIVER VirtualUnlock (&keyInfo, sizeof (keyInfo)); VirtualUnlock (&dk, sizeof (dk)); #endif if (encryptionThreadCount > 1) { TC_WAIT_EVENT (noOutstandingWorkItemEvent); burn (keyDerivationWorkItems, sizeof (KeyDerivationWorkItem) * pkcs5PrfCount); TCfree (keyDerivationWorkItems); #ifndef DEVICE_DRIVER CloseHandle (keyDerivationCompletedEvent); CloseHandle (noOutstandingWorkItemEvent); #endif } return status; }