Exemple #1
0
/**
 * Run fragment program on the pixels in span from 'start' to 'end' - 1.
 */
static void
run_program(struct gl_context *ctx, SWspan *span, GLuint start, GLuint end)
{
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
   const struct gl_fragment_program *program = ctx->FragmentProgram._Current;
   const GLbitfield64 outputsWritten = program->Base.OutputsWritten;
   struct gl_program_machine *machine = &swrast->FragProgMachine;
   GLuint i;

   for (i = start; i < end; i++) {
      if (span->array->mask[i]) {
         init_machine(ctx, machine, program, span, i);

         if (_mesa_execute_program(ctx, &program->Base, machine)) {

            /* Store result color */
	    if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_COLOR)) {
               COPY_4V(span->array->attribs[FRAG_ATTRIB_COL0][i],
                       machine->Outputs[FRAG_RESULT_COLOR]);
            }
            else {
               /* Multiple drawbuffers / render targets
                * Note that colors beyond 0 and 1 will overwrite other
                * attributes, such as FOGC, TEX0, TEX1, etc.  That's OK.
                */
               GLuint buf;
               for (buf = 0; buf < ctx->DrawBuffer->_NumColorDrawBuffers; buf++) {
                  if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DATA0 + buf)) {
                     COPY_4V(span->array->attribs[FRAG_ATTRIB_COL0 + buf][i],
                             machine->Outputs[FRAG_RESULT_DATA0 + buf]);
                  }
               }
            }

            /* Store result depth/z */
            if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
               const GLfloat depth = machine->Outputs[FRAG_RESULT_DEPTH][2];
               if (depth <= 0.0)
                  span->array->z[i] = 0;
               else if (depth >= 1.0)
                  span->array->z[i] = ctx->DrawBuffer->_DepthMax;
               else
                  span->array->z[i] =
                     (GLuint) (depth * ctx->DrawBuffer->_DepthMaxF + 0.5F);
            }
         }
         else {
            /* killed fragment */
            span->array->mask[i] = GL_FALSE;
            span->writeAll = GL_FALSE;
         }
      }
   }
}
Exemple #2
0
/**
 * This function executes vertex programs
 */
static GLboolean
run_vp( struct gl_context *ctx, struct tnl_pipeline_stage *stage )
{
   TNLcontext *tnl = TNL_CONTEXT(ctx);
   struct vp_stage_data *store = VP_STAGE_DATA(stage);
   struct vertex_buffer *VB = &tnl->vb;
   struct gl_vertex_program *program = ctx->VertexProgram._Current;
   struct gl_program_machine *machine = &store->machine;
   GLuint outputs[VARYING_SLOT_MAX], numOutputs;
   GLuint i, j;

   if (!program)
      return GL_TRUE;

   /* ARB program or vertex shader */
   _mesa_load_state_parameters(ctx, program->Base.Parameters);

   /* make list of outputs to save some time below */
   numOutputs = 0;
   for (i = 0; i < VARYING_SLOT_MAX; i++) {
      if (program->Base.OutputsWritten & BITFIELD64_BIT(i)) {
         outputs[numOutputs++] = i;
      }
   }

   /* Allocate result vectors.  We delay this until now to avoid allocating
    * memory that would never be used if we don't run the software tnl pipeline.
    */
   if (!store->results[0].storage) {
      for (i = 0; i < VARYING_SLOT_MAX; i++) {
         assert(!store->results[i].storage);
         _mesa_vector4f_alloc( &store->results[i], 0, VB->Size, 32 );
         store->results[i].size = 4;
      }
   }

   map_textures(ctx, program);

   for (i = 0; i < VB->Count; i++) {
      GLuint attr;

      init_machine(ctx, machine, tnl->CurInstance);

#if 0
      printf("Input  %d: %f, %f, %f, %f\n", i,
             VB->AttribPtr[0]->data[i][0],
             VB->AttribPtr[0]->data[i][1],
             VB->AttribPtr[0]->data[i][2],
             VB->AttribPtr[0]->data[i][3]);
      printf("   color: %f, %f, %f, %f\n",
             VB->AttribPtr[3]->data[i][0],
             VB->AttribPtr[3]->data[i][1],
             VB->AttribPtr[3]->data[i][2],
             VB->AttribPtr[3]->data[i][3]);
      printf("  normal: %f, %f, %f, %f\n",
             VB->AttribPtr[2]->data[i][0],
             VB->AttribPtr[2]->data[i][1],
             VB->AttribPtr[2]->data[i][2],
             VB->AttribPtr[2]->data[i][3]);
#endif

