Exemple #1
0
void HAL_SPI_MspInit(SPI_HandleTypeDef* hspi)
{

  GPIO_InitTypeDef GPIO_InitStruct;
  if(hspi->Instance==SPI3)
  {
  /* USER CODE BEGIN SPI3_MspInit 0 */

  /* USER CODE END SPI3_MspInit 0 */
    /* Peripheral clock enable */
    __SPI3_CLK_ENABLE();
  
    /**SPI3 GPIO Configuration    
    PC10     ------> SPI3_SCK
    PC11     ------> SPI3_MISO
    PC12     ------> SPI3_MOSI 
    */
    GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
    GPIO_InitStruct.Alternate = GPIO_AF6_SPI3;
    HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

  /* USER CODE BEGIN SPI3_MspInit 1 */

  /* USER CODE END SPI3_MspInit 1 */
  }
}
Exemple #2
0
/**
 * Initialize Sharp LCD
 * @param void No arguments
 * @return void No return
 */
void SharpLcd_Init(void)
{
	// Local variables
	GPIO_InitTypeDef GPIO_InitStruct;

	// Init GPIO
	__GPIOA_CLK_ENABLE();
	__GPIOC_CLK_ENABLE();
	__GPIOD_CLK_ENABLE();

	// Control Pins
	GPIO_InitStruct.Pin = s_SHARPLCD__SCS;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
	GPIO_InitStruct.Pull = GPIO_PULLDOWN;
	GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
	HAL_GPIO_Init(s_SHARPLCD__SCS_PORT, &GPIO_InitStruct);

	GPIO_InitStruct.Pin = s_SHARPLCD__DISP;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
	GPIO_InitStruct.Pull = GPIO_PULLDOWN;
	GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
	HAL_GPIO_Init(s_SHARPLCD__DISP_PORT, &GPIO_InitStruct);

	GPIO_InitStruct.Pin = s_SHARPLCD__EXTCOMIN;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
	GPIO_InitStruct.Pull = GPIO_PULLDOWN;
	GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
	HAL_GPIO_Init(s_SHARPLCD__VCOM_PORT, &GPIO_InitStruct);

	// SPI Pins
	GPIO_InitStruct.Pin = s_SHARPLCD__SCLK | s_SHARPLCD__SI;
	GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
	GPIO_InitStruct.Pull = GPIO_NOPULL;
	GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
	GPIO_InitStruct.Alternate = GPIO_AF6_SPI3;
	HAL_GPIO_Init(s_SHARPLCD__SPI_PORT, &GPIO_InitStruct);

	// Set initial state of GPIO
	s_SHARPLCD__DISP_RESET();
	s_SHARPLCD__SCS_RESET();
	s_SHARPLCD__EXTCOMIN_RESET();

	// Init SPI
	__SPI3_CLK_ENABLE();

	g_SharpLcd_SpiHandle.Instance = SPI3;
	g_SharpLcd_SpiHandle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
	g_SharpLcd_SpiHandle.Init.Mode = SPI_MODE_MASTER;
	g_SharpLcd_SpiHandle.Init.Direction = SPI_DIRECTION_2LINES;
	g_SharpLcd_SpiHandle.Init.DataSize = SPI_DATASIZE_8BIT;
	g_SharpLcd_SpiHandle.Init.CLKPolarity = SPI_POLARITY_LOW;
	g_SharpLcd_SpiHandle.Init.CLKPhase = SPI_PHASE_1EDGE;
	g_SharpLcd_SpiHandle.Init.NSS = SPI_NSS_SOFT;
	g_SharpLcd_SpiHandle.Init.FirstBit = SPI_FIRSTBIT_LSB;
	g_SharpLcd_SpiHandle.Init.TIMode = SPI_TIMODE_DISABLED;
	g_SharpLcd_SpiHandle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED;
	g_SharpLcd_SpiHandle.Init.CRCPolynomial = 10;
	HAL_SPI_Init(&g_SharpLcd_SpiHandle);

}
void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi)
{
  if (hspi->Instance == SPI3) {
    GPIO_InitTypeDef  GPIO_InitStruct;

    SPI3_MOSI_GPIO_CLK_ENABLE();
    SPI3_MISO_GPIO_CLK_ENABLE();
    SPI3_SCK_GPIO_CLK_ENABLE();

    GPIO_InitStruct.Pin       = SPI3_MOSI_PIN;
    GPIO_InitStruct.Mode      = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull      = GPIO_NOPULL;
    GPIO_InitStruct.Speed     = GPIO_SPEED_FAST;
    GPIO_InitStruct.Alternate = SPI3_MOSI_AF;
    HAL_GPIO_Init(SPI3_MOSI_PORT, &GPIO_InitStruct);

