Exemple #1
0
IGL_INLINE bool igl::copyleft::boolean::mesh_boolean(
    const Eigen::PlainObjectBase<DerivedVA> & VA,
    const Eigen::PlainObjectBase<DerivedFA> & FA,
    const Eigen::PlainObjectBase<DerivedVB> & VB,
    const Eigen::PlainObjectBase<DerivedFB> & FB,
    const WindingNumberOp& wind_num_op,
    const KeepFunc& keep,
    const ResolveFunc& resolve_fun,
    Eigen::PlainObjectBase<DerivedVC > & VC,
    Eigen::PlainObjectBase<DerivedFC > & FC,
    Eigen::PlainObjectBase<DerivedJ > & J) 
{

#ifdef MESH_BOOLEAN_TIMING
  const auto & tictoc = []() -> double
  {
    static double t_start = igl::get_seconds();
    double diff = igl::get_seconds()-t_start;
    t_start += diff;
    return diff;
  };
  const auto log_time = [&](const std::string& label) -> void {
    std::cout << "mesh_boolean." << label << ": "
      << tictoc() << std::endl;
  };
  tictoc();
#endif

  typedef typename DerivedVC::Scalar Scalar;
  //typedef typename DerivedFC::Scalar Index;
  typedef CGAL::Epeck Kernel;
  typedef Kernel::FT ExactScalar;
  typedef Eigen::Matrix<Scalar,Eigen::Dynamic,3> MatrixX3S;
  //typedef Eigen::Matrix<Index,Eigen::Dynamic,Eigen::Dynamic> MatrixXI;
  typedef Eigen::Matrix<typename DerivedJ::Scalar,Eigen::Dynamic,1> VectorXJ;

  // Generate combined mesh.
  typedef Eigen::Matrix<
    ExactScalar,
    Eigen::Dynamic,
    Eigen::Dynamic,
    DerivedVC::IsRowMajor> MatrixXES;
  MatrixXES V;
  DerivedFC F;
  VectorXJ  CJ;
  {
      DerivedVA VV(VA.rows() + VB.rows(), 3);
      DerivedFC FF(FA.rows() + FB.rows(), 3);
      VV << VA, VB;
      FF << FA, FB.array() + VA.rows();
      //// Handle annoying empty cases
      //if(VA.size()>0)
      //{
      //  VV<<VA;
      //}
      //if(VB.size()>0)
      //{
      //  VV<<VB;
      //}
      //if(FA.size()>0)
      //{
      //  FF<<FA;
      //}
      //if(FB.size()>0)
      //{
      //  FF<<FB.array()+VA.rows();
      //}
      resolve_fun(VV, FF, V, F, CJ);
  }
#ifdef MESH_BOOLEAN_TIMING
  log_time("resolve_self_intersection");
#endif

  // Compute winding numbers on each side of each facet.
  const size_t num_faces = F.rows();
  Eigen::MatrixXi W;
  Eigen::VectorXi labels(num_faces);
  std::transform(CJ.data(), CJ.data()+CJ.size(), labels.data(),
      [&](int i) { return i<FA.rows() ? 0:1; });
  bool valid = true;
  if (num_faces > 0) 
  {
    valid = valid & 
      igl::copyleft::cgal::propagate_winding_numbers(V, F, labels, W);
  } else 
  {
    W.resize(0, 4);
  }
  assert((size_t)W.rows() == num_faces);
  if (W.cols() == 2) 
  {
    assert(FB.rows() == 0);
    Eigen::MatrixXi W_tmp(num_faces, 4);
    W_tmp << W, Eigen::MatrixXi::Zero(num_faces, 2);
    W = W_tmp;
  } else {
    assert(W.cols() == 4);
  }
#ifdef MESH_BOOLEAN_TIMING
  log_time("propagate_input_winding_number");
#endif

  // Compute resulting winding number.
  Eigen::MatrixXi Wr(num_faces, 2);
  for (size_t i=0; i<num_faces; i++) 
  {
    Eigen::MatrixXi w_out(1,2), w_in(1,2);
    w_out << W(i,0), W(i,2);
    w_in  << W(i,1), W(i,3);
    Wr(i,0) = wind_num_op(w_out);
    Wr(i,1) = wind_num_op(w_in);
  }
#ifdef MESH_BOOLEAN_TIMING
  log_time("compute_output_winding_number");
#endif

