Exemple #1
0
/* forward transform, sign = -1; transform length = 3 * 2^n */
int
four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
{
	mpd_size_t R = 3; /* number of rows */
	mpd_size_t C = n / 3; /* number of columns */
	mpd_uint_t w3table[3];
	mpd_uint_t kernel, w0, w1, wstep;
	mpd_uint_t *s, *p0, *p1, *p2;
	mpd_uint_t umod;
#ifdef PPRO
	double dmod;
	uint32_t dinvmod[3];
#endif
	mpd_size_t i, k;


	assert(n >= 48);
	assert(n <= 3*MPD_MAXTRANSFORM_2N);


	SETMODULUS(modnum);
	_mpd_init_w3table(w3table, -1, modnum);
	/* size three ntt on the columns */
	for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) {

		SIZE3_NTT(p0, p1, p2, w3table);
	}


	kernel = _mpd_getkernel(n, -1, modnum);
	for (i = 1; i < R; i++) {
		w0 = 1;
		w1 = POWMOD(kernel, i);
		wstep = MULMOD(w1, w1);
		for (k = 0; k < C-1; k += 2) {
			mpd_uint_t x0 = a[i*C+k];
			mpd_uint_t x1 = a[i*C+k+1];
			MULMOD2(&x0, w0, &x1, w1);
			MULMOD2C(&w0, &w1, wstep);
			a[i*C+k] = x0;
			a[i*C+k+1] = x1;
		}
	}

	/* transform rows */
	for (s = a; s < a+n; s += C) {
		if (!six_step_fnt(s, C, modnum)) {
			return 0;
		}
	}

#if 0
	/* An unordered transform is sufficient for convolution. */
	if (ordered) {
		transpose_3xpow2(a, R, C);
	}
#endif

	return 1;
}
Exemple #2
0
/* backward transform, sign = 1; transform length = 3 * 2**n */
int
inv_four_step_fnt(const mpd_context_t *ctx, mpd_uint_t *a, mpd_size_t n, int modnum)
{
    mpd_size_t R = 3; /* number of rows */
    mpd_size_t C = n / 3; /* number of columns */
    mpd_uint_t w3table[3];
    mpd_uint_t kernel, w0, w1, wstep;
    mpd_uint_t *s, *p0, *p1, *p2;
    mpd_uint_t umod;
#ifdef PPRO
    double dmod;
    uint32_t dinvmod[3];
#endif
    mpd_size_t i, k;


    assert(n >= 48);
    assert(n <= 3*MPD_MAXTRANSFORM_2N);


#if 0
    /* An unordered transform is sufficient for convolution. */
    /* Transpose the matrix, producing an R*C matrix. */
    transpose_3xpow2(a, C, R);
#endif

    /* Length C transform on the rows. */
    for (s = a; s < a+n; s += C) {
        if (!inv_six_step_fnt(ctx, s, C, modnum)) {
            return 0;
        }
    }

    /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
    SETMODULUS(modnum);
    kernel = _mpd_getkernel(n, 1, modnum);
    for (i = 1; i < R; i++) {
        w0 = 1;
        w1 = POWMOD(kernel, i);
        wstep = MULMOD(w1, w1);
        for (k = 0; k < C; k += 2) {
            mpd_uint_t x0 = a[i*C+k];
            mpd_uint_t x1 = a[i*C+k+1];
            MULMOD2(&x0, w0, &x1, w1);
            MULMOD2C(&w0, &w1, wstep);
            a[i*C+k] = x0;
            a[i*C+k+1] = x1;
        }
    }

    /* Length R transform on the columns. */
    _mpd_init_w3table(w3table, 1, modnum);
    for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) {