    GPIO_InitStruct.Pin       = SPI3_SCK_PIN;
    GPIO_InitStruct.Alternate = SPI3_SCK_AF;
    HAL_GPIO_Init(SPI3_SCK_PORT, &GPIO_InitStruct);

    GPIO_InitStruct.Pin       = SPI3_MISO_PIN;
    GPIO_InitStruct.Mode      = GPIO_MODE_AF_OD;
    GPIO_InitStruct.Alternate = SPI3_MISO_AF;
    HAL_GPIO_Init(SPI3_MISO_PORT, &GPIO_InitStruct);

    // TODO: initialize DMA and IT

    __SPI3_CLK_ENABLE();
  } else if (hspi->Instance == SPI2) {
    GPIO_InitTypeDef  GPIO_InitStruct;

    SPI2_MOSI_GPIO_CLK_ENABLE();
    SPI2_MISO_GPIO_CLK_ENABLE();
    SPI2_SCK_GPIO_CLK_ENABLE();

    GPIO_InitStruct.Pin       = SPI2_MOSI_PIN;
    GPIO_InitStruct.Mode      = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull      = GPIO_NOPULL;
    GPIO_InitStruct.Speed     = GPIO_SPEED_FAST;
    GPIO_InitStruct.Alternate = SPI2_MOSI_AF;
    HAL_GPIO_Init(SPI2_MOSI_PORT, &GPIO_InitStruct);

    GPIO_InitStruct.Pin       = SPI2_SCK_PIN;
    GPIO_InitStruct.Alternate = SPI2_SCK_AF;
    HAL_GPIO_Init(SPI2_SCK_PORT, &GPIO_InitStruct);

    GPIO_InitStruct.Pin       = SPI2_MISO_PIN;
    GPIO_InitStruct.Mode      = GPIO_MODE_AF_OD;
    GPIO_InitStruct.Alternate = SPI2_MISO_AF;
    HAL_GPIO_Init(SPI2_MISO_PORT, &GPIO_InitStruct);

    // TODO: initialize DMA and IT

    __SPI2_CLK_ENABLE();
  }
}
Exemple #4
0
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
    // Determine the SPI to use
    SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
    SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
    SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
    SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);

    SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
    SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);

    obj->spi = (SPIName)pinmap_merge(spi_data, spi_cntl);

    if (obj->spi == (SPIName)NC) {
        error("SPI error: pinout mapping failed.");
    }

    // Enable SPI clock
    if (obj->spi == SPI_1) {
        __SPI1_CLK_ENABLE();
    }
    if (obj->spi == SPI_2) {
        __SPI2_CLK_ENABLE();
    }
    if (obj->spi == SPI_3) {
        __SPI3_CLK_ENABLE();
    }

    // Configure the SPI pins
    pinmap_pinout(mosi, PinMap_SPI_MOSI);
    pinmap_pinout(miso, PinMap_SPI_MISO);
    pinmap_pinout(sclk, PinMap_SPI_SCLK);

    // Save new values
    obj->bits = SPI_DATASIZE_8BIT;
    obj->cpol = SPI_POLARITY_LOW;
    obj->cpha = SPI_PHASE_1EDGE;
    obj->br_presc = SPI_BAUDRATEPRESCALER_256;

    obj->pin_miso = miso;
    obj->pin_mosi = mosi;
    obj->pin_sclk = sclk;
    obj->pin_ssel = ssel;

    if (ssel == NC) { // SW NSS Master mode
        obj->mode = SPI_MODE_MASTER;
        obj->nss = SPI_NSS_SOFT;
    } else { // Slave
        pinmap_pinout(ssel, PinMap_SPI_SSEL);
        obj->mode = SPI_MODE_SLAVE;
        obj->nss = SPI_NSS_HARD_INPUT;
    }

    init_spi(obj);
}
Exemple #5
0
void HAL_I2S_MspInit(I2S_HandleTypeDef* hi2s)
{
	GPIO_InitTypeDef GPIO_InitStruct;
	if (hi2s->Instance == SPI3)
	{
	  /* Peripheral clock enable */
		__SPI3_CLK_ENABLE();
		//__DMA1_CLK_ENABLE();