  // Extract boundary separating inside from outside.
  auto index_to_signed_index = [&](size_t i, bool ori) -> int
  {
    return (i+1)*(ori?1:-1);
  };
  //auto signed_index_to_index = [&](int i) -> size_t {
  //    return abs(i) - 1;
  //};
  std::vector<int> selected;
  for(size_t i=0; i<num_faces; i++) 
  {
    auto should_keep = keep(Wr(i,0), Wr(i,1));
    if (should_keep > 0) 
    {
      selected.push_back(index_to_signed_index(i, true));
    } else if (should_keep < 0) 
    {
      selected.push_back(index_to_signed_index(i, false));
    }
  }

  const size_t num_selected = selected.size();
  DerivedFC kept_faces(num_selected, 3);
  DerivedJ  kept_face_indices(num_selected, 1);
  for (size_t i=0; i<num_selected; i++) 
  {
    size_t idx = abs(selected[i]) - 1;
    if (selected[i] > 0) 
    {
      kept_faces.row(i) = F.row(idx);
    } else 
    {
      kept_faces.row(i) = F.row(idx).reverse();
    }
    kept_face_indices(i, 0) = CJ[idx];
  }
#ifdef MESH_BOOLEAN_TIMING
  log_time("extract_output");
#endif

  // Finally, remove duplicated faces and unreferenced vertices.
  {
    DerivedFC G;
    DerivedJ JJ;
    igl::resolve_duplicated_faces(kept_faces, G, JJ);
    igl::slice(kept_face_indices, JJ, 1, J);

#ifdef DOUBLE_CHECK_EXACT_OUTPUT
    {
      // Sanity check on exact output.
      igl::copyleft::cgal::RemeshSelfIntersectionsParam params;
      params.detect_only = true;
      params.first_only = true;
      MatrixXES dummy_VV;
      DerivedFC dummy_FF, dummy_IF;
      Eigen::VectorXi dummy_J, dummy_IM;
      igl::copyleft::cgal::SelfIntersectMesh<
        Kernel,
        MatrixXES, DerivedFC,
        MatrixXES, DerivedFC,
        DerivedFC,
        Eigen::VectorXi,
        Eigen::VectorXi
      > checker(V, G, params,
          dummy_VV, dummy_FF, dummy_IF, dummy_J, dummy_IM);
      if (checker.count != 0) 
      {
        throw "Self-intersection not fully resolved.";
      }
    }
#endif

    MatrixX3S Vs(V.rows(), V.cols());
    for (size_t i=0; i<(size_t)V.rows(); i++)
    {
      for (size_t j=0; j<(size_t)V.cols(); j++)
      {
        igl::copyleft::cgal::assign_scalar(V(i,j), Vs(i,j));
      }
    }
    Eigen::VectorXi newIM;
    igl::remove_unreferenced(Vs,G,VC,FC,newIM);
  }
#ifdef MESH_BOOLEAN_TIMING
  log_time("clean_up");
#endif
  return valid;
}
void CKLDualInferenceMethod::update_alpha()
{
	float64_t nlml_new=0;
	float64_t nlml_def=0;

	Map<MatrixXd> eigen_K(m_ktrtr.matrix, m_ktrtr.num_rows, m_ktrtr.num_cols);
	CDualVariationalGaussianLikelihood *lik= get_dual_variational_likelihood();

	if (m_alpha.vlen == m_labels->get_num_labels())
	{
		nlml_new=get_negative_log_marginal_likelihood_helper();
		index_t len=m_labels->get_num_labels();
		SGVector<float64_t> W_tmp(len);
		Map<VectorXd> eigen_W(W_tmp.vector, W_tmp.vlen);
		eigen_W.fill(0.5);
		SGVector<float64_t> sW_tmp(len);
		Map<VectorXd> eigen_sW(sW_tmp.vector, sW_tmp.vlen);
		eigen_sW=eigen_W.array().sqrt().matrix();
		SGMatrix<float64_t> L_tmp=CMatrixOperations::get_choleksy(W_tmp, sW_tmp, m_ktrtr, CMath::exp(m_log_scale*2.0));
		Map<MatrixXd> eigen_L(L_tmp.matrix, L_tmp.num_rows, L_tmp.num_cols);

		lik->set_dual_parameters(W_tmp, m_labels);

