SIMD_INLINE __m256i BinomialSum16(const __m256i & ab, const __m256i & cd)
        {
#ifdef SIMD_MADDUBS_ERROR
            return _mm256_add_epi16(_mm256_maddubs_epi16(_mm256_or_si256(K_ZERO, ab), K8_01_03), _mm256_maddubs_epi16(_mm256_or_si256(K_ZERO, cd), K8_03_01));
#else
            return _mm256_add_epi16(_mm256_maddubs_epi16(ab, K8_01_03), _mm256_maddubs_epi16(cd, K8_03_01));
#endif        
        }
Exemple #2
0
 SIMD_INLINE void MaskSrc(const uint8_t * src, const uint8_t * mask, const __m256i & index, ptrdiff_t offset, uint16_t * dst)
 {
     const __m256i _src = Load<srcAlign>((__m256i*)(src + offset));
     const __m256i _mask = _mm256_and_si256(_mm256_cmpeq_epi8(Load<srcAlign>((__m256i*)(mask + offset)), index), K8_01);
     __m256i lo = _mm256_mullo_epi16(_mm256_add_epi16(K16_0008, UnpackU8<0>(_src)), UnpackU8<0>(_mask));
     __m256i hi = _mm256_mullo_epi16(_mm256_add_epi16(K16_0008, UnpackU8<1>(_src)), UnpackU8<1>(_mask));
     Store<dstAlign>((__m256i*)(dst + offset) + 0, _mm256_permute2x128_si256(lo, hi, 0x20)); 
     Store<dstAlign>((__m256i*)(dst + offset) + 1, _mm256_permute2x128_si256(lo, hi, 0x31));
 }
 template<bool align> SIMD_INLINE void MainRowY5x5(__m256i odd, __m256i even, Buffer & buffer, size_t offset)
 {
     __m256i cp = _mm256_mullo_epi16(odd, K16_0004);
     __m256i c0 = Load<align>((__m256i*)(buffer.in0 + offset));
     __m256i c1 = Load<align>((__m256i*)(buffer.in1 + offset));
     Store<align>((__m256i*)(buffer.dst + offset), _mm256_add_epi16(even, _mm256_add_epi16(c1, _mm256_add_epi16(cp, _mm256_mullo_epi16(c0, K16_0006)))));
     Store<align>((__m256i*)(buffer.out1 + offset), _mm256_add_epi16(c0, cp));
     Store<align>((__m256i*)(buffer.out0 + offset), even);
 }
 template <bool align, bool compensation> SIMD_INLINE __m256i MainRowX5x5(uint16_t * dst)
 {
     __m256i t0 = _mm256_loadu_si256((__m256i*)(dst - 2));
     __m256i t1 = _mm256_loadu_si256((__m256i*)(dst - 1));
     __m256i t2 = Load<align>((__m256i*)dst);
     __m256i t3 = _mm256_loadu_si256((__m256i*)(dst + 1));
     __m256i t4 = _mm256_loadu_si256((__m256i*)(dst + 2));
     t2 = _mm256_add_epi16(_mm256_add_epi16(_mm256_mullo_epi16(t2, K16_0006), _mm256_mullo_epi16(_mm256_add_epi16(t1, t3), K16_0004)), _mm256_add_epi16(t0, t4));
     return DivideBy256<compensation>(t2);
 }
Exemple #5
0
static void satd_8bit_4x4_dual_avx2(
  const pred_buffer preds, const kvz_pixel * const orig, unsigned num_modes, unsigned *satds_out) 
{

  __m256i original = _mm256_broadcastsi128_si256(_mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)orig)));
  __m256i pred = _mm256_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)preds[0]));
  pred = _mm256_inserti128_si256(pred, _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)preds[1])), 1);

  __m256i diff_lo = _mm256_sub_epi16(pred, original);

  original = _mm256_broadcastsi128_si256(_mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(orig + 8))));
  pred = _mm256_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(preds[0] + 8)));
  pred = _mm256_inserti128_si256(pred, _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(preds[1] + 8))), 1);

  __m256i diff_hi = _mm256_sub_epi16(pred, original);

  //Hor
  __m256i row0 = _mm256_hadd_epi16(diff_lo, diff_hi);
  __m256i row1 = _mm256_hsub_epi16(diff_lo, diff_hi);

  __m256i row2 = _mm256_hadd_epi16(row0, row1);
  __m256i row3 = _mm256_hsub_epi16(row0, row1);

  //Ver
  row0 = _mm256_hadd_epi16(row2, row3);
  row1 = _mm256_hsub_epi16(row2, row3);

  row2 = _mm256_hadd_epi16(row0, row1);
  row3 = _mm256_hsub_epi16(row0, row1);

  //Abs and sum
  row2 = _mm256_abs_epi16(row2);
  row3 = _mm256_abs_epi16(row3);

  row3 = _mm256_add_epi16(row2, row3);

  row3 = _mm256_add_epi16(row3, _mm256_shuffle_epi32(row3, KVZ_PERMUTE(2, 3, 0, 1) ));
  row3 = _mm256_add_epi16(row3, _mm256_shuffle_epi32(row3, KVZ_PERMUTE(1, 0, 1, 0) ));
  row3 = _mm256_add_epi16(row3, _mm256_shufflelo_epi16(row3, KVZ_PERMUTE(1, 0, 1, 0) ));

  unsigned sum1 = _mm_extract_epi16(_mm256_castsi256_si128(row3), 0);
  sum1 = (sum1 + 1) >> 1;

  unsigned sum2 = _mm_extract_epi16(_mm256_extracti128_si256(row3, 1), 0);
  sum2 = (sum2 + 1) >> 1;

  satds_out[0] = sum1;
  satds_out[1] = sum2;
}
Exemple #6
0
void fft128_2way( void *a )
{
  int i;
  // Temp space to help for interleaving in the end
  __m256i B[8];
  __m256i *A = (__m256i*) a;
//  __m256i *Twiddle = (__m256i*)FFT128_Twiddle;

  /* Size-2 butterflies */
  for ( i = 0; i<8; i++ )
  {
    B[ i ]   = _mm256_add_epi16( A[ i ], A[ i+8 ] );
    B[ i ]   = REDUCE_FULL_S( B[ i ] );
    A[ i+8 ] = _mm256_sub_epi16( A[ i ], A[ i+8 ] );
    A[ i+8 ] = REDUCE_FULL_S( A[ i+8 ] );
    A[ i+8 ] = _mm256_mullo_epi16( A[ i+8 ], FFT128_Twiddle[i].m256i );
    A[ i+8 ] = REDUCE_FULL_S( A[ i+8 ] );
  }

  fft64_2way( B );
  fft64_2way( A+8 );