      /* the vertex array case */
      for (attr = 0; attr < VERT_ATTRIB_MAX; attr++) {
	 if (program->Base.InputsRead & BITFIELD64_BIT(attr)) {
	    const GLubyte *ptr = (const GLubyte*) VB->AttribPtr[attr]->data;
	    const GLuint size = VB->AttribPtr[attr]->size;
	    const GLuint stride = VB->AttribPtr[attr]->stride;
	    const GLfloat *data = (GLfloat *) (ptr + stride * i);
#ifdef NAN_CHECK
            check_float(data[0]);
            check_float(data[1]);
            check_float(data[2]);
            check_float(data[3]);
#endif
	    COPY_CLEAN_4V(machine->VertAttribs[attr], size, data);
	 }
      }

      /* execute the program */
      _mesa_execute_program(ctx, &program->Base, machine);

      /* copy the output registers into the VB->attribs arrays */
      for (j = 0; j < numOutputs; j++) {
         const GLuint attr = outputs[j];
#ifdef NAN_CHECK
         check_float(machine->Outputs[attr][0]);
         check_float(machine->Outputs[attr][1]);
         check_float(machine->Outputs[attr][2]);
         check_float(machine->Outputs[attr][3]);
#endif
         COPY_4V(store->results[attr].data[i], machine->Outputs[attr]);
      }

      /* FOGC is a special case.  Fragment shader expects (f,0,0,1) */
      if (program->Base.OutputsWritten & BITFIELD64_BIT(VARYING_SLOT_FOGC)) {
         store->results[VARYING_SLOT_FOGC].data[i][1] = 0.0;
         store->results[VARYING_SLOT_FOGC].data[i][2] = 0.0;
         store->results[VARYING_SLOT_FOGC].data[i][3] = 1.0;
      }
#ifdef NAN_CHECK
      ASSERT(machine->Outputs[0][3] != 0.0F);
#endif
#if 0
      printf("HPOS: %f %f %f %f\n",
             machine->Outputs[0][0], 
             machine->Outputs[0][1], 
             machine->Outputs[0][2], 
             machine->Outputs[0][3]);
#endif
   }

   unmap_textures(ctx, program);

   if (program->IsPositionInvariant) {
      /* We need the exact same transform as in the fixed function path here
       * to guarantee invariance, depending on compiler optimization flags
       * results could be different otherwise.
       */
      VB->ClipPtr = TransformRaw( &store->results[0],
				  &ctx->_ModelProjectMatrix,
				  VB->AttribPtr[0] );

      /* Drivers expect this to be clean to element 4...
       */
      switch (VB->ClipPtr->size) {
      case 1:
	 /* impossible */
      case 2:
	 _mesa_vector4f_clean_elem( VB->ClipPtr, VB->Count, 2 );
	 /* fall-through */
      case 3:
	 _mesa_vector4f_clean_elem( VB->ClipPtr, VB->Count, 3 );
	 /* fall-through */
      case 4:
	 break;
      }
   }
   else {
      /* Setup the VB pointers so that the next pipeline stages get
       * their data from the right place (the program output arrays).
       */
      VB->ClipPtr = &store->results[VARYING_SLOT_POS];
      VB->ClipPtr->size = 4;
      VB->ClipPtr->count = VB->Count;
   }

   VB->AttribPtr[VERT_ATTRIB_COLOR0] = &store->results[VARYING_SLOT_COL0];
   VB->AttribPtr[VERT_ATTRIB_COLOR1] = &store->results[VARYING_SLOT_COL1];
   VB->AttribPtr[VERT_ATTRIB_FOG] = &store->results[VARYING_SLOT_FOGC];
   VB->AttribPtr[_TNL_ATTRIB_POINTSIZE] = &store->results[VARYING_SLOT_PSIZ];
   VB->BackfaceColorPtr = &store->results[VARYING_SLOT_BFC0];
   VB->BackfaceSecondaryColorPtr = &store->results[VARYING_SLOT_BFC1];

   for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
      VB->AttribPtr[_TNL_ATTRIB_TEX0 + i]
         = &store->results[VARYING_SLOT_TEX0 + i];
   }

   for (i = 0; i < ctx->Const.MaxVarying; i++) {
      if (program->Base.OutputsWritten & BITFIELD64_BIT(VARYING_SLOT_VAR0 + i)) {
         /* Note: varying results get put into the generic attributes */
	 VB->AttribPtr[VERT_ATTRIB_GENERIC0+i]
            = &store->results[VARYING_SLOT_VAR0 + i];
      }
   }