		/**I2S3 GPIO Configuration    		    
		PA4      ------> I2S3_WS
		PC7      ------> I2S2_MCK
		PC10     ------> I2S3_CK
		PC12     ------> I2S3_SD 
		*/
		GPIO_InitStruct.Pin = GPIO_PIN_4;
		GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
		GPIO_InitStruct.Pull = GPIO_NOPULL;
		GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
		GPIO_InitStruct.Alternate = GPIO_AF6_SPI3;
		HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
		
		GPIO_InitStruct.Pin = GPIO_PIN_7 | GPIO_PIN_10 | GPIO_PIN_12;
		GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
		GPIO_InitStruct.Pull = GPIO_NOPULL;
		GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
		GPIO_InitStruct.Alternate = GPIO_AF6_SPI3;
		HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

		/* Peripheral DMA init*/
/*
		hdma_i2s2_ext_tx.Instance = DMA1_Stream4;
		hdma_i2s2_ext_tx.Init.Channel = DMA_CHANNEL_2;
		hdma_i2s2_ext_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
		hdma_i2s2_ext_tx.Init.PeriphInc = DMA_PINC_DISABLE;
		hdma_i2s2_ext_tx.Init.MemInc = DMA_MINC_ENABLE;
		hdma_i2s2_ext_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
		hdma_i2s2_ext_tx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
		hdma_i2s2_ext_tx.Init.Mode = DMA_CIRCULAR;
		hdma_i2s2_ext_tx.Init.Priority = DMA_PRIORITY_HIGH;
		hdma_i2s2_ext_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
		hdma_i2s2_ext_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_HALFFULL;
		hdma_i2s2_ext_tx.Init.MemBurst = DMA_MBURST_SINGLE;
		hdma_i2s2_ext_tx.Init.PeriphBurst = DMA_PBURST_SINGLE;
		HAL_DMA_Init(&hdma_i2s2_ext_tx);

		__HAL_LINKDMA(hi2s, hdmatx, hdma_i2s2_ext_tx);

		HAL_NVIC_SetPriority(DMA1_Stream4_IRQn, 0, 1);
		HAL_NVIC_EnableIRQ(DMA1_Stream4_IRQn);
*/

	}
}
Exemple #6
0
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
    // Determine the SPI to use
    SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
    SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
    SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
    SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);

    SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
    SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);

    obj->spi = (SPIName)pinmap_merge(spi_data, spi_cntl);
    MBED_ASSERT(obj->spi != (SPIName)NC);

    // Enable SPI clock
#if defined(SPI1_BASE)
    if (obj->spi == SPI_1) {
        __SPI1_CLK_ENABLE();
    }
#endif

#if defined(SPI2_BASE)
    if (obj->spi == SPI_2) {
        __SPI2_CLK_ENABLE();
    }
#endif

#if defined(SPI3_BASE)
    if (obj->spi == SPI_3) {
        __SPI3_CLK_ENABLE();
    }
#endif

    // Configure the SPI pins
    pinmap_pinout(mosi, PinMap_SPI_MOSI);
    pinmap_pinout(miso, PinMap_SPI_MISO);
    pinmap_pinout(sclk, PinMap_SPI_SCLK);

    // Save new values
    obj->bits = SPI_DATASIZE_8BIT;
    obj->cpol = SPI_POLARITY_LOW;
    obj->cpha = SPI_PHASE_1EDGE;
#if defined(TARGET_STM32F334C8)
    obj->br_presc = SPI_BAUDRATEPRESCALER_256;
#else
    obj->br_presc = SPI_BAUDRATEPRESCALER_32; // 1 MHz (HSI) or 1.13 MHz (HSE)
#endif

    obj->pin_miso = miso;
    obj->pin_mosi = mosi;
    obj->pin_sclk = sclk;
    obj->pin_ssel = ssel;

    if (ssel == NC) { // SW NSS Master mode
        obj->mode = SPI_MODE_MASTER;
        obj->nss = SPI_NSS_SOFT;
    } else { // Slave
        pinmap_pinout(ssel, PinMap_SPI_SSEL);
        obj->mode = SPI_MODE_SLAVE;
        obj->nss = SPI_NSS_HARD_INPUT;
    }

    init_spi(obj);
}
Exemple #7
0
void cHAL::Init(void) {

	__HAL_RCC_GPIOA_CLK_ENABLE();
	__HAL_RCC_GPIOB_CLK_ENABLE();
	__HAL_RCC_GPIOC_CLK_ENABLE();
	__HAL_RCC_CAN2_CLK_ENABLE();
	__HAL_RCC_CAN1_CLK_ENABLE();
	__HAL_RCC_USART3_CLK_ENABLE();
	__HAL_RCC_UART4_CLK_ENABLE();