  /* Transpose (i.e. interleave) */
  for ( i = 0; i < 8; i++ )
  {
    A[ 2*i   ] = _mm256_unpacklo_epi16( B[ i ], A[ i+8 ] );
    A[ 2*i+1 ] = _mm256_unpackhi_epi16( B[ i ], A[ i+8 ] );
  }
}
Exemple #7
0
static INLINE __m256i calc_mask_avx2(const __m256i mask_base, const __m256i s0,
                                     const __m256i s1) {
  const __m256i diff = _mm256_abs_epi16(_mm256_sub_epi16(s0, s1));
  return _mm256_abs_epi16(
      _mm256_add_epi16(mask_base, _mm256_srli_epi16(diff, 4)));
  // clamp(diff, 0, 64) can be skiped for diff is always in the range ( 38, 54)
}
Exemple #8
0
void vpx_hadamard_32x32_avx2(const int16_t *src_diff, ptrdiff_t src_stride,
                             tran_low_t *coeff) {
#if CONFIG_VP9_HIGHBITDEPTH
  // For high bitdepths, it is unnecessary to store_tran_low
  // (mult/unpack/store), then load_tran_low (load/pack) the same memory in the
  // next stage.  Output to an intermediate buffer first, then store_tran_low()
  // in the final stage.
  DECLARE_ALIGNED(32, int16_t, temp_coeff[32 * 32]);
  int16_t *t_coeff = temp_coeff;
#else
  int16_t *t_coeff = coeff;
#endif
  int idx;
  for (idx = 0; idx < 4; ++idx) {
    // src_diff: 9 bit, dynamic range [-255, 255]
    const int16_t *src_ptr =
        src_diff + (idx >> 1) * 16 * src_stride + (idx & 0x01) * 16;
    hadamard_16x16_avx2(src_ptr, src_stride,
                        (tran_low_t *)(t_coeff + idx * 256), 0);
  }

  for (idx = 0; idx < 256; idx += 16) {
    const __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff);
    const __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 256));
    const __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 512));
    const __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 768));

    __m256i b0 = _mm256_add_epi16(coeff0, coeff1);
    __m256i b1 = _mm256_sub_epi16(coeff0, coeff1);
    __m256i b2 = _mm256_add_epi16(coeff2, coeff3);
    __m256i b3 = _mm256_sub_epi16(coeff2, coeff3);

    b0 = _mm256_srai_epi16(b0, 2);
    b1 = _mm256_srai_epi16(b1, 2);
    b2 = _mm256_srai_epi16(b2, 2);
    b3 = _mm256_srai_epi16(b3, 2);

    store_tran_low(_mm256_add_epi16(b0, b2), coeff);
    store_tran_low(_mm256_add_epi16(b1, b3), coeff + 256);
    store_tran_low(_mm256_sub_epi16(b0, b2), coeff + 512);
    store_tran_low(_mm256_sub_epi16(b1, b3), coeff + 768);

    coeff += 16;
    t_coeff += 16;
  }
}
Exemple #9
0
int main() {
	const ssize_t A = 3;
	const size_t Awidth = 2;
	const size_t Dwidth = 4;
	const ssize_t Dmin = (-1) * (1ll << (Dwidth - 1));
	const ssize_t Dmax = (1ll << (Dwidth - 1)) - 1;
	const ssize_t Cwidth = Awidth + Dwidth;
	const ssize_t AInv = ext_euklidean(A, Cwidth) & ((1ll << Cwidth) - 1);
	const size_t numCodewords = (1ull << Cwidth);
	std::cout << "numCodewords: " << numCodewords << std::endl;
	const size_t numMasks = numCodewords / (sizeof(int) * 4); // How many masks will we generate?
	int * pNonCodewordMasks = new int[numMasks];
	const int16_t c = ~((1ll << (Cwidth - 1)) - 1);
	std::cout << "c = 0x" << std::hex << c << std::dec << std::endl;
	for (ssize_t i = 0, cw = c, posMask = 0; i < numCodewords; ++posMask) {
		int tmpMask = 0;
		for (ssize_t k = 0; k < 16; ++k, ++cw, ++i) {
			if ((cw % A) != 0) { // we want the non-codewords
				// std::cout << "cw % A != 0: " << cw << std::endl;
				tmpMask |= (1ll << (k * 2)) | (1ll << (k * 2 + 1)); // expand to 32 bits, because AVX2 cannot movemask across lanes to 16 bits
			}
		}
		pNonCodewordMasks[posMask] = tmpMask;
	}
	std::cout << "numMasks: " << numMasks << std::endl;
	std::cout << "non-codeword-masks: 0x" << std::hex << std::setfill('0');
	for (size_t posMask = 0; posMask < numMasks; ++posMask) {
		std::cout << std::setw(8) << pNonCodewordMasks[posMask] << ':';
	}
	std::cout << std::dec << std::endl << std::setfill(' ');
	auto mmCodewords = _mm256_set_epi16(c+15, c+14, c+13, c+12, c+11, c+10, c+9, c+8, c+7, c+6, c+5, c+4, c+3, c+2, c+1, c);
	auto mmAddUp = _mm256_set1_epi16(16);
	auto mmAinv = _mm256_set1_epi16(AInv);
	auto mmDmin = _mm256_set1_epi16(Dmin);
	auto mmDmax = _mm256_set1_epi16(Dmax);
	const size_t posEnd = (1ull << Cwidth);
	__m256i mmFillUp[] = {_mm256_set1_epi16(0), _mm256_set1_epi16(~((1ll << Cwidth) - 1))}; // fill up all non-codeword bits with 1's if necessary
	std::cout << "posEnd = 0x" << std::hex << posEnd << std::dec << std::endl;
	std::cout << std::setfill('0') << std::hex;
	for(size_t pos = 15, posMask = 0; pos < posEnd; pos += 16, ++posMask) {
		auto isNeg = 0x1 & _mm256_movemask_epi8(_mm256_cmpgt_epi16(mmFillUp[0], mmCodewords));
		auto mm1 = _mm256_or_si256(_mm256_mullo_epi16(mmCodewords, mmAinv), mmFillUp[isNeg]);
		auto mm2 = _mm256_cmpgt_epi16(mm1, mmDmin);
		auto mm3 = _mm256_cmpgt_epi16(mmDmax, mm1);
		auto mm4 = _mm256_cmpeq_epi16(mmDmax, mm1);
		auto mm5 = _mm256_or_si256(mm3, mm4);
		auto mm6 = _mm256_and_si256(mm2, mm5);
		auto mask = _mm256_movemask_epi8(mm6);
		if (mask & pNonCodewordMasks[posMask]) {
			std::cout << "BAD @0x" << std::setw((Cwidth + 7) / 8) << pos << ": 0x" << mask << " & 0x" << pNonCodewordMasks[posMask] << " = 0x" << (mask & pNonCodewordMasks[posMask]) << std::endl;
		} else {
			std::cout << "OK @0x" << std::setw((Cwidth + 7) / 8) << pos << ": 0x" << mask << " & 0x" << pNonCodewordMasks[posMask] << " = 0x" << (mask & pNonCodewordMasks[posMask]) << std::endl;
		}
		mmCodewords = _mm256_add_epi16(mmCodewords, mmAddUp);
	}
	std::cout << std::setfill(' ') << std::dec;
}
Exemple #10
0
static INLINE void variance_kernel_avx2(const __m256i src, const __m256i ref,
                                        __m256i *const sse,
                                        __m256i *const sum) {
  const __m256i adj_sub = _mm256_set1_epi16(0xff01);  // (1,-1)

  // unpack into pairs of source and reference values
  const __m256i src_ref0 = _mm256_unpacklo_epi8(src, ref);
  const __m256i src_ref1 = _mm256_unpackhi_epi8(src, ref);

  // subtract adjacent elements using src*1 + ref*-1
  const __m256i diff0 = _mm256_maddubs_epi16(src_ref0, adj_sub);
  const __m256i diff1 = _mm256_maddubs_epi16(src_ref1, adj_sub);
  const __m256i madd0 = _mm256_madd_epi16(diff0, diff0);
  const __m256i madd1 = _mm256_madd_epi16(diff1, diff1);

