/* * Extract malloc(9) statistics from the running kernel, and store all memory * type information in the passed list. For each type, check the list for an * existing entry with the right name/allocator -- if present, update that * entry. Otherwise, add a new entry. On error, the entire list will be * cleared, as entries will be in an inconsistent state. * * To reduce the level of work for a list that starts empty, we keep around a * hint as to whether it was empty when we began, so we can avoid searching * the list for entries to update. Updates are O(n^2) due to searching for * each entry before adding it. */ int memstat_sysctl_malloc(struct memory_type_list *list, int flags) { struct malloc_type_stream_header *mtshp; struct malloc_type_header *mthp; struct malloc_type_stats *mtsp; struct memory_type *mtp; int count, hint_dontsearch, i, j, maxcpus; char *buffer, *p; size_t size; hint_dontsearch = LIST_EMPTY(&list->mtl_list); /* * Query the number of CPUs, number of malloc types so that we can * guess an initial buffer size. We loop until we succeed or really * fail. Note that the value of maxcpus we query using sysctl is not * the version we use when processing the real data -- that is read * from the header. */ retry: size = sizeof(maxcpus); if (sysctlbyname("kern.smp.maxcpus", &maxcpus, &size, NULL, 0) < 0) { if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } if (size != sizeof(maxcpus)) { list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } size = sizeof(count); if (sysctlbyname("kern.malloc_count", &count, &size, NULL, 0) < 0) { if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_VERSION; return (-1); } if (size != sizeof(count)) { list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } size = sizeof(*mthp) + count * (sizeof(*mthp) + sizeof(*mtsp) * maxcpus); buffer = malloc(size); if (buffer == NULL) { list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } if (sysctlbyname("kern.malloc_stats", buffer, &size, NULL, 0) < 0) { /* * XXXRW: ENOMEM is an ambiguous return, we should bound the * number of loops, perhaps. */ if (errno == ENOMEM) { free(buffer); goto retry; } if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } if (size == 0) { free(buffer); return (0); } if (size < sizeof(*mtshp)) { list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } p = buffer; mtshp = (struct malloc_type_stream_header *)p; p += sizeof(*mtshp); if (mtshp->mtsh_version != MALLOC_TYPE_STREAM_VERSION) { list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } /* * For the remainder of this function, we are quite trusting about * the layout of structures and sizes, since we've determined we have * a matching version and acceptable CPU count. */ maxcpus = mtshp->mtsh_maxcpus; count = mtshp->mtsh_count; for (i = 0; i < count; i++) { mthp = (struct malloc_type_header *)p; p += sizeof(*mthp); if (hint_dontsearch == 0) { mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC, mthp->mth_name); } else mtp = NULL; if (mtp == NULL) mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC, mthp->mth_name, maxcpus); if (mtp == NULL) { _memstat_mtl_empty(list); free(buffer); list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } /* * Reset the statistics on a current node. */ _memstat_mt_reset_stats(mtp, maxcpus); for (j = 0; j < maxcpus; j++) { mtsp = (struct malloc_type_stats *)p; p += sizeof(*mtsp); /* * Sumarize raw statistics across CPUs into coalesced * statistics. */ mtp->mt_memalloced += mtsp->mts_memalloced; mtp->mt_memfreed += mtsp->mts_memfreed; mtp->mt_numallocs += mtsp->mts_numallocs; mtp->mt_numfrees += mtsp->mts_numfrees; mtp->mt_sizemask |= mtsp->mts_size; /* * Copies of per-CPU statistics. */ mtp->mt_percpu_alloc[j].mtp_memalloced = mtsp->mts_memalloced; mtp->mt_percpu_alloc[j].mtp_memfreed = mtsp->mts_memfreed; mtp->mt_percpu_alloc[j].mtp_numallocs = mtsp->mts_numallocs; mtp->mt_percpu_alloc[j].mtp_numfrees = mtsp->mts_numfrees; mtp->mt_percpu_alloc[j].mtp_sizemask = mtsp->mts_size; } /* * Derived cross-CPU statistics. */ mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed; mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees; } free(buffer); return (0); }