	GPIO_InitTypeDef gi;
	HAL_StatusTypeDef status;

	//Enable UART
	gi.Pin = GPIO_PIN_10 | GPIO_PIN_11; //C10=TX, C11=RX
	gi.Mode = GPIO_MODE_AF_PP;
	gi.Pull = GPIO_PULLUP;
	gi.Speed = GPIO_SPEED_LOW;
	gi.Alternate = GPIO_AF7_USART3;
	HAL_GPIO_Init(GPIOC, &gi);
	InitAndTestUSART();

	//Onboard LEDs
	gi.Mode = GPIO_MODE_OUTPUT_PP;
	gi.Alternate = 0;
	gi.Pull = GPIO_NOPULL;
	gi.Speed = GPIO_SPEED_LOW;
	gi.Pin = GPIO_PIN_7;
	HAL_GPIO_Init(GPIOB, &gi);
	LOGI(BSP::SUCCESSFUL_STRING, "GPIO for LED");

	if(InitDWTCounter())
	{
		LOGI(BSP::SUCCESSFUL_STRING, "DWTCounter");
	}
	else
	{
		LOGE(NOT_SUCCESSFUL_STRING, "DWTCounter");
	}

	//MP3-Player
	gi.Pin = GPIO_PIN_0 | GPIO_PIN_1; //A0=USART4_TX, A1=USART4_RX, Kerbe nach oben; ansicht von Pinseite, rechts von oben
	//VCC, RX, TX, DACR, DACL, SPK1, GND, SPK2
	//Also: PA0 --> RX
	gi.Mode = GPIO_MODE_AF_PP;
	gi.Pull = GPIO_PULLUP;
	gi.Speed = GPIO_SPEED_LOW;
	gi.Alternate = GPIO_AF8_UART4;
	HAL_GPIO_Init(GPIOA, &gi);
	BELL.Instance = UART4;
	BELL.Init.BaudRate = 9600;
	BELL.Init.WordLength = UART_WORDLENGTH_8B;
	BELL.Init.StopBits = UART_STOPBITS_1;
	BELL.Init.Parity = UART_PARITY_NONE;
	BELL.Init.Mode = UART_MODE_TX_RX;
	BELL.Init.HwFlowCtl = UART_HWCONTROL_NONE;
	BELL.Init.OverSampling = UART_OVERSAMPLING_16;
	HAL_UART_Init(&BSP::BELL);
	LOGI(SUCCESSFUL_STRING, "UART4 for MP3-Module");

	__I2C1_CLK_ENABLE();
	__I2C2_CLK_ENABLE();
	/*
	 PB08     ------> I2C1_SCL
	 PB09     ------> I2C1_SDA
	 */
	gi.Pin = GPIO_PIN_8 | GPIO_PIN_9;
	gi.Mode = GPIO_MODE_AF_OD;
	gi.Pull = GPIO_PULLUP;
	gi.Speed = GPIO_SPEED_MEDIUM;
	gi.Alternate = GPIO_AF4_I2C1;
	HAL_GPIO_Init(GPIOB, &gi);
	/*
	 PB10     ------> I2C2_SCL
	 PB11     ------> I2C2_SDA
	 */
	gi.Pin = GPIO_PIN_10 | GPIO_PIN_11;
	gi.Mode = GPIO_MODE_AF_OD;
	gi.Pull = GPIO_PULLUP;
	gi.Speed = GPIO_SPEED_MEDIUM;
	gi.Alternate = GPIO_AF4_I2C2;
	HAL_GPIO_Init(GPIOB, &gi);

	i2cbus[0].Instance = I2C1;
	i2cbus[0].Init.ClockSpeed = 100000;
	i2cbus[0].Init.DutyCycle = I2C_DUTYCYCLE_2;
	i2cbus[0].Init.OwnAddress1 = 0;
	i2cbus[0].Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
	i2cbus[0].Init.DualAddressMode = I2C_DUALADDRESS_DISABLED;
	i2cbus[0].Init.OwnAddress2 = 0;
	i2cbus[0].Init.GeneralCallMode = I2C_GENERALCALL_DISABLED;
	i2cbus[0].Init.NoStretchMode = I2C_NOSTRETCH_DISABLED;
	HAL_I2C_Init(&i2cbus[0]);
	LOGI("I2C1 configured for onboard digital io");

