static inline cairo_int128_t
det64x32_128 (cairo_int64_t a, int32_t       b,
	      cairo_int64_t c, int32_t       d)
{
    /* det = a * d - b * c */
    return _cairo_int128_sub (_cairo_int64x32_128_mul (a, d),
			      _cairo_int64x32_128_mul (c, b));
}
Exemple #2
0
static const cairo_fixed_64_64_t
_det32_64 (cairo_fixed_32_32_t a,
	   cairo_fixed_32_32_t b,
	   cairo_fixed_32_32_t c,
	   cairo_fixed_32_32_t d)
{
    return _cairo_int128_sub (_cairo_int64x64_128_mul (a, d),
			      _cairo_int64x64_128_mul (b, c));
}
/*
 * We need to compare the x-coordinates of a pair of lines for a particular y,
 * without loss of precision.
 *
 * The x-coordinate along an edge for a given y is:
 *   X = A_x + (Y - A_y) * A_dx / A_dy
 *
 * So the inequality we wish to test is:
 *   A_x + (Y - A_y) * A_dx / A_dy ∘ B_x + (Y - B_y) * B_dx / B_dy,
 * where ∘ is our inequality operator.
 *
 * By construction, we know that A_dy and B_dy (and (Y - A_y), (Y - B_y)) are
 * all positive, so we can rearrange it thus without causing a sign change:
 *   A_dy * B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx * A_dy
 *                                 - (Y - A_y) * A_dx * B_dy
 *
 * Given the assumption that all the deltas fit within 32 bits, we can compute
 * this comparison directly using 128 bit arithmetic. For certain, but common,
 * input we can reduce this down to a single 32 bit compare by inspecting the
 * deltas.
 *
 * (And put the burden of the work on developing fast 128 bit ops, which are
 * required throughout the tessellator.)
 *
 * See the similar discussion for _slope_compare().
 */
static int
edges_compare_x_for_y_general (const cairo_bo_edge_t *a,
			       const cairo_bo_edge_t *b,
			       int32_t y)
{
    /* XXX: We're assuming here that dx and dy will still fit in 32
     * bits. That's not true in general as there could be overflow. We
     * should prevent that before the tessellation algorithm
     * begins.
     */
    int32_t dx;
    int32_t adx, ady;
    int32_t bdx, bdy;
    enum {
       HAVE_NONE    = 0x0,
       HAVE_DX      = 0x1,
       HAVE_ADX     = 0x2,
       HAVE_DX_ADX  = HAVE_DX | HAVE_ADX,
       HAVE_BDX     = 0x4,
       HAVE_DX_BDX  = HAVE_DX | HAVE_BDX,
       HAVE_ADX_BDX = HAVE_ADX | HAVE_BDX,
       HAVE_ALL     = HAVE_DX | HAVE_ADX | HAVE_BDX
    } have_dx_adx_bdx = HAVE_ALL;

    /* don't bother solving for abscissa if the edges' bounding boxes
     * can be used to order them. */
    {
           int32_t amin, amax;
           int32_t bmin, bmax;
           if (a->edge.line.p1.x < a->edge.line.p2.x) {
                   amin = a->edge.line.p1.x;
                   amax = a->edge.line.p2.x;
           } else {
                   amin = a->edge.line.p2.x;
                   amax = a->edge.line.p1.x;
           }
           if (b->edge.line.p1.x < b->edge.line.p2.x) {
                   bmin = b->edge.line.p1.x;
                   bmax = b->edge.line.p2.x;
           } else {
                   bmin = b->edge.line.p2.x;
                   bmax = b->edge.line.p1.x;
           }
           if (amax < bmin) return -1;
           if (amin > bmax) return +1;
    }

    ady = a->edge.line.p2.y - a->edge.line.p1.y;
    adx = a->edge.line.p2.x - a->edge.line.p1.x;
    if (adx == 0)
	have_dx_adx_bdx &= ~HAVE_ADX;

    bdy = b->edge.line.p2.y - b->edge.line.p1.y;
    bdx = b->edge.line.p2.x - b->edge.line.p1.x;
    if (bdx == 0)
	have_dx_adx_bdx &= ~HAVE_BDX;

    dx = a->edge.line.p1.x - b->edge.line.p1.x;
    if (dx == 0)
	have_dx_adx_bdx &= ~HAVE_DX;

#define L _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (ady, bdy), dx)
#define A _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (adx, bdy), y - a->edge.line.p1.y)
#define B _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (bdx, ady), y - b->edge.line.p1.y)
    switch (have_dx_adx_bdx) {
    default:
    case HAVE_NONE:
	return 0;
    case HAVE_DX:
	/* A_dy * B_dy * (A_x - B_x) ∘ 0 */
	return dx; /* ady * bdy is positive definite */
    case HAVE_ADX:
	/* 0 ∘  - (Y - A_y) * A_dx * B_dy */
	return adx; /* bdy * (y - a->top.y) is positive definite */
    case HAVE_BDX:
	/* 0 ∘ (Y - B_y) * B_dx * A_dy */
	return -bdx; /* ady * (y - b->top.y) is positive definite */
    case HAVE_ADX_BDX:
	/*  0 ∘ (Y - B_y) * B_dx * A_dy - (Y - A_y) * A_dx * B_dy */
	if ((adx ^ bdx) < 0) {
	    return adx;
	} else if (a->edge.line.p1.y == b->edge.line.p1.y) { /* common origin */
	    cairo_int64_t adx_bdy, bdx_ady;

	    /* ∴ A_dx * B_dy ∘ B_dx * A_dy */

	    adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
	    bdx_ady = _cairo_int32x32_64_mul (bdx, ady);

	    return _cairo_int64_cmp (adx_bdy, bdx_ady);
	} else
	    return _cairo_int128_cmp (A, B);
    case HAVE_DX_ADX:
	/* A_dy * (A_x - B_x) ∘ - (Y - A_y) * A_dx */
	if ((-adx ^ dx) < 0) {
	    return dx;
	} else {
	    cairo_int64_t ady_dx, dy_adx;

	    ady_dx = _cairo_int32x32_64_mul (ady, dx);
	    dy_adx = _cairo_int32x32_64_mul (a->edge.line.p1.y - y, adx);

	    return _cairo_int64_cmp (ady_dx, dy_adx);
	}
    case HAVE_DX_BDX:
	/* B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx */
	if ((bdx ^ dx) < 0) {
	    return dx;
	} else {
	    cairo_int64_t bdy_dx, dy_bdx;

	    bdy_dx = _cairo_int32x32_64_mul (bdy, dx);
	    dy_bdx = _cairo_int32x32_64_mul (y - b->edge.line.p1.y, bdx);

	    return _cairo_int64_cmp (bdy_dx, dy_bdx);
	}
    case HAVE_ALL:
	/* XXX try comparing (a->edge.line.p2.x - b->edge.line.p2.x) et al */
	return _cairo_int128_cmp (L, _cairo_int128_sub (B, A));
    }
#undef B
#undef A
#undef L
}