  // add to the running totals
  *sum = _mm256_add_epi16(*sum, _mm256_add_epi16(diff0, diff1));
  *sse = _mm256_add_epi32(*sse, _mm256_add_epi32(madd0, madd1));
}
// 32bpp optimized for 8-bit ARGB/RGBA. rmask should be 0x00FF,0x00FF,... etc
static inline __m256i stretchblt_line_bilinear_pixel_blend_avx_argb8(const __m256i cur,const __m256i nxt,const __m256i mul,const __m256i rmask) {
    __m256i rc,gc;
    __m256i rn,gn;
    __m256i d,sum;

    rc = _mm256_and_si256(                  cur   ,rmask);
    gc = _mm256_and_si256(_mm256_srli_epi16(cur,8),rmask);

    rn = _mm256_and_si256(               nxt   ,rmask);
    gn = _mm256_and_si256(_mm256_srli_epi16(nxt,8),rmask);

    d = _mm256_sub_epi16(rn,rc);
    sum = _mm256_add_epi16(rc,_mm256_mulhi_epi16(_mm256_add_epi16(d,d),mul));

    d = _mm256_sub_epi16(gn,gc);
    sum = _mm256_add_epi16(_mm256_slli_epi16(_mm256_add_epi16(gc,_mm256_mulhi_epi16(_mm256_add_epi16(d,d),mul)),8),sum);

    return sum;
}
Exemple #12
0
static INLINE void hor_transform_row_dual_avx2(__m256i* row){
  
  __m256i mask_pos = _mm256_set1_epi16(1);
  __m256i mask_neg = _mm256_set1_epi16(-1);
  __m256i sign_mask = _mm256_unpacklo_epi64(mask_pos, mask_neg);
  __m256i temp = _mm256_shuffle_epi32(*row, KVZ_PERMUTE(2, 3, 0, 1));
  *row = _mm256_sign_epi16(*row, sign_mask);
  *row = _mm256_add_epi16(*row, temp);

  sign_mask = _mm256_unpacklo_epi32(mask_pos, mask_neg);
  temp = _mm256_shuffle_epi32(*row, KVZ_PERMUTE(1, 0, 3, 2));
  *row = _mm256_sign_epi16(*row, sign_mask);
  *row = _mm256_add_epi16(*row, temp);

  sign_mask = _mm256_unpacklo_epi16(mask_pos, mask_neg);
  temp = _mm256_shufflelo_epi16(*row, KVZ_PERMUTE(1,0,3,2));
  temp = _mm256_shufflehi_epi16(temp, KVZ_PERMUTE(1,0,3,2));
  *row = _mm256_sign_epi16(*row, sign_mask);
  *row = _mm256_add_epi16(*row, temp);
}
Exemple #13
0
static INLINE void hadamard_16x16_avx2(const int16_t *src_diff,
                                       ptrdiff_t src_stride, tran_low_t *coeff,
                                       int is_final) {
#if CONFIG_VP9_HIGHBITDEPTH
  DECLARE_ALIGNED(32, int16_t, temp_coeff[16 * 16]);
  int16_t *t_coeff = temp_coeff;
#else
  int16_t *t_coeff = coeff;
#endif
  int16_t *coeff16 = (int16_t *)coeff;
  int idx;
  for (idx = 0; idx < 2; ++idx) {
    const int16_t *src_ptr = src_diff + idx * 8 * src_stride;
    hadamard_8x8x2_avx2(src_ptr, src_stride, t_coeff + (idx * 64 * 2));
  }

  for (idx = 0; idx < 64; idx += 16) {
    const __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff);
    const __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 64));
    const __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 128));
    const __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 192));

    __m256i b0 = _mm256_add_epi16(coeff0, coeff1);
    __m256i b1 = _mm256_sub_epi16(coeff0, coeff1);
    __m256i b2 = _mm256_add_epi16(coeff2, coeff3);
    __m256i b3 = _mm256_sub_epi16(coeff2, coeff3);

    b0 = _mm256_srai_epi16(b0, 1);
    b1 = _mm256_srai_epi16(b1, 1);
    b2 = _mm256_srai_epi16(b2, 1);
    b3 = _mm256_srai_epi16(b3, 1);
    if (is_final) {
      store_tran_low(_mm256_add_epi16(b0, b2), coeff);
      store_tran_low(_mm256_add_epi16(b1, b3), coeff + 64);
      store_tran_low(_mm256_sub_epi16(b0, b2), coeff + 128);
      store_tran_low(_mm256_sub_epi16(b1, b3), coeff + 192);
      coeff += 16;
    } else {
      _mm256_storeu_si256((__m256i *)coeff16, _mm256_add_epi16(b0, b2));
      _mm256_storeu_si256((__m256i *)(coeff16 + 64), _mm256_add_epi16(b1, b3));
      _mm256_storeu_si256((__m256i *)(coeff16 + 128), _mm256_sub_epi16(b0, b2));
      _mm256_storeu_si256((__m256i *)(coeff16 + 192), _mm256_sub_epi16(b1, b3));
      coeff16 += 16;
    }
    t_coeff += 16;
  }
}
// 16bpp general R/G/B, usually 5/6/5 or 5/5/5
static inline __m256i stretchblt_line_bilinear_pixel_blend_avx_rgb16(const __m256i cur,const __m256i nxt,const __m256i mul,const __m256i rmask,const uint16_t rshift,const __m256i gmask,const uint16_t gshift,const __m256i bmask,const uint16_t bshift) {
    __m256i rc,gc,bc;
    __m256i rn,gn,bn;
    __m256i d,sum;

    rc = _mm256_and_si256(_mm256_srli_epi16(cur,rshift),rmask);
    gc = _mm256_and_si256(_mm256_srli_epi16(cur,gshift),gmask);
    bc = _mm256_and_si256(_mm256_srli_epi16(cur,bshift),bmask);

    rn = _mm256_and_si256(_mm256_srli_epi16(nxt,rshift),rmask);
    gn = _mm256_and_si256(_mm256_srli_epi16(nxt,gshift),gmask);
    bn = _mm256_and_si256(_mm256_srli_epi16(nxt,bshift),bmask);

    d = _mm256_sub_epi16(rn,rc);
    sum = _mm256_slli_epi16(_mm256_add_epi16(rc,_mm256_mulhi_epi16(_mm256_add_epi16(d,d),mul)),rshift);

    d = _mm256_sub_epi16(gn,gc);
    sum = _mm256_add_epi16(_mm256_slli_epi16(_mm256_add_epi16(gc,_mm256_mulhi_epi16(_mm256_add_epi16(d,d),mul)),gshift),sum);

    d = _mm256_sub_epi16(bn,bc);
    sum = _mm256_add_epi16(_mm256_slli_epi16(_mm256_add_epi16(bc,_mm256_mulhi_epi16(_mm256_add_epi16(d,d),mul)),bshift),sum);