	i2cbus[1].Instance = I2C2;
	i2cbus[1].Init.ClockSpeed = 100000;
	i2cbus[1].Init.DutyCycle = I2C_DUTYCYCLE_2;
	i2cbus[1].Init.OwnAddress1 = 0;
	i2cbus[1].Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
	i2cbus[1].Init.DualAddressMode = I2C_DUALADDRESS_DISABLED;
	i2cbus[1].Init.OwnAddress2 = 0;
	i2cbus[1].Init.GeneralCallMode = I2C_GENERALCALL_DISABLED;
	i2cbus[1].Init.NoStretchMode = I2C_NOSTRETCH_DISABLED;
	HAL_I2C_Init(&BSP::i2c2);
	LOGI(BSP::SUCCESSFUL_STRING, "I2C2 for 1wire and external");


	if(drivers::cPCA9685::SoftwareReset(&BSP::i2c1))
	{
		LOGI(SUCCESSFUL_STRING, "i2c1 reset");
	}
	else
	{
		LOGE(NOT_SUCCESSFUL_STRING, "i2c1 reset");
	}


	if(pca9685_U7.Setup())//next to CPU, all A-Pins @ GND b01
	{
		LOGI(SUCCESSFUL_STRING, "pca9685_U7");
	}
	else
	{
		LOGE(NOT_SUCCESSFUL_STRING, "pca9685_U7");
	}
	if(pca9685_U9.Setup())
	{
		LOGI(SUCCESSFUL_STRING, "pca9685_U9");
	}
	else
	{
		LOGE(NOT_SUCCESSFUL_STRING, "pca9685_U9");
	}

	//Interrupt-Pins for PCA9555
	gi.Pin = GPIO_PIN_0|GPIO_PIN_1;
	gi.Mode = GPIO_MODE_INPUT;
	gi.Pull = GPIO_PULLUP;
	HAL_GPIO_Init(GPIOC, &gi);

	if(pca9555_U19.Setup())
	{
		LOGI(BSP::SUCCESSFUL_STRING, "pca9555_U19");
	}
	else
	{
		LOGE(BSP::NOT_SUCCESSFUL_STRING, "pca9555_U19");
	}
	if(pca9555_U18.Setup())
	{
		LOGI(BSP::SUCCESSFUL_STRING, "pca9555_U18");
	}
	else
	{
		LOGE(BSP::NOT_SUCCESSFUL_STRING, "pca9555_U18");
	}

	uint16_t tmp = pca9555_U18.GetInput();
	inputState[WORD_I2C] = (inputState[WORD_I2C] & 0xFFFF0000) + tmp;
	tmp = pca9555_U19.GetInput();
	inputState[WORD_I2C] = (inputState[WORD_I2C] & 0x0000FFFF) + (tmp << 16);

	rcSwitch.enableReceive();






	if(drivers::cPCA9685::SoftwareReset(&BSP::i2c2))
	{
		LOGI(SUCCESSFUL_STRING, "i2c2 reset");
	}
	else
	{
		LOGE(NOT_SUCCESSFUL_STRING, "i2c2 reset");
	}

	SearchI2C("I2C2", &i2c2);
	Init1wire();

	//Enable Rotary Encoder Switch Input
	gi.Mode = GPIO_MODE_INPUT;
	gi.Alternate = 0;
	gi.Pull = GPIO_PULLUP;
	gi.Speed = GPIO_SPEED_LOW;
	gi.Pin = GPIO_PIN_13;
	HAL_GPIO_Init(GPIOC, &gi);
	LOGI(SUCCESSFUL_STRING, "GPIO for Rotary Encoder");
#ifdef DCF77
	//DCF77
	gi.Mode = GPIO_MODE_INPUT;
	gi.Alternate=0;
	gi.Pull=GPIO_PULLUP;
	gi.Speed=GPIO_SPEED_FREQ_LOW;
	gi.Pin=DCF77_PIN;
	HAL_GPIO_Init(DCF77_PORT, &gi);
#endif


#endif
	//=====PWM-Timers
	//===============

	//Overall GPIO-Settings
	//All gpios enabled!
	gi.Mode = GPIO_MODE_AF_PP;
	gi.Pull = GPIO_NOPULL;
	gi.Speed = GPIO_SPEED_HIGH;

	//Overall base timer settings
	TIM_HandleTypeDef TimHandle;
	TimHandle.Init.Prescaler = 0;
	TimHandle.Init.Period = UINT16_MAX;
	TimHandle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
	TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;

	//Overall OC-settings
	TIM_OC_InitTypeDef sConfig;
	sConfig.OCMode = TIM_OCMODE_PWM1;
	sConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
	sConfig.OCNPolarity = TIM_OCNPOLARITY_HIGH;
	sConfig.OCFastMode = TIM_OCFAST_DISABLE;
	sConfig.OCIdleState = TIM_OCIDLESTATE_RESET;
	sConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET;
	sConfig.Pulse = 0;