   /* Perform NDC and cliptest operations:
    */
   return do_ndc_cliptest(ctx, store);
}
Exemple #3
0
/**
 * This function executes vertex programs
 */
static GLboolean
run_vp( GLcontext *ctx, struct tnl_pipeline_stage *stage )
{
   TNLcontext *tnl = TNL_CONTEXT(ctx);
   struct vp_stage_data *store = VP_STAGE_DATA(stage);
   struct vertex_buffer *VB = &tnl->vb;
   struct gl_vertex_program *program = ctx->VertexProgram._Current;
   struct gl_program_machine machine;
   GLuint outputs[VERT_RESULT_MAX], numOutputs;
   GLuint i, j;

   if (!program)
      return GL_TRUE;

   if (program->IsNVProgram) {
      _mesa_load_tracked_matrices(ctx);
   }
   else {
      /* ARB program or vertex shader */
      _mesa_load_state_parameters(ctx, program->Base.Parameters);
   }

   numOutputs = 0;
   for (i = 0; i < VERT_RESULT_MAX; i++) {
      if (program->Base.OutputsWritten & (1 << i)) {
         outputs[numOutputs++] = i;
      }
   }

   for (i = 0; i < VB->Count; i++) {
      GLuint attr;

      init_machine(ctx, &machine);

#if 0
      printf("Input  %d: %f, %f, %f, %f\n", i,
             VB->AttribPtr[0]->data[i][0],
             VB->AttribPtr[0]->data[i][1],
             VB->AttribPtr[0]->data[i][2],
             VB->AttribPtr[0]->data[i][3]);
      printf("   color: %f, %f, %f, %f\n",
             VB->AttribPtr[3]->data[i][0],
             VB->AttribPtr[3]->data[i][1],
             VB->AttribPtr[3]->data[i][2],
             VB->AttribPtr[3]->data[i][3]);
      printf("  normal: %f, %f, %f, %f\n",
             VB->AttribPtr[2]->data[i][0],
             VB->AttribPtr[2]->data[i][1],
             VB->AttribPtr[2]->data[i][2],
             VB->AttribPtr[2]->data[i][3]);
#endif

      /* the vertex array case */
      for (attr = 0; attr < VERT_ATTRIB_MAX; attr++) {
	 if (program->Base.InputsRead & (1 << attr)) {
	    const GLubyte *ptr = (const GLubyte*) VB->AttribPtr[attr]->data;
	    const GLuint size = VB->AttribPtr[attr]->size;
	    const GLuint stride = VB->AttribPtr[attr]->stride;
	    const GLfloat *data = (GLfloat *) (ptr + stride * i);
	    COPY_CLEAN_4V(machine.VertAttribs[attr], size, data);
	 }
      }

      /* execute the program */
      _mesa_execute_program(ctx, &program->Base, &machine);

      /* copy the output registers into the VB->attribs arrays */
      for (j = 0; j < numOutputs; j++) {
         const GLuint attr = outputs[j];
         COPY_4V(store->results[attr].data[i], machine.Outputs[attr]);
      }
#if 0
      printf("HPOS: %f %f %f %f\n",
             machine.Outputs[0][0], 
             machine.Outputs[0][1], 
             machine.Outputs[0][2], 
             machine.Outputs[0][3]);
#endif
   }

   /* Fixup fog and point size results if needed */
   if (program->IsNVProgram) {
      if (ctx->Fog.Enabled &&
          (program->Base.OutputsWritten & (1 << VERT_RESULT_FOGC)) == 0) {
         for (i = 0; i < VB->Count; i++) {
            store->results[VERT_RESULT_FOGC].data[i][0] = 1.0;
         }
      }

      if (ctx->VertexProgram.PointSizeEnabled &&
          (program->Base.OutputsWritten & (1 << VERT_RESULT_PSIZ)) == 0) {
         for (i = 0; i < VB->Count; i++) {
            store->results[VERT_RESULT_PSIZ].data[i][0] = ctx->Point.Size;
         }
      }
   }

   /* Setup the VB pointers so that the next pipeline stages get
    * their data from the right place (the program output arrays).
    */
   VB->ClipPtr = &store->results[VERT_RESULT_HPOS];
   VB->ClipPtr->size = 4;
   VB->ClipPtr->count = VB->Count;
   VB->ColorPtr[0] = &store->results[VERT_RESULT_COL0];
   VB->ColorPtr[1] = &store->results[VERT_RESULT_BFC0];
   VB->SecondaryColorPtr[0] = &store->results[VERT_RESULT_COL1];
   VB->SecondaryColorPtr[1] = &store->results[VERT_RESULT_BFC1];
   VB->FogCoordPtr = &store->results[VERT_RESULT_FOGC];