    return sum;
}
 template <> SIMD_INLINE __m256i DivideBy256<true>(__m256i value)
 {
     return _mm256_srli_epi16(_mm256_add_epi16(value, K16_0080), 8);
 }
Exemple #16
0
__m256i test_mm256_add_epi16(__m256i a, __m256i b) {
  // CHECK: add <16 x i16>
  return _mm256_add_epi16(a, b);
}
Exemple #17
0
static INLINE void add_sub_dual_avx2(__m256i *out, __m256i *in, unsigned out_idx0, unsigned out_idx1, unsigned in_idx0, unsigned in_idx1)
{
  out[out_idx0] = _mm256_add_epi16(in[in_idx0], in[in_idx1]);
  out[out_idx1] = _mm256_sub_epi16(in[in_idx0], in[in_idx1]);
}
Exemple #18
0
        template<bool align> SIMD_INLINE __m256i AverageRow16(const Buffer & buffer, size_t offset)
        {
			return _mm256_mulhi_epu16(K16_DIVISION_BY_9_FACTOR, _mm256_add_epi16(
				_mm256_add_epi16(K16_0005, Load<align>((__m256i*)(buffer.src0 + offset))),
				_mm256_add_epi16(Load<align>((__m256i*)(buffer.src1 + offset)), Load<align>((__m256i*)(buffer.src2 + offset)))));
        }
Exemple #19
0
 /*!
  * \brief Add the two given values and return the result.
  */
 ETL_STATIC_INLINE(avx_simd_short) add(avx_simd_short lhs, avx_simd_short rhs) {
     return _mm256_add_epi16(lhs.value, rhs.value);
 }
Exemple #20
0
 template <> SIMD_INLINE __m256i OperationBinary16i<SimdOperationBinary16iAddition>(const __m256i & a, const __m256i & b)
 {
     return _mm256_add_epi16(a, b);
 }
Exemple #21
0
 template<int part> SIMD_INLINE __m256i SumCol(__m256i a[3])
 {
     return _mm256_add_epi16(_mm256_maddubs_epi16(UnpackU8<part>(a[0], a[1]), K8_01), UnpackU8<part>(a[2]));
 }
 SIMD_INLINE __m256i BinomialSum16(const __m256i & a, const __m256i & b, const __m256i & c, const __m256i & d)
 {
     return _mm256_add_epi16(_mm256_add_epi16(a, d), _mm256_mullo_epi16(_mm256_add_epi16(b, c), K16_0003));
 }
 SIMD_INLINE __m256i DivideBy64(__m256i value)
 {
     return _mm256_srli_epi16(_mm256_add_epi16(value, K16_0020), 6);
 }
Exemple #24
0
 SIMD_INLINE __m256i Average16(const __m256i & s0, const __m256i & s1)
 {
     return _mm256_srli_epi16(_mm256_add_epi16(_mm256_add_epi16(_mm256_maddubs_epi16(s0, K8_01), _mm256_maddubs_epi16(s1, K8_01)), K16_0002), 2); 
 }
Exemple #25
0
 SIMD_INLINE __m256i Average16(const __m256i & s0, const __m256i & s1)
 {
     return _mm256_srli_epi16(_mm256_add_epi16(_mm256_add_epi16(
         _mm256_hadd_epi16(_mm256_unpacklo_epi8(s0, K_ZERO), _mm256_unpackhi_epi8(s0, K_ZERO)),
         _mm256_hadd_epi16(_mm256_unpacklo_epi8(s1, K_ZERO), _mm256_unpackhi_epi8(s1, K_ZERO))), K16_0002), 2); 
 }
 template<bool align> SIMD_INLINE __m256i InterpolateY(const __m256i * pbx0, const __m256i * pbx1, __m256i alpha[2])
 {
     __m256i sum = _mm256_add_epi16(_mm256_mullo_epi16(Load<align>(pbx0), alpha[0]), _mm256_mullo_epi16(Load<align>(pbx1), alpha[1]));
     return _mm256_srli_epi16(_mm256_add_epi16(sum, K16_FRACTION_ROUND_TERM), Base::BILINEAR_SHIFT);
 }
Exemple #27
0
static void hadamard_col8x2_avx2(__m256i *in, int iter) {
  __m256i a0 = in[0];
  __m256i a1 = in[1];
  __m256i a2 = in[2];
  __m256i a3 = in[3];
  __m256i a4 = in[4];
  __m256i a5 = in[5];
  __m256i a6 = in[6];
  __m256i a7 = in[7];

  __m256i b0 = _mm256_add_epi16(a0, a1);
  __m256i b1 = _mm256_sub_epi16(a0, a1);
  __m256i b2 = _mm256_add_epi16(a2, a3);
  __m256i b3 = _mm256_sub_epi16(a2, a3);
  __m256i b4 = _mm256_add_epi16(a4, a5);
  __m256i b5 = _mm256_sub_epi16(a4, a5);
  __m256i b6 = _mm256_add_epi16(a6, a7);
  __m256i b7 = _mm256_sub_epi16(a6, a7);

  a0 = _mm256_add_epi16(b0, b2);
  a1 = _mm256_add_epi16(b1, b3);
  a2 = _mm256_sub_epi16(b0, b2);
  a3 = _mm256_sub_epi16(b1, b3);
  a4 = _mm256_add_epi16(b4, b6);
  a5 = _mm256_add_epi16(b5, b7);
  a6 = _mm256_sub_epi16(b4, b6);
  a7 = _mm256_sub_epi16(b5, b7);

  if (iter == 0) {
    b0 = _mm256_add_epi16(a0, a4);
    b7 = _mm256_add_epi16(a1, a5);
    b3 = _mm256_add_epi16(a2, a6);
    b4 = _mm256_add_epi16(a3, a7);
    b2 = _mm256_sub_epi16(a0, a4);
    b6 = _mm256_sub_epi16(a1, a5);
    b1 = _mm256_sub_epi16(a2, a6);
    b5 = _mm256_sub_epi16(a3, a7);

    a0 = _mm256_unpacklo_epi16(b0, b1);
    a1 = _mm256_unpacklo_epi16(b2, b3);
    a2 = _mm256_unpackhi_epi16(b0, b1);
    a3 = _mm256_unpackhi_epi16(b2, b3);
    a4 = _mm256_unpacklo_epi16(b4, b5);
    a5 = _mm256_unpacklo_epi16(b6, b7);
    a6 = _mm256_unpackhi_epi16(b4, b5);
    a7 = _mm256_unpackhi_epi16(b6, b7);

    b0 = _mm256_unpacklo_epi32(a0, a1);
    b1 = _mm256_unpacklo_epi32(a4, a5);
    b2 = _mm256_unpackhi_epi32(a0, a1);
    b3 = _mm256_unpackhi_epi32(a4, a5);
    b4 = _mm256_unpacklo_epi32(a2, a3);
    b5 = _mm256_unpacklo_epi32(a6, a7);
    b6 = _mm256_unpackhi_epi32(a2, a3);
    b7 = _mm256_unpackhi_epi32(a6, a7);

