static inline cairo_int128_t det64x32_128 (cairo_int64_t a, int32_t b, cairo_int64_t c, int32_t d) { /* det = a * d - b * c */ return _cairo_int128_sub (_cairo_int64x32_128_mul (a, d), _cairo_int64x32_128_mul (c, b)); }
static const cairo_fixed_64_64_t _det32_64 (cairo_fixed_32_32_t a, cairo_fixed_32_32_t b, cairo_fixed_32_32_t c, cairo_fixed_32_32_t d) { return _cairo_int128_sub (_cairo_int64x64_128_mul (a, d), _cairo_int64x64_128_mul (b, c)); }
/* * We need to compare the x-coordinates of a pair of lines for a particular y, * without loss of precision. * * The x-coordinate along an edge for a given y is: * X = A_x + (Y - A_y) * A_dx / A_dy * * So the inequality we wish to test is: * A_x + (Y - A_y) * A_dx / A_dy ∘ B_x + (Y - B_y) * B_dx / B_dy, * where ∘ is our inequality operator. * * By construction, we know that A_dy and B_dy (and (Y - A_y), (Y - B_y)) are * all positive, so we can rearrange it thus without causing a sign change: * A_dy * B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx * A_dy * - (Y - A_y) * A_dx * B_dy * * Given the assumption that all the deltas fit within 32 bits, we can compute * this comparison directly using 128 bit arithmetic. For certain, but common, * input we can reduce this down to a single 32 bit compare by inspecting the * deltas. * * (And put the burden of the work on developing fast 128 bit ops, which are * required throughout the tessellator.) * * See the similar discussion for _slope_compare(). */ static int edges_compare_x_for_y_general (const cairo_bo_edge_t *a, const cairo_bo_edge_t *b, int32_t y) { /* XXX: We're assuming here that dx and dy will still fit in 32 * bits. That's not true in general as there could be overflow. We * should prevent that before the tessellation algorithm * begins. */ int32_t dx; int32_t adx, ady; int32_t bdx, bdy; enum { HAVE_NONE = 0x0, HAVE_DX = 0x1, HAVE_ADX = 0x2, HAVE_DX_ADX = HAVE_DX | HAVE_ADX, HAVE_BDX = 0x4, HAVE_DX_BDX = HAVE_DX | HAVE_BDX, HAVE_ADX_BDX = HAVE_ADX | HAVE_BDX, HAVE_ALL = HAVE_DX | HAVE_ADX | HAVE_BDX } have_dx_adx_bdx = HAVE_ALL; /* don't bother solving for abscissa if the edges' bounding boxes * can be used to order them. */ { int32_t amin, amax; int32_t bmin, bmax; if (a->edge.line.p1.x < a->edge.line.p2.x) { amin = a->edge.line.p1.x; amax = a->edge.line.p2.x; } else { amin = a->edge.line.p2.x; amax = a->edge.line.p1.x; } if (b->edge.line.p1.x < b->edge.line.p2.x) { bmin = b->edge.line.p1.x; bmax = b->edge.line.p2.x; } else { bmin = b->edge.line.p2.x; bmax = b->edge.line.p1.x; } if (amax < bmin) return -1; if (amin > bmax) return +1; } ady = a->edge.line.p2.y - a->edge.line.p1.y; adx = a->edge.line.p2.x - a->edge.line.p1.x; if (adx == 0) have_dx_adx_bdx &= ~HAVE_ADX; bdy = b->edge.line.p2.y - b->edge.line.p1.y; bdx = b->edge.line.p2.x - b->edge.line.p1.x; if (bdx == 0) have_dx_adx_bdx &= ~HAVE_BDX; dx = a->edge.line.p1.x - b->edge.line.p1.x; if (dx == 0) have_dx_adx_bdx &= ~HAVE_DX; #define L _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (ady, bdy), dx) #define A _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (adx, bdy), y - a->edge.line.p1.y) #define B _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (bdx, ady), y - b->edge.line.p1.y) switch (have_dx_adx_bdx) { default: case HAVE_NONE: return 0; case HAVE_DX: /* A_dy * B_dy * (A_x - B_x) ∘ 0 */ return dx; /* ady * bdy is positive definite */ case HAVE_ADX: /* 0 ∘ - (Y - A_y) * A_dx * B_dy */ return adx; /* bdy * (y - a->top.y) is positive definite */ case HAVE_BDX: /* 0 ∘ (Y - B_y) * B_dx * A_dy */ return -bdx; /* ady * (y - b->top.y) is positive definite */ case HAVE_ADX_BDX: /* 0 ∘ (Y - B_y) * B_dx * A_dy - (Y - A_y) * A_dx * B_dy */ if ((adx ^ bdx) < 0) { return adx; } else if (a->edge.line.p1.y == b->edge.line.p1.y) { /* common origin */ cairo_int64_t adx_bdy, bdx_ady; /* ∴ A_dx * B_dy ∘ B_dx * A_dy */ adx_bdy = _cairo_int32x32_64_mul (adx, bdy); bdx_ady = _cairo_int32x32_64_mul (bdx, ady); return _cairo_int64_cmp (adx_bdy, bdx_ady); } else return _cairo_int128_cmp (A, B); case HAVE_DX_ADX: /* A_dy * (A_x - B_x) ∘ - (Y - A_y) * A_dx */ if ((-adx ^ dx) < 0) { return dx; } else { cairo_int64_t ady_dx, dy_adx; ady_dx = _cairo_int32x32_64_mul (ady, dx); dy_adx = _cairo_int32x32_64_mul (a->edge.line.p1.y - y, adx); return _cairo_int64_cmp (ady_dx, dy_adx); } case HAVE_DX_BDX: /* B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx */ if ((bdx ^ dx) < 0) { return dx; } else { cairo_int64_t bdy_dx, dy_bdx; bdy_dx = _cairo_int32x32_64_mul (bdy, dx); dy_bdx = _cairo_int32x32_64_mul (y - b->edge.line.p1.y, bdx); return _cairo_int64_cmp (bdy_dx, dy_bdx); } case HAVE_ALL: /* XXX try comparing (a->edge.line.p2.x - b->edge.line.p2.x) et al */ return _cairo_int128_cmp (L, _cairo_int128_sub (B, A)); } #undef B #undef A #undef L }