		//construct alpha
		SGVector<float64_t> alpha_tmp=lik->get_mu_dual_parameter();
		Map<VectorXd> eigen_alpha(alpha_tmp.vector, alpha_tmp.vlen);
		eigen_alpha=-eigen_alpha;
		//construct mu
		SGVector<float64_t> mean=m_mean->get_mean_vector(m_features);
		Map<VectorXd> eigen_mean(mean.vector, mean.vlen);
		SGVector<float64_t> mu_tmp(len);
		Map<VectorXd> eigen_mu(mu_tmp.vector, mu_tmp.vlen);
		//mu=K*alpha+m
		eigen_mu=eigen_K*CMath::exp(m_log_scale*2.0)*eigen_alpha+eigen_mean;
		//construct s2
		MatrixXd eigen_V=eigen_L.triangularView<Upper>().adjoint().solve(eigen_sW.asDiagonal()*eigen_K*CMath::exp(m_log_scale*2.0));
		SGVector<float64_t> s2_tmp(len);
		Map<VectorXd> eigen_s2(s2_tmp.vector, s2_tmp.vlen);
		eigen_s2=(eigen_K.diagonal().array()*CMath::exp(m_log_scale*2.0)-(eigen_V.array().pow(2).colwise().sum().transpose())).abs().matrix();

		lik->set_variational_distribution(mu_tmp, s2_tmp, m_labels);

		nlml_def=get_nlml_wrapper(alpha_tmp, mu_tmp, L_tmp);

		if (nlml_new<=nlml_def)
		{
			lik->set_dual_parameters(m_W, m_labels);
			lik->set_variational_distribution(m_mu, m_s2, m_labels);
		}
	}

	if (m_alpha.vlen != m_labels->get_num_labels() || nlml_def<nlml_new)
	{
		if(m_alpha.vlen != m_labels->get_num_labels())
			m_alpha = SGVector<float64_t>(m_labels->get_num_labels());

		index_t len=m_alpha.vlen;

		m_W=SGVector<float64_t>(len);
		for (index_t i=0; i<m_W.vlen; i++)
			m_W[i]=0.5;

		lik->set_dual_parameters(m_W, m_labels);
		m_sW=SGVector<float64_t>(len);
		m_mu=SGVector<float64_t>(len);
		m_s2=SGVector<float64_t>(len);
		m_Sigma=SGMatrix<float64_t>(len, len);
		m_Sigma.zero();
		m_V=SGMatrix<float64_t>(len, len);
	}

	nlml_new=optimization();
	lik->set_variational_distribution(m_mu, m_s2, m_labels);
	TParameter* s2_param=lik->m_parameters->get_parameter("sigma2");
	m_dv=lik->get_variational_first_derivative(s2_param);
	TParameter* mu_param=lik->m_parameters->get_parameter("mu");
	m_df=lik->get_variational_first_derivative(mu_param);
}
Exemple #3
0
IGL_INLINE void igl::copyleft::boolean::mesh_boolean(
    const Eigen::PlainObjectBase<DerivedVA> & VA,
    const Eigen::PlainObjectBase<DerivedFA> & FA,
    const Eigen::PlainObjectBase<DerivedVB> & VB,
    const Eigen::PlainObjectBase<DerivedFB> & FB,
    const WindingNumberOp& wind_num_op,
    const KeepFunc& keep,
    const ResolveFunc& resolve_fun,
    Eigen::PlainObjectBase<DerivedVC > & VC,
    Eigen::PlainObjectBase<DerivedFC > & FC,
    Eigen::PlainObjectBase<DerivedJ > & J) {

  typedef typename DerivedVC::Scalar Scalar;
  //typedef typename DerivedFC::Scalar Index;
  typedef CGAL::Epeck Kernel;
  typedef Kernel::FT ExactScalar;
  typedef Eigen::Matrix<Scalar,Eigen::Dynamic,3> MatrixX3S;
  //typedef Eigen::Matrix<Index,Eigen::Dynamic,Eigen::Dynamic> MatrixXI;
  typedef Eigen::Matrix<typename DerivedJ::Scalar,Eigen::Dynamic,1> VectorXJ;