    in[0] = _mm256_unpacklo_epi64(b0, b1);
    in[1] = _mm256_unpackhi_epi64(b0, b1);
    in[2] = _mm256_unpacklo_epi64(b2, b3);
    in[3] = _mm256_unpackhi_epi64(b2, b3);
    in[4] = _mm256_unpacklo_epi64(b4, b5);
    in[5] = _mm256_unpackhi_epi64(b4, b5);
    in[6] = _mm256_unpacklo_epi64(b6, b7);
    in[7] = _mm256_unpackhi_epi64(b6, b7);
  } else {
    in[0] = _mm256_add_epi16(a0, a4);
    in[7] = _mm256_add_epi16(a1, a5);
    in[3] = _mm256_add_epi16(a2, a6);
    in[4] = _mm256_add_epi16(a3, a7);
    in[2] = _mm256_sub_epi16(a0, a4);
    in[6] = _mm256_sub_epi16(a1, a5);
    in[1] = _mm256_sub_epi16(a2, a6);
    in[5] = _mm256_sub_epi16(a3, a7);
  }
}
Exemple #28
0
static void mb_lpf_horizontal_edge_w_avx2_16(unsigned char *s, int p,
                                             const unsigned char *_blimit,
                                             const unsigned char *_limit,
                                             const unsigned char *_thresh) {
  __m128i mask, hev, flat, flat2;
  const __m128i zero = _mm_set1_epi16(0);
  const __m128i one = _mm_set1_epi8(1);
  __m128i p7, p6, p5;
  __m128i p4, p3, p2, p1, p0, q0, q1, q2, q3, q4;
  __m128i q5, q6, q7;
  __m256i p256_7, q256_7, p256_6, q256_6, p256_5, q256_5, p256_4, q256_4,
      p256_3, q256_3, p256_2, q256_2, p256_1, q256_1, p256_0, q256_0;

  const __m128i thresh =
      _mm_broadcastb_epi8(_mm_cvtsi32_si128((int)_thresh[0]));
  const __m128i limit = _mm_broadcastb_epi8(_mm_cvtsi32_si128((int)_limit[0]));
  const __m128i blimit =
      _mm_broadcastb_epi8(_mm_cvtsi32_si128((int)_blimit[0]));

  p256_4 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 5 * p)));
  p256_3 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 4 * p)));
  p256_2 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 3 * p)));
  p256_1 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 2 * p)));
  p256_0 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 1 * p)));
  q256_0 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 0 * p)));
  q256_1 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s + 1 * p)));
  q256_2 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s + 2 * p)));
  q256_3 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s + 3 * p)));
  q256_4 =
      _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s + 4 * p)));

  p4 = _mm256_castsi256_si128(p256_4);
  p3 = _mm256_castsi256_si128(p256_3);
  p2 = _mm256_castsi256_si128(p256_2);
  p1 = _mm256_castsi256_si128(p256_1);
  p0 = _mm256_castsi256_si128(p256_0);
  q0 = _mm256_castsi256_si128(q256_0);
  q1 = _mm256_castsi256_si128(q256_1);
  q2 = _mm256_castsi256_si128(q256_2);
  q3 = _mm256_castsi256_si128(q256_3);
  q4 = _mm256_castsi256_si128(q256_4);

  {
    const __m128i abs_p1p0 =
        _mm_or_si128(_mm_subs_epu8(p1, p0), _mm_subs_epu8(p0, p1));
    const __m128i abs_q1q0 =
        _mm_or_si128(_mm_subs_epu8(q1, q0), _mm_subs_epu8(q0, q1));
    const __m128i fe = _mm_set1_epi8(0xfe);
    const __m128i ff = _mm_cmpeq_epi8(abs_p1p0, abs_p1p0);
    __m128i abs_p0q0 =
        _mm_or_si128(_mm_subs_epu8(p0, q0), _mm_subs_epu8(q0, p0));
    __m128i abs_p1q1 =
        _mm_or_si128(_mm_subs_epu8(p1, q1), _mm_subs_epu8(q1, p1));
    __m128i work;
    flat = _mm_max_epu8(abs_p1p0, abs_q1q0);
    hev = _mm_subs_epu8(flat, thresh);
    hev = _mm_xor_si128(_mm_cmpeq_epi8(hev, zero), ff);

    abs_p0q0 = _mm_adds_epu8(abs_p0q0, abs_p0q0);
    abs_p1q1 = _mm_srli_epi16(_mm_and_si128(abs_p1q1, fe), 1);
    mask = _mm_subs_epu8(_mm_adds_epu8(abs_p0q0, abs_p1q1), blimit);
    mask = _mm_xor_si128(_mm_cmpeq_epi8(mask, zero), ff);
    // mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2  > blimit) * -1;
    mask = _mm_max_epu8(flat, mask);
    // mask |= (abs(p1 - p0) > limit) * -1;
    // mask |= (abs(q1 - q0) > limit) * -1;
    work = _mm_max_epu8(
        _mm_or_si128(_mm_subs_epu8(p2, p1), _mm_subs_epu8(p1, p2)),
        _mm_or_si128(_mm_subs_epu8(p3, p2), _mm_subs_epu8(p2, p3)));
    mask = _mm_max_epu8(work, mask);
    work = _mm_max_epu8(
        _mm_or_si128(_mm_subs_epu8(q2, q1), _mm_subs_epu8(q1, q2)),
        _mm_or_si128(_mm_subs_epu8(q3, q2), _mm_subs_epu8(q2, q3)));
    mask = _mm_max_epu8(work, mask);
    mask = _mm_subs_epu8(mask, limit);
    mask = _mm_cmpeq_epi8(mask, zero);
  }

  // lp filter
  {
    const __m128i t4 = _mm_set1_epi8(4);
    const __m128i t3 = _mm_set1_epi8(3);
    const __m128i t80 = _mm_set1_epi8(0x80);
    const __m128i te0 = _mm_set1_epi8(0xe0);
    const __m128i t1f = _mm_set1_epi8(0x1f);
    const __m128i t1 = _mm_set1_epi8(0x1);
    const __m128i t7f = _mm_set1_epi8(0x7f);

    __m128i ps1 = _mm_xor_si128(p1, t80);
    __m128i ps0 = _mm_xor_si128(p0, t80);
    __m128i qs0 = _mm_xor_si128(q0, t80);
    __m128i qs1 = _mm_xor_si128(q1, t80);
    __m128i filt;
    __m128i work_a;
    __m128i filter1, filter2;
    __m128i flat2_p6, flat2_p5, flat2_p4, flat2_p3, flat2_p2, flat2_p1,
        flat2_p0, flat2_q0, flat2_q1, flat2_q2, flat2_q3, flat2_q4, flat2_q5,
        flat2_q6, flat_p2, flat_p1, flat_p0, flat_q0, flat_q1, flat_q2;

    filt = _mm_and_si128(_mm_subs_epi8(ps1, qs1), hev);
    work_a = _mm_subs_epi8(qs0, ps0);
    filt = _mm_adds_epi8(filt, work_a);
    filt = _mm_adds_epi8(filt, work_a);
    filt = _mm_adds_epi8(filt, work_a);
    /* (vpx_filter + 3 * (qs0 - ps0)) & mask */
    filt = _mm_and_si128(filt, mask);

    filter1 = _mm_adds_epi8(filt, t4);
    filter2 = _mm_adds_epi8(filt, t3);

    /* Filter1 >> 3 */
    work_a = _mm_cmpgt_epi8(zero, filter1);
    filter1 = _mm_srli_epi16(filter1, 3);
    work_a = _mm_and_si128(work_a, te0);
    filter1 = _mm_and_si128(filter1, t1f);
    filter1 = _mm_or_si128(filter1, work_a);
    qs0 = _mm_xor_si128(_mm_subs_epi8(qs0, filter1), t80);