        SIZE3_NTT(p0, p1, p2, w3table);
    }

    return 1;
}
Exemple #3
0
/* initialize transform parameters */
struct fnt_params *
_mpd_init_fnt_params(mpd_size_t n, int sign, int modnum)
{
	struct fnt_params *tparams;
	mpd_uint_t umod;
#ifdef PPRO
	double dmod;
	uint32_t dinvmod[3];
#endif
	mpd_uint_t kernel, imag, w;
	mpd_uint_t i;
	mpd_size_t nhalf;

	assert(ispower2(n));
	assert(sign == -1 || sign == 1);
	assert(P1 <= modnum && modnum <= P3);

	nhalf = n/2;
	tparams = mpd_sh_alloc(sizeof *tparams, nhalf, sizeof (mpd_uint_t));
	if (tparams == NULL) {
		return NULL;
	}

	SETMODULUS(modnum);
	kernel = _mpd_getkernel(n, sign, modnum);
	imag = _mpd_getkernel(4, -sign, modnum);

	tparams->modnum = modnum;
	tparams->modulus = umod;
	tparams->imag = imag;
	tparams->kernel = kernel;

	w  = 1;
	for (i = 0; i < nhalf; i++) {
		tparams->wtable[i] = w;
		w = MULMOD(w, kernel);
	}

	return tparams;
}
Exemple #4
0
/* initialize wtable of size three */
void
_mpd_init_w3table(mpd_uint_t w3table[3], int sign, int modnum)
{
	mpd_uint_t umod;
#ifdef PPRO
	double dmod;
	uint32_t dinvmod[3];
#endif
	mpd_uint_t kernel;

	SETMODULUS(modnum);
	kernel = _mpd_getkernel(3, sign, modnum);

	w3table[0] = 1;
	w3table[1] = kernel;
	w3table[2] = POWMOD(kernel, 2);
}
Exemple #5
0
/* forward transform with sign = -1 */
int
six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
{
    struct fnt_params *tparams;
    mpd_size_t log2n, C, R;
    mpd_uint_t kernel;
    mpd_uint_t umod;
#ifdef PPRO
    double dmod;
    uint32_t dinvmod[3];
#endif
    mpd_uint_t *x, w0, w1, wstep;
    mpd_size_t i, k;


    assert(ispower2(n));
    assert(n >= 16);
    assert(n <= MPD_MAXTRANSFORM_2N);

    log2n = mpd_bsr(n);
    C = ((mpd_size_t)1) << (log2n / 2);  /* number of columns */
    R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */


    /* Transpose the matrix. */
    if (!transpose_pow2(a, R, C)) {
        return 0;
    }

    /* Length R transform on the rows. */
    if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) {
        return 0;
    }
    for (x = a; x < a+n; x += R) {
        fnt_dif2(x, R, tparams);
    }

    /* Transpose the matrix. */
    if (!transpose_pow2(a, C, R)) {
        mpd_free(tparams);
        return 0;
    }

    /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
    SETMODULUS(modnum);
    kernel = _mpd_getkernel(n, -1, modnum);
    for (i = 1; i < R; i++) {
        w0 = 1;                  /* r**(i*0): initial value for k=0 */
        w1 = POWMOD(kernel, i);  /* r**(i*1): initial value for k=1 */
        wstep = MULMOD(w1, w1);  /* r**(2*i) */
        for (k = 0; k < C; k += 2) {
            mpd_uint_t x0 = a[i*C+k];
            mpd_uint_t x1 = a[i*C+k+1];
            MULMOD2(&x0, w0, &x1, w1);
            MULMOD2C(&w0, &w1, wstep);  /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
            a[i*C+k] = x0;
            a[i*C+k+1] = x1;
        }
    }

    /* Length C transform on the rows. */
    if (C != R) {
        mpd_free(tparams);
        if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) {
            return 0;
        }
    }
    for (x = a; x < a+n; x += C) {
        fnt_dif2(x, C, tparams);
    }
    mpd_free(tparams);

#if 0
    /* An unordered transform is sufficient for convolution. */
    /* Transpose the matrix. */
    if (!transpose_pow2(a, R, C)) {
        return 0;
    }
#endif

    return 1;
}