	//===Slow Timers (84MHz) TIM4 and TIM12
	//TIM1, TIM8		SystemCoreClock/1
	//Others			SystemCoreClock/2
	//Prescaler (uint16_t) ((SystemCoreClock / 1 bzw 2) / TimerTickFrq) - 1;
	//Einstellungen führen zu PWM-Frequenz von 116,5Hz (rechnerisch ermittelt, per LogicAnalyzer bestätigt)



#ifdef SENSACTHS07
	TimHandle.Init.Prescaler = 10; //for 84MHz-Timers
	__TIM12_CLK_ENABLE()
	;
	gi.Pin = GPIO_PIN_14 | GPIO_PIN_15;
	gi.Alternate = GPIO_AF9_TIM12;
	HAL_GPIO_Init(GPIOB, &gi);
	TimHandle.Instance = TIM12;
	HAL_TIM_PWM_Init(&TimHandle);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2);
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_1); //PB14 O1.1
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_2); ///PB15 O1.2
	CLEAR_BIT(TIM12->CCMR1, TIM_CCMR1_OC1PE);
	CLEAR_BIT(TIM12->CCMR1, TIM_CCMR1_OC2PE);
	LOGI(BSP::SUCCESSFUL_STRING, "TIM12");

	//===Fast Timers (168MHz) TIM1 and TIM8
	TimHandle.Init.Prescaler = 20;

	__TIM8_CLK_ENABLE()
	;
	gi.Pin = GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_9;
	gi.Alternate = GPIO_AF3_TIM8;
	HAL_GPIO_Init(GPIOC, &gi);
	TimHandle.Instance = TIM8;
	HAL_TIM_PWM_Init(&TimHandle);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_4);
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_1); //C6 O1.3
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_2); //C7 O1.4
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_4); //C9 O1.5
	CLEAR_BIT(TIM8->CCMR1, TIM_CCMR1_OC1PE);
	CLEAR_BIT(TIM8->CCMR1, TIM_CCMR1_OC2PE);
	CLEAR_BIT(TIM8->CCMR2, TIM_CCMR2_OC4PE);
	LOGI(SUCCESSFUL_STRING, "TIM8");

	__TIM1_CLK_ENABLE()
	;
	gi.Pin = GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10;
	gi.Alternate = GPIO_AF1_TIM1;
	HAL_GPIO_Init(GPIOA, &gi);
	TimHandle.Instance = TIM1;
	TIM_ClockConfigTypeDef sClockSourceConfig;
	TIM_MasterConfigTypeDef sMasterConfig;
	TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig;


	HAL_TIM_Base_Init(&TimHandle);
	sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
	HAL_TIM_ConfigClockSource(&TimHandle, &sClockSourceConfig);
	HAL_TIM_PWM_Init(&TimHandle);

	sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
	sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
	HAL_TIMEx_MasterConfigSynchronization(&TimHandle, &sMasterConfig);

	sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
	sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
	sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
	sBreakDeadTimeConfig.DeadTime = 0;
	sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
	sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
	sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
	HAL_TIMEx_ConfigBreakDeadTime(&TimHandle, &sBreakDeadTimeConfig);



	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_3);
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_1); //A8 O1.6
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_2); //A9 O1.7
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_3); //A10 O1.8
	CLEAR_BIT(TIM1->CCMR1, TIM_CCMR1_OC1PE);
	CLEAR_BIT(TIM1->CCMR1, TIM_CCMR1_OC2PE);
	CLEAR_BIT(TIM1->CCMR2, TIM_CCMR2_OC3PE);
	LOGI(SUCCESSFUL_STRING, "TIM1");


#endif
#ifdef SENSACTHS04
	TimHandle.Init.Prescaler = 10; //for 84MHz-Timers

	__TIM4_CLK_ENABLE();
	gi.Pin = GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9;
	gi.Alternate = GPIO_AF2_TIM4;
	HAL_GPIO_Init(GPIOB, &gi);
	TimHandle.Instance = TIM4;
	HAL_TIM_PWM_Init(&TimHandle);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_3);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_4);
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_1); //PB6 o2.1
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_2); //PB7 o2.2
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_3); //PB8 o1.1
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_4); //PB9 o1.2
	TIM4->CCMR1 &= ~TIM_CCMR1_OC1PE;
	TIM4->CCMR1 &= ~TIM_CCMR1_OC2PE;
	TIM4->CCMR2 &= ~TIM_CCMR2_OC3PE;
	TIM4->CCMR2 &= ~TIM_CCMR2_OC4PE;
	LOGI(SUCCESSFUL_STRING, "TIM4");


