Exemple #1
0
void Player::UpdateAcceleration(float fElapsedTime)
{
	XMVECTOR vGamePadRightThumb = g_XMZero;
	XMVECTOR vGamePadLeftThumb = g_XMZero;
	XMVECTOR vMouseDelta = g_XMZero;
	XMVECTOR vKeyboardDirection = XMVectorSet(m_vKeyboardDirection.x, 0.f, m_vKeyboardDirection.z, 0.f);

	if (m_bUseGamepad)
	{
		vGamePadRightThumb = XMVectorSet(m_vGamePadRightThumb.x, -m_vGamePadRightThumb.z, 0, 0);
		vGamePadRightThumb *= XMVectorAbs(vGamePadRightThumb);
		vGamePadLeftThumb = XMVectorSet(m_vGamePadLeftThumb.x, 0, m_vGamePadLeftThumb.z, 0);
	}

	if (m_bUseMouse)
	{
		vMouseDelta = m_vMouseDelta;
	}

	XMVECTOR vRotVelocity = vMouseDelta * m_fRotationScaler + vGamePadRightThumb * 0.01f;
	XMVECTOR vAccel = XMVector3Normalize(vKeyboardDirection + vGamePadLeftThumb) * m_fMoveScaler;
	vAccel = XMVector4Transform(vAccel, GetWorld());

	m_vRotVelocity = vRotVelocity;
	mAcceleration += vAccel * fElapsedTime;
}
Exemple #2
0
void Graphics::exe_cam_curr_pos(uint32_t const _i_zad) {
	XMVECTOR _v = XMVectorSet(cam.v.x, 0.0f, cam.v.z, 0.0f);
	XMVECTOR _dl_v = XMVector3LengthEst(_v);
	if(XMVectorGetX(_dl_v) != 0.0f) {
		_v = XMVector3Rotate(_v, XMLoadFloat4(&cam.quat));
		_v = XMVectorSetY(_v, 0.0f);
		XMVECTOR _v_modul = XMVectorAbs(_v);
		_v = _v / (XMVectorGetX(_v_modul) + XMVectorGetZ(_v_modul)) * _dl_v;
	}
	_v = XMVectorSetY(_v, cam.v.y);
	XMStoreFloat3(&cam.pos, XMLoadFloat3(&cam.pos) + _v);
	task.erase(_i_zad);
}
Exemple #3
0
//-------------------------------------------
// とりあえずIK
void BoneModel::VMDIkAnimation()
{

	//XMStoreFloat4()
	//XMLoadFloat4()
	if (mBone.empty())return;
	if (mMotion.empty())return;

	DWORD mBoneNum = mBone.size();
	DWORD mIkNum = mIk.size();
	// IK計算
	for (DWORD i = 0; i < mIkNum; i++){
		//{
		//	int i = 0;
		Ik& ik = mIk[i];
		UINT tg_idx = ik.target_bone_index;
		UINT ik_idx = ik.bone_index;

		for (UINT ite = 0; ite<ik.iterations; ++ite){
			for (UINT chn = 0; chn<ik.chain_length; ++chn){
				UINT link_idx = ik.child_bone_index[chn];//
				if (link_idx >= mBoneNum)continue;
				Bone& link_bone = mBone[link_idx];

				//UINT link_pidx = link_bone.mIkBoneIdx;
				UINT link_pidx = link_bone.mHierarchy.mIdxParent;

				//if (link_bone.mIkBoneIdx != 0){
				//	continue;
				//}

				if (link_pidx >= mBoneNum)continue;
				Bone& link_parent = mBone[link_pidx];

				Bone& tg_bone = mBone[tg_idx];
				(void)tg_bone;
				Bone& ik_bone = mBone[ik_idx];
				(void)ik_bone;

				XMVECTOR target_wpos = mBone[tg_idx].mMtxPose.r[3];
				XMVECTOR ik_wpos = mBone[ik_idx].mMtxPose.r[3];
				XMVECTOR lp_wpos = link_parent.mMtxPose.r[3];