/* * Extract uma(9) statistics from the running kernel, and store all memory * type information in the passed list. For each type, check the list for an * existing entry with the right name/allocator -- if present, update that * entry. Otherwise, add a new entry. On error, the entire list will be * cleared, as entries will be in an inconsistent state. * * To reduce the level of work for a list that starts empty, we keep around a * hint as to whether it was empty when we began, so we can avoid searching * the list for entries to update. Updates are O(n^2) due to searching for * each entry before adding it. */ int memstat_sysctl_uma(struct memory_type_list *list, int flags) { struct uma_stream_header *ushp; struct uma_type_header *uthp; struct uma_percpu_stat *upsp; struct memory_type *mtp; int count, hint_dontsearch, i, j, maxcpus, maxid; char *buffer, *p; size_t size; hint_dontsearch = LIST_EMPTY(&list->mtl_list); /* * Query the number of CPUs, number of malloc types so that we can * guess an initial buffer size. We loop until we succeed or really * fail. Note that the value of maxcpus we query using sysctl is not * the version we use when processing the real data -- that is read * from the header. */ retry: size = sizeof(maxid); if (sysctlbyname("kern.smp.maxid", &maxid, &size, NULL, 0) < 0) { if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } if (size != sizeof(maxid)) { list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } size = sizeof(count); if (sysctlbyname("vm.zone_count", &count, &size, NULL, 0) < 0) { if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_VERSION; return (-1); } if (size != sizeof(count)) { list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } size = sizeof(*uthp) + count * (sizeof(*uthp) + sizeof(*upsp) * (maxid + 1)); buffer = malloc(size); if (buffer == NULL) { list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } if (sysctlbyname("vm.zone_stats", buffer, &size, NULL, 0) < 0) { /* * XXXRW: ENOMEM is an ambiguous return, we should bound the * number of loops, perhaps. */ if (errno == ENOMEM) { free(buffer); goto retry; } if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } if (size == 0) { free(buffer); return (0); } if (size < sizeof(*ushp)) { list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } p = buffer; ushp = (struct uma_stream_header *)p; p += sizeof(*ushp); if (ushp->ush_version != UMA_STREAM_VERSION) { list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } /* * For the remainder of this function, we are quite trusting about * the layout of structures and sizes, since we've determined we have * a matching version and acceptable CPU count. */ maxcpus = ushp->ush_maxcpus; count = ushp->ush_count; for (i = 0; i < count; i++) { uthp = (struct uma_type_header *)p; p += sizeof(*uthp); if (hint_dontsearch == 0) { mtp = memstat_mtl_find(list, ALLOCATOR_UMA, uthp->uth_name); } else mtp = NULL; if (mtp == NULL) mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA, uthp->uth_name, maxid + 1); if (mtp == NULL) { _memstat_mtl_empty(list); free(buffer); list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } /* * Reset the statistics on a current node. */ _memstat_mt_reset_stats(mtp, maxid + 1); mtp->mt_numallocs = uthp->uth_allocs; mtp->mt_numfrees = uthp->uth_frees; mtp->mt_failures = uthp->uth_fails; mtp->mt_sleeps = uthp->uth_sleeps; for (j = 0; j < maxcpus; j++) { upsp = (struct uma_percpu_stat *)p; p += sizeof(*upsp); mtp->mt_percpu_cache[j].mtp_free = upsp->ups_cache_free; mtp->mt_free += upsp->ups_cache_free; mtp->mt_numallocs += upsp->ups_allocs; mtp->mt_numfrees += upsp->ups_frees; } mtp->mt_size = uthp->uth_size; mtp->mt_memalloced = mtp->mt_numallocs * uthp->uth_size; mtp->mt_memfreed = mtp->mt_numfrees * uthp->uth_size; mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed; mtp->mt_countlimit = uthp->uth_limit; mtp->mt_byteslimit = uthp->uth_limit * uthp->uth_size; mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees; mtp->mt_zonefree = uthp->uth_zone_free; /* * UMA secondary zones share a keg with the primary zone. To * avoid double-reporting of free items, report keg free * items only in the primary zone. */ if (!(uthp->uth_zone_flags & UTH_ZONE_SECONDARY)) { mtp->mt_kegfree = uthp->uth_keg_free; mtp->mt_free += mtp->mt_kegfree; } mtp->mt_free += mtp->mt_zonefree; } free(buffer); return (0); }
int memstat_kvm_malloc(struct memory_type_list *list, void *kvm_handle) { struct memory_type *mtp; void *kmemstatistics; int hint_dontsearch, j, mp_maxcpus, ret; char name[MEMTYPE_MAXNAME]; struct malloc_type_stats *mts, *mtsp; struct malloc_type_internal *mtip; struct malloc_type type, *typep; kvm_t *kvm; kvm = (kvm_t *)kvm_handle; hint_dontsearch = LIST_EMPTY(&list->mtl_list); if (kvm_nlist(kvm, namelist) != 0) { list->mtl_error = MEMSTAT_ERROR_KVM; return (-1); } if (namelist[X_KMEMSTATISTICS].n_type == 0 || namelist[X_KMEMSTATISTICS].n_value == 0) { list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL; return (-1); } ret = kread_symbol(kvm, X_MP_MAXCPUS, &mp_maxcpus, sizeof(mp_maxcpus), 0); if (ret != 0) { list->mtl_error = ret; return (-1); } ret = kread_symbol(kvm, X_KMEMSTATISTICS, &kmemstatistics, sizeof(kmemstatistics), 0); if (ret != 0) { list->mtl_error = ret; return (-1); } mts = malloc(sizeof(struct malloc_type_stats) * mp_maxcpus); if (mts == NULL) { list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } for (typep = kmemstatistics; typep != NULL; typep = type.ks_next) { ret = kread(kvm, typep, &type, sizeof(type), 0); if (ret != 0) { _memstat_mtl_empty(list); free(mts); list->mtl_error = ret; return (-1); } ret = kread_string(kvm, (void *)type.ks_shortdesc, name, MEMTYPE_MAXNAME); if (ret != 0) { _memstat_mtl_empty(list); free(mts); list->mtl_error = ret; return (-1); } /* * Since our compile-time value for MAXCPU may differ from the * kernel's, we populate our own array. */ mtip = type.ks_handle; ret = kread(kvm, mtip->mti_stats, mts, mp_maxcpus * sizeof(struct malloc_type_stats), 0); if (ret != 0) { _memstat_mtl_empty(list); free(mts); list->mtl_error = ret; return (-1); } if (hint_dontsearch == 0) { mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC, name); } else mtp = NULL; if (mtp == NULL) mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC, name, mp_maxcpus); if (mtp == NULL) { _memstat_mtl_empty(list); free(mts); list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } /* * This logic is replicated from kern_malloc.c, and should * be kept in sync. */ _memstat_mt_reset_stats(mtp, mp_maxcpus); for (j = 0; j < mp_maxcpus; j++) { mtsp = &mts[j]; mtp->mt_memalloced += mtsp->mts_memalloced; mtp->mt_memfreed += mtsp->mts_memfreed; mtp->mt_numallocs += mtsp->mts_numallocs; mtp->mt_numfrees += mtsp->mts_numfrees; mtp->mt_sizemask |= mtsp->mts_size; mtp->mt_percpu_alloc[j].mtp_memalloced = mtsp->mts_memalloced; mtp->mt_percpu_alloc[j].mtp_memfreed = mtsp->mts_memfreed; mtp->mt_percpu_alloc[j].mtp_numallocs = mtsp->mts_numallocs; mtp->mt_percpu_alloc[j].mtp_numfrees = mtsp->mts_numfrees; mtp->mt_percpu_alloc[j].mtp_sizemask = mtsp->mts_size; } mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed; mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees; } return (0); }