Exemple #1
0
/*
 * Called when bufp's page  contains a partial key (index should be 1)
 *
 * All pages in the big key/data pair except bufp are freed.  We cannot
 * free bufp because the page pointing to it is lost and we can't get rid
 * of its pointer.
 *
 * Returns:
 * 0 => OK
 *-1 => ERROR
 */
int
__big_delete(HTAB *hashp, BUFHEAD *bufp)
{
	BUFHEAD *last_bfp, *rbufp;
	uint16_t *bp, pageno;
	int key_done, n;
	size_t temp;

	rbufp = bufp;
	last_bfp = NULL;
	bp = (uint16_t *)(void *)bufp->page;
	pageno = 0;
	key_done = 0;

	while (!key_done || (bp[2] != FULL_KEY_DATA)) {
		if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
			key_done = 1;

		/*
		 * If there is freespace left on a FULL_KEY_DATA page, then
		 * the data is short and fits entirely on this page, and this
		 * is the last page.
		 */
		if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
			break;
		pageno = bp[bp[0] - 1];
		rbufp->flags |= BUF_MOD;
		rbufp = __get_buf(hashp, (uint32_t)pageno, rbufp, 0);
		if (last_bfp)
			__free_ovflpage(hashp, last_bfp);
		last_bfp = rbufp;
		if (!rbufp)
			return (-1);		/* Error. */
		bp = (uint16_t *)(void *)rbufp->page;
	}

	/*
	 * If we get here then rbufp points to the last page of the big
	 * key/data pair.  Bufp points to the first one -- it should now be
	 * empty pointing to the next page after this pair.  Can't free it
	 * because we don't have the page pointing to it.
	 */

	/* This is information from the last page of the pair. */
	n = bp[0];
	pageno = bp[n - 1];

	/* Now, bp is the first page of the pair. */
	bp = (uint16_t *)(void *)bufp->page;
	if (n > 2) {
		/* There is an overflow page. */
		bp[1] = pageno;
		bp[2] = OVFLPAGE;
		bufp->ovfl = rbufp->ovfl;
	} else
		/* This is the last page. */
		bufp->ovfl = NULL;
	n -= 2;
	bp[0] = n;
	temp = hashp->BSIZE - PAGE_META(n);
	_DBFIT(temp, uint16_t);
	FREESPACE(bp) = (uint16_t)temp;
	OFFSET(bp) = hashp->BSIZE;

	bufp->flags |= BUF_MOD;
	if (rbufp)
		__free_ovflpage(hashp, rbufp);
	if (last_bfp && last_bfp != rbufp)
		__free_ovflpage(hashp, last_bfp);

	hashp->NKEYS--;
	return (0);
}
Exemple #2
0
/*
 * Called when we encounter an overflow or big key/data page during split
 * handling.  This is special cased since we have to begin checking whether
 * the key/data pairs fit on their respective pages and because we may need
 * overflow pages for both the old and new pages.
 *
 * The first page might be a page with regular key/data pairs in which case
 * we have a regular overflow condition and just need to go on to the next
 * page or it might be a big key/data pair in which case we need to fix the
 * big key/data pair.
 *
 * Returns:
 *	 0 ==> success
 *	-1 ==> failure
 */
static int
ugly_split(
	HTAB *hashp,
	uint32_t obucket,	/* Same as __split_page. */
	BUFHEAD *old_bufp,
	BUFHEAD *new_bufp,
	int copyto,	/* First byte on page which contains key/data values. */
	int moved	/* Number of pairs moved to new page. */
)
{
	BUFHEAD *bufp;	/* Buffer header for ino */
	uint16_t *ino;	/* Page keys come off of */
	uint16_t *np;	/* New page */
	uint16_t *op;	/* Page keys go on to if they aren't moving */
	size_t temp;

	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
	DBT key, val;
	SPLIT_RETURN ret;
	uint16_t n, off, ov_addr, scopyto;
	char *cino;		/* Character value of ino */

	bufp = old_bufp;
	ino = (uint16_t *)(void *)old_bufp->page;
	np = (uint16_t *)(void *)new_bufp->page;
	op = (uint16_t *)(void *)old_bufp->page;
	last_bfp = NULL;
	scopyto = (uint16_t)copyto;	/* ANSI */

	n = ino[0] - 1;
	while (n < ino[0]) {
		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
			if (__big_split(hashp, old_bufp,
			    new_bufp, bufp, (int)bufp->addr, obucket, &ret))
				return (-1);
			old_bufp = ret.oldp;
			if (!old_bufp)
				return (-1);
			op = (uint16_t *)(void *)old_bufp->page;
			new_bufp = ret.newp;
			if (!new_bufp)
				return (-1);
			np = (uint16_t *)(void *)new_bufp->page;
			bufp = ret.nextp;
			if (!bufp)
				return (0);
			cino = (char *)bufp->page;
			ino = (uint16_t *)(void *)cino;
			last_bfp = ret.nextp;
		} else if (ino[n + 1] == OVFLPAGE) {
			ov_addr = ino[n];
			/*
			 * Fix up the old page -- the extra 2 are the fields
			 * which contained the overflow information.
			 */
			ino[0] -= (moved + 2);
			temp = sizeof(uint16_t) * (ino[0] + 3);
			_DIAGASSERT(scopyto >= temp);
			FREESPACE(ino) = (uint16_t)(scopyto - temp);
			OFFSET(ino) = scopyto;

			bufp = __get_buf(hashp, (uint32_t)ov_addr, bufp, 0);
			if (!bufp)
				return (-1);

			ino = (uint16_t *)(void *)bufp->page;
			n = 1;
			scopyto = hashp->BSIZE;
			moved = 0;