    /* Filter2 >> 3 */
    work_a = _mm_cmpgt_epi8(zero, filter2);
    filter2 = _mm_srli_epi16(filter2, 3);
    work_a = _mm_and_si128(work_a, te0);
    filter2 = _mm_and_si128(filter2, t1f);
    filter2 = _mm_or_si128(filter2, work_a);
    ps0 = _mm_xor_si128(_mm_adds_epi8(ps0, filter2), t80);

    /* filt >> 1 */
    filt = _mm_adds_epi8(filter1, t1);
    work_a = _mm_cmpgt_epi8(zero, filt);
    filt = _mm_srli_epi16(filt, 1);
    work_a = _mm_and_si128(work_a, t80);
    filt = _mm_and_si128(filt, t7f);
    filt = _mm_or_si128(filt, work_a);
    filt = _mm_andnot_si128(hev, filt);
    ps1 = _mm_xor_si128(_mm_adds_epi8(ps1, filt), t80);
    qs1 = _mm_xor_si128(_mm_subs_epi8(qs1, filt), t80);
    // loopfilter done

    {
      __m128i work;
      work = _mm_max_epu8(
          _mm_or_si128(_mm_subs_epu8(p2, p0), _mm_subs_epu8(p0, p2)),
          _mm_or_si128(_mm_subs_epu8(q2, q0), _mm_subs_epu8(q0, q2)));
      flat = _mm_max_epu8(work, flat);
      work = _mm_max_epu8(
          _mm_or_si128(_mm_subs_epu8(p3, p0), _mm_subs_epu8(p0, p3)),
          _mm_or_si128(_mm_subs_epu8(q3, q0), _mm_subs_epu8(q0, q3)));
      flat = _mm_max_epu8(work, flat);
      work = _mm_max_epu8(
          _mm_or_si128(_mm_subs_epu8(p4, p0), _mm_subs_epu8(p0, p4)),
          _mm_or_si128(_mm_subs_epu8(q4, q0), _mm_subs_epu8(q0, q4)));
      flat = _mm_subs_epu8(flat, one);
      flat = _mm_cmpeq_epi8(flat, zero);
      flat = _mm_and_si128(flat, mask);

      p256_5 = _mm256_castpd_si256(
          _mm256_broadcast_pd((__m128d const *)(s - 6 * p)));
      q256_5 = _mm256_castpd_si256(
          _mm256_broadcast_pd((__m128d const *)(s + 5 * p)));
      p5 = _mm256_castsi256_si128(p256_5);
      q5 = _mm256_castsi256_si128(q256_5);
      flat2 = _mm_max_epu8(
          _mm_or_si128(_mm_subs_epu8(p5, p0), _mm_subs_epu8(p0, p5)),
          _mm_or_si128(_mm_subs_epu8(q5, q0), _mm_subs_epu8(q0, q5)));

      flat2 = _mm_max_epu8(work, flat2);
      p256_6 = _mm256_castpd_si256(
          _mm256_broadcast_pd((__m128d const *)(s - 7 * p)));
      q256_6 = _mm256_castpd_si256(
          _mm256_broadcast_pd((__m128d const *)(s + 6 * p)));
      p6 = _mm256_castsi256_si128(p256_6);
      q6 = _mm256_castsi256_si128(q256_6);
      work = _mm_max_epu8(
          _mm_or_si128(_mm_subs_epu8(p6, p0), _mm_subs_epu8(p0, p6)),
          _mm_or_si128(_mm_subs_epu8(q6, q0), _mm_subs_epu8(q0, q6)));

      flat2 = _mm_max_epu8(work, flat2);

      p256_7 = _mm256_castpd_si256(
          _mm256_broadcast_pd((__m128d const *)(s - 8 * p)));
      q256_7 = _mm256_castpd_si256(
          _mm256_broadcast_pd((__m128d const *)(s + 7 * p)));
      p7 = _mm256_castsi256_si128(p256_7);
      q7 = _mm256_castsi256_si128(q256_7);
      work = _mm_max_epu8(
          _mm_or_si128(_mm_subs_epu8(p7, p0), _mm_subs_epu8(p0, p7)),
          _mm_or_si128(_mm_subs_epu8(q7, q0), _mm_subs_epu8(q0, q7)));

      flat2 = _mm_max_epu8(work, flat2);
      flat2 = _mm_subs_epu8(flat2, one);
      flat2 = _mm_cmpeq_epi8(flat2, zero);
      flat2 = _mm_and_si128(flat2, flat);  // flat2 & flat & mask
    }

    // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    // flat and wide flat calculations
    {
      const __m256i eight = _mm256_set1_epi16(8);
      const __m256i four = _mm256_set1_epi16(4);
      __m256i pixelFilter_p, pixelFilter_q, pixetFilter_p2p1p0,
          pixetFilter_q2q1q0, sum_p7, sum_q7, sum_p3, sum_q3, res_p, res_q;

      const __m256i filter =
          _mm256_load_si256((__m256i const *)filt_loopfilter_avx2);
      p256_7 = _mm256_shuffle_epi8(p256_7, filter);
      p256_6 = _mm256_shuffle_epi8(p256_6, filter);
      p256_5 = _mm256_shuffle_epi8(p256_5, filter);
      p256_4 = _mm256_shuffle_epi8(p256_4, filter);
      p256_3 = _mm256_shuffle_epi8(p256_3, filter);
      p256_2 = _mm256_shuffle_epi8(p256_2, filter);
      p256_1 = _mm256_shuffle_epi8(p256_1, filter);
      p256_0 = _mm256_shuffle_epi8(p256_0, filter);
      q256_0 = _mm256_shuffle_epi8(q256_0, filter);
      q256_1 = _mm256_shuffle_epi8(q256_1, filter);
      q256_2 = _mm256_shuffle_epi8(q256_2, filter);
      q256_3 = _mm256_shuffle_epi8(q256_3, filter);
      q256_4 = _mm256_shuffle_epi8(q256_4, filter);
      q256_5 = _mm256_shuffle_epi8(q256_5, filter);
      q256_6 = _mm256_shuffle_epi8(q256_6, filter);
      q256_7 = _mm256_shuffle_epi8(q256_7, filter);

      pixelFilter_p = _mm256_add_epi16(_mm256_add_epi16(p256_6, p256_5),
                                       _mm256_add_epi16(p256_4, p256_3));
      pixelFilter_q = _mm256_add_epi16(_mm256_add_epi16(q256_6, q256_5),
                                       _mm256_add_epi16(q256_4, q256_3));

      pixetFilter_p2p1p0 =
          _mm256_add_epi16(p256_0, _mm256_add_epi16(p256_2, p256_1));
      pixelFilter_p = _mm256_add_epi16(pixelFilter_p, pixetFilter_p2p1p0);

      pixetFilter_q2q1q0 =
          _mm256_add_epi16(q256_0, _mm256_add_epi16(q256_2, q256_1));
      pixelFilter_q = _mm256_add_epi16(pixelFilter_q, pixetFilter_q2q1q0);

      pixelFilter_p = _mm256_add_epi16(
          eight, _mm256_add_epi16(pixelFilter_p, pixelFilter_q));

      pixetFilter_p2p1p0 = _mm256_add_epi16(
          four, _mm256_add_epi16(pixetFilter_p2p1p0, pixetFilter_q2q1q0));

      res_p = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(p256_7, p256_0)), 4);

      flat2_p0 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(q256_7, q256_0)), 4);

      flat2_q0 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      res_p =
          _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_p2p1p0,
                                             _mm256_add_epi16(p256_3, p256_0)),
                            3);