				//Linkボーンのローカル空間に変換
				XMVECTOR Determinant;
				XMMATRIX inv_mtx = XMMatrixInverse(&Determinant, link_bone.mMtxPose);
				XMVECTOR tg_pos = XMVector4Transform(target_wpos, inv_mtx);
				XMVECTOR ik_pos = XMVector4Transform(ik_wpos, inv_mtx);
				XMVECTOR lp_pos = XMVector4Transform(lp_wpos, inv_mtx);


				// 回転軸と角度 
				XMVECTOR rot_axis = XMVectorSet(1, 0, 0, 0);
				float ang = 0.0f;
				bool same_dir = false;
				if (!RotDir(tg_pos, ik_pos, ik.control_weight, &rot_axis, &ang)){
					same_dir = true;
				}

				if (!same_dir){

					//tg_dirをik_dirに一致させるための回転
					XMVECTOR rot = XMQuaternionRotationAxis(rot_axis, ang);

					XMVECTOR lrot = FloatToVector(link_bone.mRot);
					XMVECTOR bone_rot_before = lrot;
					link_bone.mRot = VectorToFloat(XMQuaternionMultiply(rot, lrot));

					float dist_tg = XMVectorGetX(XMVector3Length(tg_pos));
					float dist_ik = XMVectorGetX(XMVector3Length(ik_pos));
					(void)dist_ik;
					float dist_lp = XMVectorGetX(XMVector3Length(lp_pos));
					(void)dist_lp;
					float dist_pltg = XMVectorGetX(XMVector3Length(lp_pos - tg_pos));
					float dist_plik = XMVectorGetX(XMVector3Length(lp_pos - ik_pos));
					float dot_tgik = XMVectorGetX(XMVector3Dot(XMVector3Normalize(tg_pos), XMVector3Normalize(ik_pos)));
					(void)dot_tgik;

					// 回転制限
					if (/*link.bLimit*/ 1){
						XMVECTOR rotmax, rotmin;
						//114.5916 = 2
						float a = 2;// XM_PI / 180.0f * 57.25f;
						rotmax = XMVectorSet(a, a, a, 0);//link.vMax;
						rotmin = XMVectorSet(-a, -a, -a, 0);//link.vMin;

						//名前に"ひざ"があったら回転制限
						if (std::string::npos != link_bone.mStrName.find("ひざ")){
							rotmax = XMVectorSet(-XM_PI / 180.0f*0.5f, 0, 0, 0);
							rotmin = XMVectorSet(-XM_PI, 0, 0, 0);
						}
						struct IkLink{
							XMFLOAT4 mMax;
							XMFLOAT4 mMin;
						};
						IkLink link = { VectorToFloat(rotmax), VectorToFloat(rotmin) };
						//Bone& link = link_bone;
						link_bone.mRot = VectorToFloat(LimitAngle(FloatToVector(link_bone.mRot), rotmin, rotmax));

						XMVECTOR angxyz = GetAngle(rot);
						//膝を曲げるための仮処理 かなりてきとう
						if (XMVectorGetX(angxyz) >= 0 &&
							//0.9f < dot_tgik &&
							//dist_tg > dist_ik &&
							dist_pltg > dist_plik &&
							link.mMax.x < 0 && link.mMax.y == link.mMin.y && link.mMax.z == link.mMin.z){
							//親リンクの回転接平面(できるだけこの平面に近づけたほうがよりIK目標に近づける)
							XMVECTOR lp_nor = XMVector3Normalize(-lp_pos);//平面の法線
							//lp_norとの内積が0になる位置を目標にする
							//2つあるので回転制限後の|内積|が小さいほう
							XMVECTOR tng = XMVector3Cross(XMVectorSet(1, 0, 0, 0), lp_nor);
							//+tngと-tngの2つ
							XMVECTOR rot_axis0, rot_axis1;
							float ang0 = 0, ang1 = 0;

