int pthread_mutex_init(pthread_mutex_t* mutex_interface, const pthread_mutexattr_t* attr) { pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); memset(mutex, 0, sizeof(pthread_mutex_internal_t)); if (__predict_true(attr == NULL)) { atomic_init(&mutex->state, MUTEX_TYPE_BITS_NORMAL); return 0; } uint16_t state = 0; if ((*attr & MUTEXATTR_SHARED_MASK) != 0) { state |= MUTEX_SHARED_MASK; } switch (*attr & MUTEXATTR_TYPE_MASK) { case PTHREAD_MUTEX_NORMAL: state |= MUTEX_TYPE_BITS_NORMAL; break; case PTHREAD_MUTEX_RECURSIVE: state |= MUTEX_TYPE_BITS_RECURSIVE; break; case PTHREAD_MUTEX_ERRORCHECK: state |= MUTEX_TYPE_BITS_ERRORCHECK; break; default: return EINVAL; } atomic_init(&mutex->state, state); atomic_init(&mutex->owner_tid, 0); return 0; }
int pthread_mutex_destroy(pthread_mutex_t* mutex_interface) { pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); // Store 0xffff to make the mutex unusable. Although POSIX standard says it is undefined // behavior to destroy a locked mutex, we prefer not to change mutex->state in that situation. if (MUTEX_STATE_BITS_IS_UNLOCKED(old_state) && atomic_compare_exchange_strong_explicit(&mutex->state, &old_state, 0xffff, memory_order_relaxed, memory_order_relaxed)) { return 0; } return EBUSY; }
extern "C" int pthread_mutex_lock_timeout_np(pthread_mutex_t* mutex_interface, unsigned ms) { timespec ts; timespec_from_ms(ts, ms); timespec abs_timeout; absolute_timespec_from_timespec(abs_timeout, ts, CLOCK_MONOTONIC); int error = __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface), false, &abs_timeout); if (error == ETIMEDOUT) { error = EBUSY; } return error; }
int pthread_mutex_unlock(pthread_mutex_t* mutex_interface) { #if !defined(__LP64__) // Some apps depend on being able to pass NULL as a mutex and get EINVAL // back. Don't need to worry about it for LP64 since the ABI is brand new, // but keep compatibility for LP32. http://b/19995172. if (mutex_interface == NULL) { return EINVAL; } #endif pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); uint16_t mtype = (old_state & MUTEX_TYPE_MASK); uint16_t shared = (old_state & MUTEX_SHARED_MASK); // Handle common case first. if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { __pthread_normal_mutex_unlock(mutex, shared); return 0; } // Do we already own this recursive or error-check mutex? pid_t tid = __get_thread()->tid; if ( tid != atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed) ) { return EPERM; } // If the counter is > 0, we can simply decrement it atomically. // Since other threads can mutate the lower state bits (and only the // lower state bits), use a compare_exchange loop to do it. if (!MUTEX_COUNTER_BITS_IS_ZERO(old_state)) { // We still own the mutex, so a release fence is not needed. atomic_fetch_sub_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed); return 0; } // The counter is 0, so we'are going to unlock the mutex by resetting its // state to unlocked, we need to perform a atomic_exchange inorder to read // the current state, which will be locked_contended if there may have waiters // to awake. // A release fence is required to make previous stores visible to next // lock owner threads. atomic_store_explicit(&mutex->owner_tid, 0, memory_order_relaxed); const uint16_t unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED; old_state = atomic_exchange_explicit(&mutex->state, unlocked, memory_order_release); if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(old_state)) { __futex_wake_ex(&mutex->state, shared, 1); } return 0; }
int pthread_mutex_lock(pthread_mutex_t* mutex_interface) { pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); uint16_t mtype = (old_state & MUTEX_TYPE_MASK); uint16_t shared = (old_state & MUTEX_SHARED_MASK); // Avoid slowing down fast path of normal mutex lock operation. if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { if (__predict_true(__pthread_normal_mutex_trylock(mutex, shared) == 0)) { return 0; } } return __pthread_mutex_lock_with_timeout(mutex, NULL, 0); }
extern "C" int pthread_mutex_lock_timeout_np(pthread_mutex_t* mutex_interface, unsigned ms) { timespec abs_timeout; clock_gettime(CLOCK_MONOTONIC, &abs_timeout); abs_timeout.tv_sec += ms / 1000; abs_timeout.tv_nsec += (ms % 1000) * 1000000; if (abs_timeout.tv_nsec >= NS_PER_S) { abs_timeout.tv_sec++; abs_timeout.tv_nsec -= NS_PER_S; } int error = __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface), &abs_timeout, CLOCK_MONOTONIC); if (error == ETIMEDOUT) { error = EBUSY; } return error; }
int pthread_mutex_trylock(pthread_mutex_t* mutex_interface) { pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); uint16_t mtype = (old_state & MUTEX_TYPE_MASK); uint16_t shared = (old_state & MUTEX_SHARED_MASK); const uint16_t unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED; const uint16_t locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; // Handle common case first. if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { return __pthread_normal_mutex_trylock(mutex, shared); } // Do we already own this recursive or error-check mutex? pid_t tid = __get_thread()->tid; if (tid == atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)) { if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) { return EBUSY; } return __recursive_increment(mutex, old_state); } // Same as pthread_mutex_lock, except that we don't want to wait, and // the only operation that can succeed is a single compare_exchange to acquire the // lock if it is released / not owned by anyone. No need for a complex loop. // If exchanged successfully, an acquire fence is required to make // all memory accesses made by other threads visible to the current CPU. old_state = unlocked; if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state, locked_uncontended, memory_order_acquire, memory_order_relaxed))) { atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed); return 0; } return EBUSY; }
int pthread_mutex_lock(pthread_mutex_t* mutex_interface) { #if !defined(__LP64__) // Some apps depend on being able to pass NULL as a mutex and get EINVAL // back. Don't need to worry about it for LP64 since the ABI is brand new, // but keep compatibility for LP32. http://b/19995172. if (mutex_interface == NULL) { return EINVAL; } #endif pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); uint16_t mtype = (old_state & MUTEX_TYPE_MASK); uint16_t shared = (old_state & MUTEX_SHARED_MASK); // Avoid slowing down fast path of normal mutex lock operation. if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { if (__predict_true(__pthread_normal_mutex_trylock(mutex, shared) == 0)) { return 0; } } return __pthread_mutex_lock_with_timeout(mutex, false, nullptr); }
int pthread_mutex_timedlock(pthread_mutex_t* mutex_interface, const timespec* abs_timeout) { return __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface), true, abs_timeout); }