Exemple #1
0
void
sh_rtc_set(void *cookie, struct clock_ymdhms *dt)
{
	uint8_t r;

	/* stop clock */
	r = _reg_read_1(SH_(RCR2));
	r |= SH_RCR2_RESET;
	r &= ~SH_RCR2_START;
	_reg_write_1(SH_(RCR2), r);

	/* set time */
	if (CPU_IS_SH3)
		_reg_write_1(SH3_RYRCNT, TOBCD(dt->dt_year % 100));
	else
		_reg_write_2(SH4_RYRCNT, TOBCD(dt->dt_year % 100));
#define	RTCSET(x, y)	_reg_write_1(SH_(R ## x ## CNT), TOBCD(dt->dt_ ## y))
	RTCSET(MON, mon);
	RTCSET(WK, wday);
	RTCSET(DAY, day);
	RTCSET(HR, hour);
	RTCSET(MIN, min);
	RTCSET(SEC, sec);
#undef RTCSET
	/* start clock */
	_reg_write_1(SH_(RCR2), r | SH_RCR2_START);
}
/* control RTC chip enable */
static void
rtc_ce(int onoff)
{

	if (onoff) {
		_reg_write_1(0xb0000003, (1 << 1));
	} else {
		_reg_write_1(0xb0000003, (0 << 1));
	}
}
Exemple #3
0
void
psh3pwr_sleep(void *self)
{
	/* splhigh on entry */
	extern void pfckbd_poll_hitachi_power(void);

	uint8_t phdr;

	phdr = _reg_read_1(SH7709_PHDR);
	_reg_write_1(SH7709_PHDR, phdr & ~PSH3_GREEN_LED_ON);

	pfckbd_poll_hitachi_power();

	phdr = _reg_read_1(SH7709_PHDR);
	_reg_write_1(SH7709_PHDR, phdr | PSH3_GREEN_LED_ON);
}
Exemple #4
0
int
power_intr(void *arg)
{
	extern int kbd_reset;
	int status;

	status = (int8_t)_reg_read_1(LANDISK_BTNSTAT);
	if (status == -1) {
		return (0);
	}

	status = ~status;
	if (status & BTN_POWER_BIT) {
#ifdef DEBUG
		printf("%s switched\n", sc->sc_dev.dv_xname);
		Debugger();
#endif
		_reg_write_1(LANDISK_PWRSW_INTCLR, 1);
		if (kbd_reset == 1) {
			kbd_reset = 0;
			psignal(initproc, SIGUSR1);
		}
		return (1);
	}
	return (0);
}
Exemple #5
0
void
boot(int howto)
{

	if (cold) {
		if ((howto & RB_USERREQ) == 0)
			howto |= RB_HALT;
		goto haltsys;
	}

	boothowto = howto;
	if ((howto & RB_NOSYNC) == 0) {
		vfs_shutdown();
		/*
		 * If we've been adjusting the clock, the todr
		 * will be out of synch; adjust it now.
		 */
		if ((howto & RB_TIMEBAD) == 0)
			resettodr();
		else
			printf("WARNING: not updating battery clock\n");
	}

	uvm_shutdown();
	splhigh();		/* Disable interrupts. */

	/* Do a dump if requested. */
	if (howto & RB_DUMP)
		dumpsys();

haltsys:
	doshutdownhooks();

	if ((howto & RB_POWERDOWN) == RB_POWERDOWN) {
		_reg_write_1(LANDISK_PWRMNG, PWRMNG_POWEROFF);
		delay(1 * 1000 * 1000);
		printf("POWEROFF FAILED!\n");
		howto |= RB_HALT;
	}

	if (howto & RB_HALT) {
		printf("\n");
		printf("The operating system has halted.\n");
		printf("Please press any key to reboot.\n\n");
		cnpollc(1);
		cngetc();
		cnpollc(0);
	}

	printf("rebooting...\n");
	machine_reset();

	/*NOTREACHED*/
	for (;;) {
		continue;
	}
}
Exemple #6
0
static int
psh3pwr_intr_plug_in(void *self)
{
	struct psh3pwr_softc *sc __attribute__((__unused__)) =
	    (struct psh3pwr_softc *)self;
	uint8_t irr0, scpdr;

	irr0 = _reg_read_1(SH7709_IRR0);
	if (!(irr0 & IRR0_IRQ1))
		return 0;
	_reg_write_1(SH7709_IRR0, irr0 & ~IRR0_IRQ1);

	/* XXXX: WindowsCE sets this bit. */
	scpdr = _reg_read_1(SH7709_SCPDR);
	_reg_write_1(SH7709_SCPDR, scpdr & ~PSH3PWR_PLUG_OUT);