      flat_p0 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q =
          _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_p2p1p0,
                                             _mm256_add_epi16(q256_3, q256_0)),
                            3);

      flat_q0 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      sum_p7 = _mm256_add_epi16(p256_7, p256_7);

      sum_q7 = _mm256_add_epi16(q256_7, q256_7);

      sum_p3 = _mm256_add_epi16(p256_3, p256_3);

      sum_q3 = _mm256_add_epi16(q256_3, q256_3);

      pixelFilter_q = _mm256_sub_epi16(pixelFilter_p, p256_6);

      pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_6);

      res_p = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_1)), 4);

      flat2_p1 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_1)), 4);

      flat2_q1 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      pixetFilter_q2q1q0 = _mm256_sub_epi16(pixetFilter_p2p1p0, p256_2);

      pixetFilter_p2p1p0 = _mm256_sub_epi16(pixetFilter_p2p1p0, q256_2);

      res_p =
          _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_p2p1p0,
                                             _mm256_add_epi16(sum_p3, p256_1)),
                            3);

      flat_p1 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q =
          _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_q2q1q0,
                                             _mm256_add_epi16(sum_q3, q256_1)),
                            3);

      flat_q1 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      sum_p7 = _mm256_add_epi16(sum_p7, p256_7);

      sum_q7 = _mm256_add_epi16(sum_q7, q256_7);

      sum_p3 = _mm256_add_epi16(sum_p3, p256_3);

      sum_q3 = _mm256_add_epi16(sum_q3, q256_3);

      pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_5);

      pixelFilter_q = _mm256_sub_epi16(pixelFilter_q, p256_5);

      res_p = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_2)), 4);

      flat2_p2 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_2)), 4);

      flat2_q2 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      pixetFilter_p2p1p0 = _mm256_sub_epi16(pixetFilter_p2p1p0, q256_1);

      pixetFilter_q2q1q0 = _mm256_sub_epi16(pixetFilter_q2q1q0, p256_1);

      res_p =
          _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_p2p1p0,
                                             _mm256_add_epi16(sum_p3, p256_2)),
                            3);

      flat_p2 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q =
          _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_q2q1q0,
                                             _mm256_add_epi16(sum_q3, q256_2)),
                            3);

      flat_q2 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      sum_p7 = _mm256_add_epi16(sum_p7, p256_7);

      sum_q7 = _mm256_add_epi16(sum_q7, q256_7);

      pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_4);

      pixelFilter_q = _mm256_sub_epi16(pixelFilter_q, p256_4);

      res_p = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_3)), 4);

      flat2_p3 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_3)), 4);

      flat2_q3 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      sum_p7 = _mm256_add_epi16(sum_p7, p256_7);

      sum_q7 = _mm256_add_epi16(sum_q7, q256_7);

      pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_3);

      pixelFilter_q = _mm256_sub_epi16(pixelFilter_q, p256_3);

      res_p = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_4)), 4);

      flat2_p4 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_4)), 4);

      flat2_q4 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      sum_p7 = _mm256_add_epi16(sum_p7, p256_7);

      sum_q7 = _mm256_add_epi16(sum_q7, q256_7);

      pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_2);

      pixelFilter_q = _mm256_sub_epi16(pixelFilter_q, p256_2);

      res_p = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_5)), 4);

      flat2_p5 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_5)), 4);

      flat2_q5 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));

      sum_p7 = _mm256_add_epi16(sum_p7, p256_7);

      sum_q7 = _mm256_add_epi16(sum_q7, q256_7);

      pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_1);

      pixelFilter_q = _mm256_sub_epi16(pixelFilter_q, p256_1);

      res_p = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_6)), 4);

      flat2_p6 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168));

      res_q = _mm256_srli_epi16(
          _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_6)), 4);

      flat2_q6 = _mm256_castsi256_si128(
          _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168));
    }

    // wide flat
    // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    p2 = _mm_andnot_si128(flat, p2);
    flat_p2 = _mm_and_si128(flat, flat_p2);
    p2 = _mm_or_si128(flat_p2, p2);

    p1 = _mm_andnot_si128(flat, ps1);
    flat_p1 = _mm_and_si128(flat, flat_p1);
    p1 = _mm_or_si128(flat_p1, p1);

    p0 = _mm_andnot_si128(flat, ps0);
    flat_p0 = _mm_and_si128(flat, flat_p0);
    p0 = _mm_or_si128(flat_p0, p0);

    q0 = _mm_andnot_si128(flat, qs0);
    flat_q0 = _mm_and_si128(flat, flat_q0);
    q0 = _mm_or_si128(flat_q0, q0);

    q1 = _mm_andnot_si128(flat, qs1);
    flat_q1 = _mm_and_si128(flat, flat_q1);
    q1 = _mm_or_si128(flat_q1, q1);

    q2 = _mm_andnot_si128(flat, q2);
    flat_q2 = _mm_and_si128(flat, flat_q2);
    q2 = _mm_or_si128(flat_q2, q2);

    p6 = _mm_andnot_si128(flat2, p6);
    flat2_p6 = _mm_and_si128(flat2, flat2_p6);
    p6 = _mm_or_si128(flat2_p6, p6);
    _mm_storeu_si128((__m128i *)(s - 7 * p), p6);

    p5 = _mm_andnot_si128(flat2, p5);
    flat2_p5 = _mm_and_si128(flat2, flat2_p5);
    p5 = _mm_or_si128(flat2_p5, p5);
    _mm_storeu_si128((__m128i *)(s - 6 * p), p5);

    p4 = _mm_andnot_si128(flat2, p4);
    flat2_p4 = _mm_and_si128(flat2, flat2_p4);
    p4 = _mm_or_si128(flat2_p4, p4);
    _mm_storeu_si128((__m128i *)(s - 5 * p), p4);

    p3 = _mm_andnot_si128(flat2, p3);
    flat2_p3 = _mm_and_si128(flat2, flat2_p3);
    p3 = _mm_or_si128(flat2_p3, p3);
    _mm_storeu_si128((__m128i *)(s - 4 * p), p3);

    p2 = _mm_andnot_si128(flat2, p2);
    flat2_p2 = _mm_and_si128(flat2, flat2_p2);
    p2 = _mm_or_si128(flat2_p2, p2);
    _mm_storeu_si128((__m128i *)(s - 3 * p), p2);

    p1 = _mm_andnot_si128(flat2, p1);
    flat2_p1 = _mm_and_si128(flat2, flat2_p1);
    p1 = _mm_or_si128(flat2_p1, p1);
    _mm_storeu_si128((__m128i *)(s - 2 * p), p1);

    p0 = _mm_andnot_si128(flat2, p0);
    flat2_p0 = _mm_and_si128(flat2, flat2_p0);
    p0 = _mm_or_si128(flat2_p0, p0);
    _mm_storeu_si128((__m128i *)(s - 1 * p), p0);

    q0 = _mm_andnot_si128(flat2, q0);
    flat2_q0 = _mm_and_si128(flat2, flat2_q0);
    q0 = _mm_or_si128(flat2_q0, q0);
    _mm_storeu_si128((__m128i *)(s - 0 * p), q0);

    q1 = _mm_andnot_si128(flat2, q1);
    flat2_q1 = _mm_and_si128(flat2, flat2_q1);
    q1 = _mm_or_si128(flat2_q1, q1);
    _mm_storeu_si128((__m128i *)(s + 1 * p), q1);

