void SpatialNode::Rotate(const Quaternion& delta, TransformSpace space)
{
    SpatialNode* parentNode = SpatialParent();
    
    switch (space)
    {
    case TS_LOCAL:
        rotation = (rotation * delta).Normalized();
        break;

    case TS_PARENT:
        rotation = (delta * rotation).Normalized();
        break;

    case TS_WORLD:
        if (!parentNode)
            rotation = (delta * rotation).Normalized();
        else
        {
            Quaternion worldRotation = WorldRotation();
            rotation = rotation * worldRotation.Inverse() * delta * worldRotation;
        }
        break;
    }

    OnTransformChanged();
}
void mw2_Rect::Draw(mw2_Camera* camera)
{
	float x = WorldPosition()->x - camera->WorldPosition()->x;
	float y = WorldPosition()->y - camera->WorldPosition()->y;
	float teta = - camera->WorldRotation() * (float) PI / 180;

	float finalAngle = WorldRotation() - camera->WorldRotation();
	float finalX = (x * (float) cos(teta) - y * (float) sin(teta))
					+ mw2_Application::Settings::width / 2;
	float finalY = (x * (float) sin(teta) + y * (float) cos(teta))
					+ mw2_Application::Settings::height / 2;

	ALLEGRO_TRANSFORM T;
	al_identity_transform(&T);
	al_rotate_transform(&T, finalAngle * (float) PI / 180);
	al_translate_transform(&T, finalX, finalY);
	al_use_transform(&T);

	ALLEGRO_COLOR color = al_map_rgba(mColor->x, mColor->y, mColor->z, mColor->t);

	switch (mStyle)
	{
		case FILL:
			al_draw_filled_rectangle(
				- mSize->x /2, - mSize->y /2,
				mSize->x /2, mSize->y /2,
				color
			);
			break;
		case LINE:
			al_draw_rectangle(
				- mSize->x /2, - mSize->y /2,
				mSize->x /2, mSize->y /2,
				color,
				1
			);
			break;
	}

	al_identity_transform(&T);
	al_use_transform(&T);
}
void SpatialNode::RotateAround(const Vector3& point, const Quaternion& delta, TransformSpace space)
{
    SpatialNode* parentNode = SpatialParent();
    Vector3 parentSpacePoint;
    Quaternion oldRotation = rotation;

    switch (space)
    {
    case TS_LOCAL:
        parentSpacePoint = Transform() * point;
        rotation = (rotation * delta).Normalized();
        break;

    case TS_PARENT:
        parentSpacePoint = point;
        rotation = (delta * rotation).Normalized();
        break;

    case TS_WORLD:
        if (!parentNode)
        {
            parentSpacePoint = point;
            rotation = (delta * rotation).Normalized();
        }
        else
        {
            parentSpacePoint = parentNode->WorldTransform().Inverse() * point;
            Quaternion worldRotation = WorldRotation();
            rotation = rotation * worldRotation.Inverse() * delta * worldRotation;
        }
        break;
    }

    Vector3 oldRelativePos = oldRotation.Inverse() * (position - parentSpacePoint);
    position = rotation * oldRelativePos + parentSpacePoint;

    OnTransformChanged();
}
Exemple #4
0
void Light::SetupShadowViews(Camera* mainCamera, Vector<AutoPtr<ShadowView> >& shadowViews, size_t& useIndex)
{
    size_t numViews = NumShadowViews();
    if (!numViews)
        return;

    if (shadowViews.Size() < useIndex + numViews)
        shadowViews.Resize(useIndex + numViews);

    int numVerticalSplits = (lightType == LIGHT_POINT || (lightType == LIGHT_DIRECTIONAL && NumShadowSplits() > 2)) ? 2 : 1;
    int actualShadowMapSize = shadowRect.Height() / numVerticalSplits;

    for (size_t i = 0; i < numViews; ++i)
    {
        if (!shadowViews[useIndex + i])
            shadowViews[useIndex + i] = new ShadowView();

        ShadowView* view = shadowViews[useIndex + i].Get();
        view->Clear();
        view->light = this;
        Camera& shadowCamera = view->shadowCamera;

        switch (lightType)
        {
        case LIGHT_DIRECTIONAL:
            {
                IntVector2 topLeft(shadowRect.left, shadowRect.top);
                if (i & 1)
                    topLeft.x += actualShadowMapSize;
                if (i & 2)
                    topLeft.y += actualShadowMapSize;
                view->viewport = IntRect(topLeft.x, topLeft.y, topLeft.x + actualShadowMapSize, topLeft.y + actualShadowMapSize);

                float splitStart = Max(mainCamera->NearClip(), (i == 0) ? 0.0f : ShadowSplit(i - 1));
                float splitEnd = Min(mainCamera->FarClip(), ShadowSplit(i));
                float extrusionDistance = mainCamera->FarClip();
                
                // Calculate initial position & rotation
                shadowCamera.SetTransform(mainCamera->WorldPosition() - extrusionDistance * WorldDirection(), WorldRotation());

                // Calculate main camera shadowed frustum in light's view space
                Frustum splitFrustum = mainCamera->WorldSplitFrustum(splitStart, splitEnd);
                const Matrix3x4& lightView = shadowCamera.ViewMatrix();
                Frustum lightViewFrustum = splitFrustum.Transformed(lightView);

                // Fit the frustum inside a bounding box
                BoundingBox shadowBox;
                shadowBox.Define(lightViewFrustum);