   VB->AttribPtr[VERT_ATTRIB_COLOR0] = &store->results[VERT_RESULT_COL0];
   VB->AttribPtr[VERT_ATTRIB_COLOR1] = &store->results[VERT_RESULT_COL1];
   VB->AttribPtr[VERT_ATTRIB_FOG] = &store->results[VERT_RESULT_FOGC];
   VB->AttribPtr[_TNL_ATTRIB_POINTSIZE] = &store->results[VERT_RESULT_PSIZ];

   for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
      VB->TexCoordPtr[i] = 
      VB->AttribPtr[_TNL_ATTRIB_TEX0 + i]
         = &store->results[VERT_RESULT_TEX0 + i];
   }

   for (i = 0; i < ctx->Const.MaxVarying; i++) {
      if (program->Base.OutputsWritten & (1 << (VERT_RESULT_VAR0 + i))) {
         /* Note: varying results get put into the generic attributes */
	 VB->AttribPtr[VERT_ATTRIB_GENERIC0+i]
            = &store->results[VERT_RESULT_VAR0 + i];
      }
   }

   /* Cliptest and perspective divide.  Clip functions must clear
    * the clipmask.
    */
   store->ormask = 0;
   store->andmask = CLIP_FRUSTUM_BITS;

   if (tnl->NeedNdcCoords) {
      VB->NdcPtr =
         _mesa_clip_tab[VB->ClipPtr->size]( VB->ClipPtr,
                                            &store->ndcCoords,
                                            store->clipmask,
                                            &store->ormask,
                                            &store->andmask );
   }
   else {
      VB->NdcPtr = NULL;
      _mesa_clip_np_tab[VB->ClipPtr->size]( VB->ClipPtr,
                                            NULL,
                                            store->clipmask,
                                            &store->ormask,
                                            &store->andmask );
   }

   if (store->andmask)  /* All vertices are outside the frustum */
      return GL_FALSE;


   /* This is where we'd do clip testing against the user-defined
    * clipping planes, but they're not supported by vertex programs.
    */

   VB->ClipOrMask = store->ormask;
   VB->ClipMask = store->clipmask;

   return GL_TRUE;
}
/**
 * This function executes vertex programs
 */
static GLboolean
run_vp( GLcontext *ctx, struct tnl_pipeline_stage *stage )
{
   TNLcontext *tnl = TNL_CONTEXT(ctx);
   struct vp_stage_data *store = VP_STAGE_DATA(stage);
   struct vertex_buffer *VB = &tnl->vb;
   struct gl_vertex_program *program = ctx->VertexProgram._Current;
   struct gl_program_machine machine;
   GLuint outputs[VERT_RESULT_MAX], numOutputs;
   GLuint i, j;

   if (!program)
      return GL_TRUE;

   if (program->IsNVProgram) {
      _mesa_load_tracked_matrices(ctx);
   }
   else {
      /* ARB program or vertex shader */
      _mesa_load_state_parameters(ctx, program->Base.Parameters);
   }

   /* make list of outputs to save some time below */
   numOutputs = 0;
   for (i = 0; i < VERT_RESULT_MAX; i++) {
      if (program->Base.OutputsWritten & (1 << i)) {
         outputs[numOutputs++] = i;
      }
   }

   map_textures(ctx, program);

   for (i = 0; i < VB->Count; i++) {
      GLuint attr;

      init_machine(ctx, &machine);

#if 0
      printf("Input  %d: %f, %f, %f, %f\n", i,
             VB->AttribPtr[0]->data[i][0],
             VB->AttribPtr[0]->data[i][1],
             VB->AttribPtr[0]->data[i][2],
             VB->AttribPtr[0]->data[i][3]);
      printf("   color: %f, %f, %f, %f\n",
             VB->AttribPtr[3]->data[i][0],
             VB->AttribPtr[3]->data[i][1],
             VB->AttribPtr[3]->data[i][2],
             VB->AttribPtr[3]->data[i][3]);
      printf("  normal: %f, %f, %f, %f\n",
             VB->AttribPtr[2]->data[i][0],
             VB->AttribPtr[2]->data[i][1],
             VB->AttribPtr[2]->data[i][2],
             VB->AttribPtr[2]->data[i][3]);
#endif