  // Generate combined mesh.
  typedef Eigen::Matrix<
    ExactScalar,
    Eigen::Dynamic,
    Eigen::Dynamic,
    DerivedVC::IsRowMajor> MatrixXES;
  MatrixXES V;
  DerivedFC F;
  VectorXJ  CJ;
  {
      DerivedVA VV(VA.rows() + VB.rows(), 3);
      DerivedFC FF(FA.rows() + FB.rows(), 3);
      VV << VA, VB;
      FF << FA, FB.array() + VA.rows();
      //// Handle annoying empty cases
      //if(VA.size()>0)
      //{
      //  VV<<VA;
      //}
      //if(VB.size()>0)
      //{
      //  VV<<VB;
      //}
      //if(FA.size()>0)
      //{
      //  FF<<FA;
      //}
      //if(FB.size()>0)
      //{
      //  FF<<FB.array()+VA.rows();
      //}
      resolve_fun(VV, FF, V, F, CJ);
  }

  // Compute winding numbers on each side of each facet.
  const size_t num_faces = F.rows();
  Eigen::MatrixXi W;
  Eigen::VectorXi labels(num_faces);
  std::transform(CJ.data(), CJ.data()+CJ.size(), labels.data(),
      [&](int i) { return i<FA.rows() ? 0:1; });
  igl::copyleft::cgal::propagate_winding_numbers(V, F, labels, W);
  assert((size_t)W.rows() == num_faces);
  if (W.cols() == 2) {
    assert(FB.rows() == 0);
    Eigen::MatrixXi W_tmp(num_faces, 4);
    W_tmp << W, Eigen::MatrixXi::Zero(num_faces, 2);
    W = W_tmp;
  } else {
    assert(W.cols() == 4);
  }

  // Compute resulting winding number.
  Eigen::MatrixXi Wr(num_faces, 2);
  for (size_t i=0; i<num_faces; i++) {
    Eigen::MatrixXi w_out(1,2), w_in(1,2);
    w_out << W(i,0), W(i,2);
    w_in  << W(i,1), W(i,3);
    Wr(i,0) = wind_num_op(w_out);
    Wr(i,1) = wind_num_op(w_in);
  }

  // Extract boundary separating inside from outside.
  auto index_to_signed_index = [&](size_t i, bool ori) -> int{
    return (i+1)*(ori?1:-1);
  };
  //auto signed_index_to_index = [&](int i) -> size_t {
  //    return abs(i) - 1;
  //};
  std::vector<int> selected;
  for(size_t i=0; i<num_faces; i++) {
    auto should_keep = keep(Wr(i,0), Wr(i,1));
    if (should_keep > 0) {
      selected.push_back(index_to_signed_index(i, true));
    } else if (should_keep < 0) {
      selected.push_back(index_to_signed_index(i, false));
    }
  }

  const size_t num_selected = selected.size();
  DerivedFC kept_faces(num_selected, 3);
  DerivedJ  kept_face_indices(num_selected, 1);
  for (size_t i=0; i<num_selected; i++) {
    size_t idx = abs(selected[i]) - 1;
    if (selected[i] > 0) {
      kept_faces.row(i) = F.row(idx);
    } else {
      kept_faces.row(i) = F.row(idx).reverse();
    }
    kept_face_indices(i, 0) = CJ[idx];
  }

  // Finally, remove duplicated faces and unreferenced vertices.
  {
    DerivedFC G;
    DerivedJ JJ;
    igl::resolve_duplicated_faces(kept_faces, G, JJ);
    igl::slice(kept_face_indices, JJ, 1, J);

    MatrixX3S Vs(V.rows(), V.cols());
    for (size_t i=0; i<(size_t)V.rows(); i++)
    {
      for (size_t j=0; j<(size_t)V.cols(); j++)
      {
        igl::copyleft::cgal::assign_scalar(V(i,j), Vs(i,j));
      }
    }
    Eigen::VectorXi newIM;
    igl::remove_unreferenced(Vs,G,VC,FC,newIM);
  }
}