	__TIM12_CLK_ENABLE();

	gi.Pin = GPIO_PIN_14 | GPIO_PIN_15;
	gi.Alternate = GPIO_AF9_TIM12;
	HAL_GPIO_Init(GPIOB, &gi);
	TimHandle.Instance = TIM12;
	HAL_TIM_PWM_Init(&TimHandle);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2);
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_1); //PB14 O7.2
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_2); ///PB15 O4.1
	TIM12->CCMR1 &= ~TIM_CCMR1_OC1PE;
	TIM12->CCMR1 &= ~TIM_CCMR1_OC2PE;
	LOGI(SUCCESSFUL_STRING, "TIM12");

	//===Fast Timers (168MHz) TIM1 and TIM8
	TimHandle.Init.Prescaler = 20;

	__TIM1_CLK_ENABLE();

	gi.Pin = GPIO_PIN_8;
	gi.Alternate = GPIO_AF1_TIM1;
	HAL_GPIO_Init(GPIOA, &gi);
	TimHandle.Instance = TIM1;
	HAL_TIM_PWM_Init(&TimHandle);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1);

	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_3);
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_1);
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_3);

	TIM1->CCMR1 &= ~TIM_CCMR1_OC1PE;

	TIM1->CCMR2 &= ~TIM_CCMR2_OC3PE;
	LOGI(SUCCESSFUL_STRING, "TIM1");

	__TIM8_CLK_ENABLE();

	gi.Pin = GPIO_PIN_6 | GPIO_PIN_7  | GPIO_PIN_9;
	gi.Alternate = GPIO_AF3_TIM8;
	HAL_GPIO_Init(GPIOC, &gi);
	TimHandle.Instance = TIM8;
	HAL_TIM_PWM_Init(&TimHandle);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2);
	HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_4);
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_1);
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_2);
	HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_4);
	TIM8->CCMR1 &= ~TIM_CCMR1_OC1PE;
	TIM8->CCMR1 &= ~TIM_CCMR1_OC2PE;
	TIM8->CCMR2 &= ~TIM_CCMR2_OC4PE;
	LOGI(SUCCESSFUL_STRING, "TIM8");
#endif
	//===SPI for Relais
	//PA15=LATCH,PB3=CLK PB4=MISO, PB5=MOSI
	//DRV8066 DIN=2, CLK(low@inak)=3, Latch@pos edge=4
	__SPI3_CLK_ENABLE()
	;
	gi.Pin = GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5;
	gi.Mode = GPIO_MODE_AF_PP;
	gi.Pull = GPIO_NOPULL;
	gi.Speed = GPIO_SPEED_HIGH;
	gi.Alternate = GPIO_AF6_SPI3;
	HAL_GPIO_Init(GPIOB, &gi);

#ifdef SENSACTHS07
	BSP::spi.Init.DataSize = SPI_DATASIZE_8BIT;
	HAL_GPIO_WritePin(GPIOC, GPIO_PIN_14, GPIO_PIN_SET);
	gi.Pin = GPIO_PIN_14;
	gi.Mode = GPIO_MODE_OUTPUT_PP;
	gi.Pull = GPIO_NOPULL;
	gi.Speed = GPIO_SPEED_MEDIUM;
	HAL_GPIO_Init(GPIOC, &gi);
#endif
#ifdef SENSACTHS04
	BSP::spi.Init.DataSize = SPI_DATASIZE_16BIT;
	HAL_GPIO_WritePin(GPIOA, GPIO_PIN_15, GPIO_PIN_SET);
	gi.Pin = GPIO_PIN_15;
	gi.Mode = GPIO_MODE_OUTPUT_PP;
	gi.Pull = GPIO_NOPULL;
	gi.Speed = GPIO_SPEED_MEDIUM;
	HAL_GPIO_Init(GPIOA, &gi);
#endif



	BSP::spi.Instance = SPI3;
	BSP::spi.Init.Mode = SPI_MODE_MASTER;
	BSP::spi.Init.Direction = SPI_DIRECTION_2LINES;

