Exemple #1
0
static Int 
p_binary_is(void)
{				/* X is Y	 */
  Term t = Deref(ARG2);
  Term t1, t2;

  if (IsVarTerm(t)) {
    Yap_ArithError(INSTANTIATION_ERROR,t, "X is Y");
    return(FALSE);
  }
  t1 = Yap_Eval(Deref(ARG3));
  if (!Yap_FoundArithError(t1, ARG3)) {
    return FALSE;
  }
  t2 = Yap_Eval(Deref(ARG4));
  if (!Yap_FoundArithError(t2, ARG4)) {
    return FALSE;
  }
  if (IsIntTerm(t)) {
    Term tout = Yap_FoundArithError(eval2(IntOfTerm(t), t1, t2), 0L);
    if (!tout)
      return FALSE;
    return Yap_unify_constant(ARG1,tout);
  }
  if (IsAtomTerm(t)) {
    Atom name = AtomOfTerm(t);
    ExpEntry *p;
    Term out;

    if (EndOfPAEntr(p = RepExpProp(Yap_GetExpProp(name, 2)))) {
      Term ti[2];

      /* error */
      ti[0] = t;
      ti[1] = MkIntTerm(1);
      t = Yap_MkApplTerm(FunctorSlash, 2, ti);
      Yap_Error(TYPE_ERROR_EVALUABLE, t,
		"functor %s/%d for arithmetic expression",
		RepAtom(name)->StrOfAE,2);
      P = FAILCODE;
      return(FALSE);
    }
    if (!(out=Yap_FoundArithError(eval2(p->FOfEE, t1, t2), 0L)))
      return FALSE;
    return Yap_unify_constant(ARG1,out);
  }
  return FALSE;
}
Exemple #2
0
static Int 
p_binary_op_as_integer(void)
{				/* X is Y	 */
  Term t = Deref(ARG1);

  if (IsVarTerm(t)) {
    Yap_Error(INSTANTIATION_ERROR,t, "X is Y");
    return(FALSE);
  }
  if (IsIntTerm(t)) {
    return Yap_unify_constant(ARG2,t);
  }
  if (IsAtomTerm(t)) {
    Atom name = AtomOfTerm(t);
    ExpEntry *p;

    if (EndOfPAEntr(p = RepExpProp(Yap_GetExpProp(name, 2)))) {
      return Yap_unify(ARG1,ARG2);
    }
    return Yap_unify_constant(ARG2,MkIntTerm(p->FOfEE));
  }
  return(FALSE);
}
Exemple #3
0
static Term
Eval(Term t USES_REGS)
{

  if (IsVarTerm(t)) {
    return Yap_ArithError(INSTANTIATION_ERROR,t,"in arithmetic");
  } else if (IsNumTerm(t)) {
    return t;
  } else if (IsAtomTerm(t)) {
    ExpEntry *p;
    Atom name  = AtomOfTerm(t);

    if (EndOfPAEntr(p = RepExpProp(Yap_GetExpProp(name, 0)))) {
      /* error */
      Term ti[2];

      /* error */
      ti[0] = t;
      ti[1] = MkIntTerm(0);
      t = Yap_MkApplTerm(FunctorSlash, 2, ti);

      return Yap_ArithError(TYPE_ERROR_EVALUABLE, t,
			    "atom %s in arithmetic expression",
			    RepAtom(name)->StrOfAE);
    }
    return Yap_eval_atom(p->FOfEE);
  } else if (IsApplTerm(t)) {
    Functor fun = FunctorOfTerm(t);
    if (fun == FunctorString) {
      const char *s = StringOfTerm(t);
      if (s[1] == '\0')
	return MkIntegerTerm(s[0]);
      return Yap_ArithError(TYPE_ERROR_EVALUABLE, t,
			    "string in arithmetic expression");
    } else if ((Atom)fun == AtomFoundVar) {
      return Yap_ArithError(TYPE_ERROR_EVALUABLE, TermNil,
			    "cyclic term in arithmetic expression");
    } else {
      Int n = ArityOfFunctor(fun);
      Atom name  = NameOfFunctor(fun);
      ExpEntry *p;
      Term t1, t2;
      
      if (EndOfPAEntr(p = RepExpProp(Yap_GetExpProp(name, n)))) {
	Term ti[2];

	/* error */
	ti[0] = t;
	ti[1] = MkIntegerTerm(n);
	t = Yap_MkApplTerm(FunctorSlash, 2, ti);
	return Yap_ArithError(TYPE_ERROR_EVALUABLE, t,
			      "functor %s/%d for arithmetic expression",
			      RepAtom(name)->StrOfAE,n);
      }
      if (p->FOfEE == op_power && p->ArityOfEE == 2) {
	t2 = ArgOfTerm(2, t);
	if (IsPairTerm(t2)) {
	  return get_matrix_element(ArgOfTerm(1, t), t2 PASS_REGS);
	}
      }
      *RepAppl(t) = (CELL)AtomFoundVar;
      t1 = Eval(ArgOfTerm(1,t) PASS_REGS);
      if (t1 == 0L) {
	*RepAppl(t) = (CELL)fun;
	return FALSE;
      }
      if (n == 1) {
	*RepAppl(t) = (CELL)fun;
	return Yap_eval_unary(p->FOfEE, t1);
      }
      t2 = Eval(ArgOfTerm(2,t) PASS_REGS);
      *RepAppl(t) = (CELL)fun;
      if (t2 == 0L)
	return FALSE;
      return Yap_eval_binary(p->FOfEE,t1,t2);
    }
  } /* else if (IsPairTerm(t)) */ {
    if (TailOfTerm(t) != TermNil) {
      return Yap_ArithError(TYPE_ERROR_EVALUABLE, t,
			    "string must contain a single character to be evaluated as an arithmetic expression");
    }
    return Eval(HeadOfTerm(t) PASS_REGS);
  }
}