                // If shadow camera is far away from the frustum, can bring it closer for better depth precision
                /// \todo The minimum distance is somewhat arbitrary
                float minDistance = mainCamera->FarClip() * 0.25f;
                if (shadowBox.min.z > minDistance)
                {
                    float move = shadowBox.min.z - minDistance;
                    shadowCamera.Translate(Vector3(0.0f, 0.f, move));
                    shadowBox.min.z -= move,
                    shadowBox.max.z -= move;
                }

                shadowCamera.SetOrthographic(true);
                shadowCamera.SetFarClip(shadowBox.max.z);

                Vector3 center = shadowBox.Center();
                Vector3 size = shadowBox.Size();
                shadowCamera.SetOrthoSize(Vector2(size.x, size.y));
                shadowCamera.SetZoom(1.0f);

                // Center shadow camera to the view space bounding box
                Vector3 pos(shadowCamera.WorldPosition());
                Quaternion rot(shadowCamera.WorldRotation());
                Vector3 adjust(center.x, center.y, 0.0f);
                shadowCamera.Translate(rot * adjust, TS_WORLD);

                // Snap to whole texels
                {
                    Vector3 viewPos(rot.Inverse() * shadowCamera.WorldPosition());
                    float invSize = 1.0f / actualShadowMapSize;
                    Vector2 texelSize(size.x * invSize, size.y * invSize);
                    Vector3 snap(-fmodf(viewPos.x, texelSize.x), -fmodf(viewPos.y, texelSize.y), 0.0f);
                    shadowCamera.Translate(rot * snap, TS_WORLD);
                }
            }
            break;

        case LIGHT_POINT:
            {
                static const Quaternion pointLightFaceRotations[] = {
                    Quaternion(0.0f, 90.0f, 0.0f),
                    Quaternion(0.0f, -90.0f, 0.0f),
                    Quaternion(-90.0f, 0.0f, 0.0f),
                    Quaternion(90.0f, 0.0f, 0.0f),
                    Quaternion(0.0f, 0.0f, 0.0f),
                    Quaternion(0.0f, 180.0f, 0.0f)
                };

                IntVector2 topLeft(shadowRect.left, shadowRect.top);
                if (i & 1)
                    topLeft.y += actualShadowMapSize;
                topLeft.x += ((unsigned)i >> 1) * actualShadowMapSize;
                view->viewport = IntRect(topLeft.x, topLeft.y, topLeft.x + actualShadowMapSize, topLeft.y + actualShadowMapSize);

                shadowCamera.SetTransform(WorldPosition(), pointLightFaceRotations[i]);
                shadowCamera.SetFov(90.0f);
                // Adjust zoom to avoid edge sampling artifacts (there is a matching adjustment in the shadow sampling)
                shadowCamera.SetZoom(0.99f);
                shadowCamera.SetFarClip(Range());
                shadowCamera.SetNearClip(Range() * 0.01f);
                shadowCamera.SetOrthographic(false);
                shadowCamera.SetAspectRatio(1.0f);
            }
            break;

        case LIGHT_SPOT:
            view->viewport = shadowRect;
            shadowCamera.SetTransform(WorldPosition(), WorldRotation());
            shadowCamera.SetFov(fov);
            shadowCamera.SetZoom(1.0f);
            shadowCamera.SetFarClip(Range());
            shadowCamera.SetNearClip(Range() * 0.01f);
            shadowCamera.SetOrthographic(false);
            shadowCamera.SetAspectRatio(1.0f);
            break;
        }
    }

    // Setup shadow matrices now as camera positions have been finalized
    if (lightType != LIGHT_POINT)
    {
        shadowMatrices.Resize(numViews);
        
        for (size_t i = 0; i < numViews; ++i)
        {
            ShadowView* view = shadowViews[useIndex + i].Get();

            Camera& shadowCamera = view->shadowCamera;
            float width = (float)shadowMap->Width();
            float height = (float)shadowMap->Height();
            Vector3 offset((float)view->viewport.left / width, (float)view->viewport.top / height, 0.0f);
            Vector3 scale(0.5f * (float)view->viewport.Width() / width, 0.5f * (float)view->viewport.Height() / height, 1.0f);

            offset.x += scale.x;
            offset.y += scale.y;
            scale.y = -scale.y;

            // OpenGL has different depth range
            #ifdef TURSO3D_OPENGL
            offset.z = 0.5f;
            scale.z = 0.5f;
            #endif
            
            Matrix4 texAdjust(Matrix4::IDENTITY);
            texAdjust.SetTranslation(offset);
            texAdjust.SetScale(scale);

            shadowMatrices[i] = texAdjust * shadowCamera.ProjectionMatrix() * shadowCamera.ViewMatrix();
        }
    }
    else
    {
        // Point lights use an extra constant instead
        shadowMatrices.Clear();

        Vector2 textureSize((float)shadowMap->Width(), (float)shadowMap->Height());
        pointShadowParameters = Vector4(actualShadowMapSize / textureSize.x, actualShadowMapSize / textureSize.y,
            (float)shadowRect.left / textureSize.x, (float)shadowRect.top / textureSize.y);
    }

    // Calculate shadow mapping constants
    Camera& shadowCamera = shadowViews[useIndex]->shadowCamera;
    float nearClip = shadowCamera.NearClip();
    float farClip = shadowCamera.FarClip();
    float q = farClip / (farClip - nearClip);
    float r = -q * nearClip;
    shadowParameters = Vector4(0.5f / (float)shadowMap->Width(), 0.5f / (float)shadowMap->Height(), q, r);
    
    useIndex += numViews;
}