			if (last_bfp)
				__free_ovflpage(hashp, last_bfp);
			last_bfp = bufp;
		}
		/* Move regular sized pairs of there are any */
		off = hashp->BSIZE;
		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
			cino = (char *)(void *)ino;
			key.data = (uint8_t *)cino + ino[n];
			key.size = off - ino[n];
			val.data = (uint8_t *)cino + ino[n + 1];
			val.size = ino[n] - ino[n + 1];
			off = ino[n + 1];

			if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
				/* Keep on old page */
				if (PAIRFITS(op, (&key), (&val)))
					putpair((char *)(void *)op, &key, &val);
				else {
					old_bufp =
					    __add_ovflpage(hashp, old_bufp);
					if (!old_bufp)
						return (-1);
					op = (uint16_t *)(void *)old_bufp->page;
					putpair((char *)(void *)op, &key, &val);
				}
				old_bufp->flags |= BUF_MOD;
			} else {
				/* Move to new page */
				if (PAIRFITS(np, (&key), (&val)))
					putpair((char *)(void *)np, &key, &val);
				else {
					new_bufp =
					    __add_ovflpage(hashp, new_bufp);
					if (!new_bufp)
						return (-1);
					np = (uint16_t *)(void *)new_bufp->page;
					putpair((char *)(void *)np, &key, &val);
				}
				new_bufp->flags |= BUF_MOD;
			}
		}
	}
	if (last_bfp)
		__free_ovflpage(hashp, last_bfp);
	return (0);
}
Exemple #3
0
static int
ugly_split(HTAB *hashp, uint32 obucket, BUFHEAD *old_bufp,
           BUFHEAD *new_bufp, /* Same as __split_page. */ int copyto, int moved)
/* int copyto;   First byte on page which contains key/data values. */
/* int moved;    Number of pairs moved to new page. */
{
    register BUFHEAD *bufp; /* Buffer header for ino */
    register uint16 *ino;   /* Page keys come off of */
    register uint16 *np;    /* New page */
    register uint16 *op;    /* Page keys go on to if they aren't moving */
    uint32 loop_detection = 0;

    BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */
    DBT key, val;
    SPLIT_RETURN ret;
    uint16 n, off, ov_addr, scopyto;
    char *cino; /* Character value of ino */
    int status;

    bufp = old_bufp;
    ino = (uint16 *)old_bufp->page;
    np = (uint16 *)new_bufp->page;
    op = (uint16 *)old_bufp->page;
    last_bfp = NULL;
    scopyto = (uint16)copyto; /* ANSI */

    n = ino[0] - 1;
    while (n < ino[0]) {

        /* this function goes nuts sometimes and never returns.
         * I havent found the problem yet but I need a solution
         * so if we loop too often we assume a database curruption error
         * :LJM
         */
        loop_detection++;

        if (loop_detection > MAX_UGLY_SPLIT_LOOPS)
            return DATABASE_CORRUPTED_ERROR;

        if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
            if ((status = __big_split(hashp, old_bufp,
                                      new_bufp, bufp, bufp->addr, obucket, &ret)))
                return (status);
            old_bufp = ret.oldp;
            if (!old_bufp)
                return (-1);
            op = (uint16 *)old_bufp->page;
            new_bufp = ret.newp;
            if (!new_bufp)
                return (-1);
            np = (uint16 *)new_bufp->page;
            bufp = ret.nextp;
            if (!bufp)
                return (0);
            cino = (char *)bufp->page;
            ino = (uint16 *)cino;
            last_bfp = ret.nextp;
        } else if (ino[n + 1] == OVFLPAGE) {
            ov_addr = ino[n];
            /*
             * Fix up the old page -- the extra 2 are the fields
             * which contained the overflow information.
             */
            ino[0] -= (moved + 2);
            FREESPACE(ino) =
                scopyto - sizeof(uint16) * (ino[0] + 3);
            OFFSET(ino) = scopyto;

            bufp = __get_buf(hashp, ov_addr, bufp, 0);
            if (!bufp)
                return (-1);

            ino = (uint16 *)bufp->page;
            n = 1;
            scopyto = hashp->BSIZE;
            moved = 0;

            if (last_bfp)
                __free_ovflpage(hashp, last_bfp);
            last_bfp = bufp;
        }
        /* Move regular sized pairs of there are any */
        off = hashp->BSIZE;
        for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
            cino = (char *)ino;
            key.data = (uint8 *)cino + ino[n];
            key.size = off - ino[n];
            val.data = (uint8 *)cino + ino[n + 1];
            val.size = ino[n] - ino[n + 1];
            off = ino[n + 1];

            if (__call_hash(hashp, (char *)key.data, key.size) == obucket) {
                /* Keep on old page */
                if (PAIRFITS(op, (&key), (&val)))
                    putpair((char *)op, &key, &val);
                else {
                    old_bufp =
                        __add_ovflpage(hashp, old_bufp);
                    if (!old_bufp)
                        return (-1);
                    op = (uint16 *)old_bufp->page;
                    putpair((char *)op, &key, &val);
                }
                old_bufp->flags |= BUF_MOD;
            } else {
                /* Move to new page */
                if (PAIRFITS(np, (&key), (&val)))
                    putpair((char *)np, &key, &val);
                else {
                    new_bufp =
                        __add_ovflpage(hashp, new_bufp);
                    if (!new_bufp)
                        return (-1);
                    np = (uint16 *)new_bufp->page;
                    putpair((char *)np, &key, &val);
                }
                new_bufp->flags |= BUF_MOD;
            }
        }
    }
    if (last_bfp)
        __free_ovflpage(hashp, last_bfp);
    return (0);
}