	BSP::spi.Init.CLKPolarity = SPI_POLARITY_LOW;
	BSP::spi.Init.CLKPhase = SPI_PHASE_1EDGE;
	BSP::spi.Init.NSS = SPI_NSS_SOFT;
	BSP::spi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
	BSP::spi.Init.FirstBit = SPI_FIRSTBIT_MSB;
	BSP::spi.Init.TIMode = SPI_TIMODE_DISABLED;
	BSP::spi.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED;
	BSP::spi.Init.CRCPolynomial = 1;
	status = HAL_SPI_Init(&BSP::spi);
	if (status != HAL_OK) {
		LOGE("Unable to configure SPI for Relays");
		while(1) {};
	}
	uint8_t tx[] = {0, 0, 0};
#ifdef SENSACTHS07
	HAL_GPIO_WritePin(GPIOC, GPIO_PIN_14, GPIO_PIN_RESET);
	HAL_SPI_Transmit(&BSP::spi, tx, 3, 100);
	HAL_GPIO_WritePin(GPIOC, GPIO_PIN_14, GPIO_PIN_SET);
	LOGI(SUCCESSFUL_STRING, "SPI for DRV8860");
#endif
#ifdef SENSACTHS04
	HAL_GPIO_WritePin(GPIOA, GPIO_PIN_15, GPIO_PIN_RESET);
	if (HAL_SPI_Transmit(&BSP::spi, tx, 1, 100) == HAL_OK) {
		LOGI(SUCCESSFUL_STRING, "SPI for DRV8860");
	}
	else
	{
		LOGE(NOT_SUCCESSFUL_STRING, "SPI for DRV8860");
	}
	HAL_GPIO_WritePin(GPIOA, GPIO_PIN_15, GPIO_PIN_SET);
#endif





	/**CAN2 GPIO Configuration
	 PB12     ------> CAN2_RX
	 PB13     ------> CAN2_TX
	 */
	gi.Pin = GPIO_PIN_12 | GPIO_PIN_13;
	gi.Mode = GPIO_MODE_AF_PP;
	gi.Pull = GPIO_NOPULL;
	gi.Speed = GPIO_SPEED_LOW;
	gi.Alternate = GPIO_AF9_CAN2;
	HAL_GPIO_Init(GPIOB, &gi);
	InitCAN();
	return;
}
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk)
{
    // Determine the SPI to use
    SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
    SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
    SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);

    SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);

    SPIName instance = (SPIName)pinmap_merge(spi_data, spi_sclk);
    MBED_ASSERT(instance != (SPIName)NC);

    // Enable SPI clock and set the right module number
    switch(instance) {
        case SPI_1:
            __SPI1_CLK_ENABLE();
            obj->spi.module = 0;
            break;
        case SPI_2:
            __SPI2_CLK_ENABLE();
            obj->spi.module = 1;
            break;
        case SPI_3:
            __SPI3_CLK_ENABLE();
            obj->spi.module = 2;
            break;
#if MODULES_SIZE_SPI > 3
        case SPI_4:
            __SPI4_CLK_ENABLE();
            obj->spi.module = 3;
            break;
#endif
#if MODULES_SIZE_SPI > 4
        case SPI_5:
            __SPI5_CLK_ENABLE();
            obj->spi.module = 4;
            break;
#endif
#if MODULES_SIZE_SPI > 5
        case SPI_6:
            __SPI6_CLK_ENABLE();
            obj->spi.module = 5;
            break;
#endif
        default:
            break;
    }

    // Configure the SPI pins
    pinmap_pinout(mosi, PinMap_SPI_MOSI);
    pinmap_pinout(miso, PinMap_SPI_MISO);
    pinmap_pinout(sclk, PinMap_SPI_SCLK);

    obj->spi.pin_miso = miso;
    obj->spi.pin_mosi = mosi;
    obj->spi.pin_sclk = sclk;

    // initialize the handle for this master!
    SPI_HandleTypeDef *handle = &SpiHandle[obj->spi.module];

    handle->Instance               = (SPI_TypeDef *)(instance);
    handle->Init.Mode              = SPI_MODE_MASTER;
    handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
    handle->Init.Direction         = SPI_DIRECTION_2LINES;
    handle->Init.CLKPhase          = SPI_PHASE_1EDGE;
    handle->Init.CLKPolarity       = SPI_POLARITY_LOW;
    handle->Init.CRCCalculation    = SPI_CRCCALCULATION_DISABLED;
    handle->Init.CRCPolynomial     = 7;
    handle->Init.DataSize          = SPI_DATASIZE_8BIT;
    handle->Init.FirstBit          = SPI_FIRSTBIT_MSB;
    handle->Init.NSS               = SPI_NSS_SOFT;
    handle->Init.TIMode            = SPI_TIMODE_DISABLED;

    DEBUG_PRINTF("SPI%u: Init\n", obj->spi.module+1);

    init_spi(obj);
}