    q2 = _mm_andnot_si128(flat2, q2);
    flat2_q2 = _mm_and_si128(flat2, flat2_q2);
    q2 = _mm_or_si128(flat2_q2, q2);
    _mm_storeu_si128((__m128i *)(s + 2 * p), q2);

    q3 = _mm_andnot_si128(flat2, q3);
    flat2_q3 = _mm_and_si128(flat2, flat2_q3);
    q3 = _mm_or_si128(flat2_q3, q3);
    _mm_storeu_si128((__m128i *)(s + 3 * p), q3);

    q4 = _mm_andnot_si128(flat2, q4);
    flat2_q4 = _mm_and_si128(flat2, flat2_q4);
    q4 = _mm_or_si128(flat2_q4, q4);
    _mm_storeu_si128((__m128i *)(s + 4 * p), q4);

    q5 = _mm_andnot_si128(flat2, q5);
    flat2_q5 = _mm_and_si128(flat2, flat2_q5);
    q5 = _mm_or_si128(flat2_q5, q5);
    _mm_storeu_si128((__m128i *)(s + 5 * p), q5);

    q6 = _mm_andnot_si128(flat2, q6);
    flat2_q6 = _mm_and_si128(flat2, flat2_q6);
    q6 = _mm_or_si128(flat2_q6, q6);
    _mm_storeu_si128((__m128i *)(s + 6 * p), q6);
  }
}
Exemple #29
0
void av1_build_compound_diffwtd_mask_highbd_avx2(
    uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint8_t *src0,
    int src0_stride, const uint8_t *src1, int src1_stride, int h, int w,
    int bd) {
  if (w < 16) {
    av1_build_compound_diffwtd_mask_highbd_ssse3(
        mask, mask_type, src0, src0_stride, src1, src1_stride, h, w, bd);
  } else {
    assert(mask_type == DIFFWTD_38 || mask_type == DIFFWTD_38_INV);
    assert(bd >= 8);
    assert((w % 16) == 0);
    const __m256i y0 = _mm256_setzero_si256();
    const __m256i yAOM_BLEND_A64_MAX_ALPHA =
        _mm256_set1_epi16(AOM_BLEND_A64_MAX_ALPHA);
    const int mask_base = 38;
    const __m256i ymask_base = _mm256_set1_epi16(mask_base);
    const uint16_t *ssrc0 = CONVERT_TO_SHORTPTR(src0);
    const uint16_t *ssrc1 = CONVERT_TO_SHORTPTR(src1);
    if (bd == 8) {
      if (mask_type == DIFFWTD_38_INV) {
        for (int i = 0; i < h; ++i) {
          for (int j = 0; j < w; j += 16) {
            __m256i s0 = _mm256_loadu_si256((const __m256i *)&ssrc0[j]);
            __m256i s1 = _mm256_loadu_si256((const __m256i *)&ssrc1[j]);
            __m256i diff = _mm256_srai_epi16(
                _mm256_abs_epi16(_mm256_sub_epi16(s0, s1)), DIFF_FACTOR_LOG2);
            __m256i m = _mm256_min_epi16(
                _mm256_max_epi16(y0, _mm256_add_epi16(diff, ymask_base)),
                yAOM_BLEND_A64_MAX_ALPHA);
            m = _mm256_sub_epi16(yAOM_BLEND_A64_MAX_ALPHA, m);
            m = _mm256_packus_epi16(m, m);
            m = _mm256_permute4x64_epi64(m, _MM_SHUFFLE(0, 0, 2, 0));
            __m128i m0 = _mm256_castsi256_si128(m);
            _mm_storeu_si128((__m128i *)&mask[j], m0);
          }
          ssrc0 += src0_stride;
          ssrc1 += src1_stride;
          mask += w;
        }
      } else {
        for (int i = 0; i < h; ++i) {
          for (int j = 0; j < w; j += 16) {
            __m256i s0 = _mm256_loadu_si256((const __m256i *)&ssrc0[j]);
            __m256i s1 = _mm256_loadu_si256((const __m256i *)&ssrc1[j]);
            __m256i diff = _mm256_srai_epi16(
                _mm256_abs_epi16(_mm256_sub_epi16(s0, s1)), DIFF_FACTOR_LOG2);
            __m256i m = _mm256_min_epi16(
                _mm256_max_epi16(y0, _mm256_add_epi16(diff, ymask_base)),
                yAOM_BLEND_A64_MAX_ALPHA);
            m = _mm256_packus_epi16(m, m);
            m = _mm256_permute4x64_epi64(m, _MM_SHUFFLE(0, 0, 2, 0));
            __m128i m0 = _mm256_castsi256_si128(m);
            _mm_storeu_si128((__m128i *)&mask[j], m0);
          }
          ssrc0 += src0_stride;
          ssrc1 += src1_stride;
          mask += w;
        }
      }
    } else {
      const __m128i xshift = xx_set1_64_from_32i(bd - 8 + DIFF_FACTOR_LOG2);
      if (mask_type == DIFFWTD_38_INV) {
        for (int i = 0; i < h; ++i) {
          for (int j = 0; j < w; j += 16) {
            __m256i s0 = _mm256_loadu_si256((const __m256i *)&ssrc0[j]);
            __m256i s1 = _mm256_loadu_si256((const __m256i *)&ssrc1[j]);
            __m256i diff = _mm256_sra_epi16(
                _mm256_abs_epi16(_mm256_sub_epi16(s0, s1)), xshift);
            __m256i m = _mm256_min_epi16(
                _mm256_max_epi16(y0, _mm256_add_epi16(diff, ymask_base)),
                yAOM_BLEND_A64_MAX_ALPHA);
            m = _mm256_sub_epi16(yAOM_BLEND_A64_MAX_ALPHA, m);
            m = _mm256_packus_epi16(m, m);
            m = _mm256_permute4x64_epi64(m, _MM_SHUFFLE(0, 0, 2, 0));
            __m128i m0 = _mm256_castsi256_si128(m);
            _mm_storeu_si128((__m128i *)&mask[j], m0);
          }
          ssrc0 += src0_stride;
          ssrc1 += src1_stride;
          mask += w;
        }
      } else {
        for (int i = 0; i < h; ++i) {
          for (int j = 0; j < w; j += 16) {
            __m256i s0 = _mm256_loadu_si256((const __m256i *)&ssrc0[j]);
            __m256i s1 = _mm256_loadu_si256((const __m256i *)&ssrc1[j]);
            __m256i diff = _mm256_sra_epi16(
                _mm256_abs_epi16(_mm256_sub_epi16(s0, s1)), xshift);
            __m256i m = _mm256_min_epi16(
                _mm256_max_epi16(y0, _mm256_add_epi16(diff, ymask_base)),
                yAOM_BLEND_A64_MAX_ALPHA);
            m = _mm256_packus_epi16(m, m);
            m = _mm256_permute4x64_epi64(m, _MM_SHUFFLE(0, 0, 2, 0));
            __m128i m0 = _mm256_castsi256_si128(m);
            _mm_storeu_si128((__m128i *)&mask[j], m0);
          }
          ssrc0 += src0_stride;
          ssrc1 += src1_stride;
          mask += w;
        }
      }
    }
  }
}
Exemple #30
0
void extern
avx2_test (void)
{
  x = _mm256_add_epi16 (x, x);
}