							// 回転軸をXに限定
							rot_axis1 = rot_axis0 = XMVectorSet(1, 0, 0, 0);
							XMVECTOR tdir = XMVector3Normalize(XMVectorSetX(tg_pos, 0));
							tng = XMVector3Normalize(XMVectorSetX(tng, 0));
							RotDir(tdir, tng, ik.control_weight, &rot_axis0, &ang0);
							RotDir(tdir, -tng, ik.control_weight, &rot_axis1, &ang1);
							if (XMVectorGetX(rot_axis0) < 0.0f)ang0 = -ang0;
							if (XMVectorGetX(rot_axis1) < 0.0f)ang1 = -ang1;

							//これは絶対違う ぴくぴく対策
							float coef = (dist_pltg - dist_plik) / dist_tg;
							if (coef > 1)coef = 1;
							ang0 *= coef;
							ang1 *= coef;


							//ang0,1は現在の位置からの相対角度 
							// 回転制限を考慮した相対角度に
							float angx_b = XMVectorGetX(GetAngle(bone_rot_before));
							float angx_a0 = angx_b + ang0;
							float angx_a1 = angx_b + ang1;
							if (angx_a0 < link.mMin.x) angx_a0 = link.mMin.x;
							if (angx_a0 > link.mMax.x) angx_a0 = link.mMax.x;
							if (angx_a1 < link.mMin.x) angx_a1 = link.mMin.x;
							if (angx_a1 > link.mMax.x) angx_a1 = link.mMax.x;
							ang0 = angx_a0 - angx_b;
							ang1 = angx_a1 - angx_b;


							XMVECTOR rot0 = XMQuaternionRotationRollPitchYaw(ang0, 0, 0);
							XMVECTOR rot1 = XMQuaternionRotationRollPitchYaw(ang1, 0, 0);

							XMVECTOR tdir0 = XMVector3TransformCoord(tdir, XMMatrixRotationQuaternion(rot0));
							XMVECTOR tdir1 = XMVector3TransformCoord(tdir, XMMatrixRotationQuaternion(rot1));
							float d0 = XMVectorGetX(XMVectorAbs(XMVector3Dot(tdir0, lp_nor)));
							float d1 = XMVectorGetX(XMVectorAbs(XMVector3Dot(tdir1, lp_nor)));
							if (d0 < d1){
								link_bone.mRot = VectorToFloat(XMQuaternionMultiply(rot0, bone_rot_before));
							}
							else{
								link_bone.mRot = VectorToFloat(XMQuaternionMultiply(rot1, bone_rot_before));
							}
						}
					}

				}




				//ワールド行列更新
				link_bone.mMtxPose = SQTMatrix(FloatToVector(link_bone.mScale), FloatToVector(link_bone.mRot), FloatToVector(link_bone.mPos));
				if (link_bone.mHierarchy.mIdxParent < mBoneNum){
					link_bone.mMtxPose = XMMatrixMultiply(link_bone.mMtxPose, mBone[link_bone.mHierarchy.mIdxParent].mMtxPose);
				}

				// 子階層のリンク再計算
				for (int lidown = chn - 1; lidown >= 0; --lidown){
					UINT idx = ik.child_bone_index[lidown];
					if (idx >= mBoneNum)continue;
					Bone& linkb = mBone[idx];
					linkb.mMtxPose = SQTMatrix(FloatToVector(linkb.mScale), FloatToVector(linkb.mRot), FloatToVector(linkb.mPos));
					if (linkb.mHierarchy.mIdxParent < mBoneNum){
						linkb.mMtxPose = XMMatrixMultiply(linkb.mMtxPose, mBone[linkb.mHierarchy.mIdxParent].mMtxPose);
					}
				}

				mBone[tg_idx].mMtxPose = SQTMatrix(FloatToVector(mBone[tg_idx].mScale), FloatToVector(mBone[tg_idx].mRot), FloatToVector(mBone[tg_idx].mPos));
				if (mBone[tg_idx].mHierarchy.mIdxParent < mBoneNum){
					mBone[tg_idx].mMtxPose = XMMatrixMultiply(mBone[tg_idx].mMtxPose, mBone[mBone[tg_idx].mHierarchy.mIdxParent].mMtxPose);
				}
			}
		}


		//Bone& b = mBone[tg_idx];
		//Bone& b2 = mBone[mBone[tg_idx].mHierarchy.mIdxParent];
		//Bone& b3 = mBone[b2.mHierarchy.mIdxParent];
		//int sa = 1;