      /* the vertex array case */
      for (attr = 0; attr < VERT_ATTRIB_MAX; attr++) {
	 if (program->Base.InputsRead & (1 << attr)) {
	    const GLubyte *ptr = (const GLubyte*) VB->AttribPtr[attr]->data;
	    const GLuint size = VB->AttribPtr[attr]->size;
	    const GLuint stride = VB->AttribPtr[attr]->stride;
	    const GLfloat *data = (GLfloat *) (ptr + stride * i);
	    COPY_CLEAN_4V(machine.VertAttribs[attr], size, data);
	 }
      }

      /* execute the program */
      _mesa_execute_program(ctx, &program->Base, &machine);

      /* copy the output registers into the VB->attribs arrays */
      for (j = 0; j < numOutputs; j++) {
         const GLuint attr = outputs[j];
         COPY_4V(store->results[attr].data[i], machine.Outputs[attr]);
      }
#if 0
      printf("HPOS: %f %f %f %f\n",
             machine.Outputs[0][0], 
             machine.Outputs[0][1], 
             machine.Outputs[0][2], 
             machine.Outputs[0][3]);
#endif
   }

   unmap_textures(ctx, program);

   /* Fixup fog and point size results if needed */
   if (program->IsNVProgram) {
      if (ctx->Fog.Enabled &&
          (program->Base.OutputsWritten & (1 << VERT_RESULT_FOGC)) == 0) {
         for (i = 0; i < VB->Count; i++) {
            store->results[VERT_RESULT_FOGC].data[i][0] = 1.0;
         }
      }

      if (ctx->VertexProgram.PointSizeEnabled &&
          (program->Base.OutputsWritten & (1 << VERT_RESULT_PSIZ)) == 0) {
         for (i = 0; i < VB->Count; i++) {
            store->results[VERT_RESULT_PSIZ].data[i][0] = ctx->Point.Size;
         }
      }
   }

   if (program->IsPositionInvariant) {
      /* We need the exact same transform as in the fixed function path here
       * to guarantee invariance, depending on compiler optimization flags
       * results could be different otherwise.
       */
      VB->ClipPtr = TransformRaw( &store->results[0],
				  &ctx->_ModelProjectMatrix,
				  VB->AttribPtr[0] );

      /* Drivers expect this to be clean to element 4...
       */
      switch (VB->ClipPtr->size) {
      case 1:
	 /* impossible */
      case 2:
	 _mesa_vector4f_clean_elem( VB->ClipPtr, VB->Count, 2 );
	 /* fall-through */
      case 3:
	 _mesa_vector4f_clean_elem( VB->ClipPtr, VB->Count, 3 );
	 /* fall-through */
      case 4:
	 break;
      }
   }
   else {
      /* Setup the VB pointers so that the next pipeline stages get
       * their data from the right place (the program output arrays).
       */
      VB->ClipPtr = &store->results[VERT_RESULT_HPOS];
      VB->ClipPtr->size = 4;
      VB->ClipPtr->count = VB->Count;
   }

   VB->ColorPtr[0] = &store->results[VERT_RESULT_COL0];
   VB->ColorPtr[1] = &store->results[VERT_RESULT_BFC0];
   VB->SecondaryColorPtr[0] = &store->results[VERT_RESULT_COL1];
   VB->SecondaryColorPtr[1] = &store->results[VERT_RESULT_BFC1];
   VB->FogCoordPtr = &store->results[VERT_RESULT_FOGC];

   VB->AttribPtr[VERT_ATTRIB_COLOR0] = &store->results[VERT_RESULT_COL0];
   VB->AttribPtr[VERT_ATTRIB_COLOR1] = &store->results[VERT_RESULT_COL1];
   VB->AttribPtr[VERT_ATTRIB_FOG] = &store->results[VERT_RESULT_FOGC];
   VB->AttribPtr[_TNL_ATTRIB_POINTSIZE] = &store->results[VERT_RESULT_PSIZ];

   for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
      VB->TexCoordPtr[i] = 
      VB->AttribPtr[_TNL_ATTRIB_TEX0 + i]
         = &store->results[VERT_RESULT_TEX0 + i];
   }

   for (i = 0; i < ctx->Const.MaxVarying; i++) {
      if (program->Base.OutputsWritten & (1 << (VERT_RESULT_VAR0 + i))) {
         /* Note: varying results get put into the generic attributes */
	 VB->AttribPtr[VERT_ATTRIB_GENERIC0+i]
            = &store->results[VERT_RESULT_VAR0 + i];
      }
   }


   /* Perform NDC and cliptest operations:
    */
   return do_ndc_cliptest(ctx, store);
}