		//IKの計算結果を子階層に反映
		//UpdatePose();
	}
	UpdatePose();
}
Exemple #4
0
//-----------------------------------------------------------------------------
// Compute the intersection of a ray (Origin, Direction) with an axis aligned 
// box using the slabs method.
//-----------------------------------------------------------------------------
BOOL GLibIntersectRayAxisAlignedBox( FXMVECTOR Origin, FXMVECTOR Direction, const XNA::AxisAlignedBox* pVolume, FLOAT* pDist )
{
	XMASSERT( pVolume );
	XMASSERT( pDist );
	//XMASSERT( XMVector3IsUnit( Direction ) );

	static const XMVECTOR Epsilon =
	{
		1e-20f, 1e-20f, 1e-20f, 1e-20f
	};
	static const XMVECTOR FltMin =
	{
		-FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX
	};
	static const XMVECTOR FltMax =
	{
		FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX
	};

	// Load the box.
	XMVECTOR Center = XMLoadFloat3( &pVolume->Center );
	XMVECTOR Extents = XMLoadFloat3( &pVolume->Extents );

	// Adjust ray origin to be relative to center of the box.
	XMVECTOR TOrigin = Center - Origin;

	// Compute the dot product againt each axis of the box.
	// Since the axii are (1,0,0), (0,1,0), (0,0,1) no computation is necessary.
	XMVECTOR AxisDotOrigin = TOrigin;
	XMVECTOR AxisDotDirection = Direction;

	// if (fabs(AxisDotDirection) <= Epsilon) the ray is nearly parallel to the slab.
	XMVECTOR IsParallel = XMVectorLessOrEqual( XMVectorAbs( AxisDotDirection ), Epsilon );

	// Test against all three axii simultaneously.
	XMVECTOR InverseAxisDotDirection = XMVectorReciprocal( AxisDotDirection );
	XMVECTOR t1 = ( AxisDotOrigin - Extents ) * InverseAxisDotDirection;
	XMVECTOR t2 = ( AxisDotOrigin + Extents ) * InverseAxisDotDirection;

	// Compute the max of min(t1,t2) and the min of max(t1,t2) ensuring we don't
	// use the results from any directions parallel to the slab.
	XMVECTOR t_min = XMVectorSelect( XMVectorMin( t1, t2 ), FltMin, IsParallel );
	XMVECTOR t_max = XMVectorSelect( XMVectorMax( t1, t2 ), FltMax, IsParallel );

	// t_min.x = maximum( t_min.x, t_min.y, t_min.z );
	// t_max.x = minimum( t_max.x, t_max.y, t_max.z );
	t_min = XMVectorMax( t_min, XMVectorSplatY( t_min ) );  // x = max(x,y)
	t_min = XMVectorMax( t_min, XMVectorSplatZ( t_min ) );  // x = max(max(x,y),z)
	t_max = XMVectorMin( t_max, XMVectorSplatY( t_max ) );  // x = min(x,y)
	t_max = XMVectorMin( t_max, XMVectorSplatZ( t_max ) );  // x = min(min(x,y),z)

	// if ( t_min > t_max ) return FALSE;
	XMVECTOR NoIntersection = XMVectorGreater( XMVectorSplatX( t_min ), XMVectorSplatX( t_max ) );

	// if ( t_max < 0.0f ) return FALSE;
	NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( XMVectorSplatX( t_max ), XMVectorZero() ) );

	// if (IsParallel && (-Extents > AxisDotOrigin || Extents < AxisDotOrigin)) return FALSE;
	XMVECTOR ParallelOverlap = XMVectorInBounds( AxisDotOrigin, Extents );
	NoIntersection = XMVectorOrInt( NoIntersection, XMVectorAndCInt( IsParallel, ParallelOverlap ) );

	if(!GLibXMVector3AnyTrue( NoIntersection ) )
	{
		// Store the x-component to *pDist
		XMStoreFloat( pDist, t_min );
		return TRUE;
	}

	return FALSE;
}