	DPRINTF(("%s: plug in\n", device_xname(&sc->sc_dev)));

	return 1;
}
void
blink_led(void *whatever)
{
	static struct timeout blink_tmo;
	u_int8_t ledctrl;

	if (led_blink == 0) {
		_reg_write_1(LANDISK_LEDCTRL,
		    LED_POWER_CHANGE | LED_POWER_VALUE);
		return;
	}

	ledctrl = (u_int8_t)_reg_read_1(LANDISK_LEDCTRL) & LED_POWER_VALUE;
	ledctrl ^= (LED_POWER_CHANGE | LED_POWER_VALUE);
	_reg_write_1(LANDISK_LEDCTRL, ledctrl);

	timeout_set(&blink_tmo, blink_led, NULL);
	timeout_add(&blink_tmo,
	    ((averunnable.ldavg[0] + FSCALE) * hz) >> FSHIFT);
}
Exemple #8
0
int
smap_fifo_reset(bus_addr_t a)
{
	int retry = 10000;

	_reg_write_1(a, SMAP_FIFO_RESET);

	while ((_reg_read_1(a) & SMAP_FIFO_RESET) && --retry > 0)
		;

	return (retry == 0);
}
Exemple #9
0
/*
 * Prepare context switch from oproc to nproc.
 * This code is used by cpu_switchto.
 */
void
cpu_switch_prepare(struct proc *oproc, struct proc *nproc)
{
	nproc->p_stat = SONPROC;

	if (oproc && (oproc->p_md.md_flags & MDP_STEP))
		_reg_write_2(SH_(BBRB), 0);

	curpcb = nproc->p_md.md_pcb;
	pmap_activate(nproc);

	if (nproc->p_md.md_flags & MDP_STEP) {
		int pm_asid = nproc->p_vmspace->vm_map.pmap->pm_asid;

		_reg_write_2(SH_(BBRB), 0);
		_reg_write_4(SH_(BARB), nproc->p_md.md_regs->tf_spc);
		_reg_write_1(SH_(BASRB), pm_asid);
		_reg_write_1(SH_(BAMRB), 0);
		_reg_write_2(SH_(BRCR), 0x0040);
		_reg_write_2(SH_(BBRB), 0x0014);
	}

	curproc = nproc;
}
Exemple #10
0
void
sh_rtc_get(void *cookie, time_t base, struct clock_ymdhms *dt)
{
	int retry = 8;

	/* disable carry interrupt */
	_reg_bclr_1(SH_(RCR1), SH_RCR1_CIE);

	do {
		uint8_t r = _reg_read_1(SH_(RCR1));
		r &= ~SH_RCR1_CF;
		r |= SH_RCR1_AF; /* don't clear alarm flag */
		_reg_write_1(SH_(RCR1), r);

		if (CPU_IS_SH3)
			dt->dt_year = FROMBCD(_reg_read_1(SH3_RYRCNT));
		else
			dt->dt_year = FROMBCD(_reg_read_2(SH4_RYRCNT) & 0x00ff);

		/* read counter */
#define	RTCGET(x, y)	dt->dt_ ## x = FROMBCD(_reg_read_1(SH_(R ## y ## CNT)))
		RTCGET(mon, MON);
		RTCGET(wday, WK);
		RTCGET(day, DAY);
		RTCGET(hour, HR);
		RTCGET(min, MIN);
		RTCGET(sec, SEC);
#undef RTCGET
	} while ((_reg_read_1(SH_(RCR1)) & SH_RCR1_CF) && --retry > 0);

	if (retry == 0) {
		printf("rtc_gettime: couldn't read RTC register.\n");
		memset(dt, 0, sizeof(*dt));
		return;
	}

	dt->dt_year = (dt->dt_year % 100) + 1900;
	if (dt->dt_year < 1970)
		dt->dt_year += 100;
}
Exemple #11
0
static void
psh3pwr_attach(device_t parent, device_t self, void *aux)
{
	extern void (*__sleep_func)(void *);
	extern void *__sleep_ctx;
	struct psh3pwr_softc *sc = device_private(self);
	uint8_t phdr;

	sc->sc_dev = self;

	/* arrange for hpcapm to call us when power status is requested */
	config_hook(CONFIG_HOOK_GET, CONFIG_HOOK_ACADAPTER,
	    CONFIG_HOOK_EXCLUSIVE, psh3pwr_apm_getpower_hook, sc);
	config_hook(CONFIG_HOOK_GET, CONFIG_HOOK_CHARGE,
	    CONFIG_HOOK_EXCLUSIVE, psh3pwr_apm_getpower_hook, sc);
	config_hook(CONFIG_HOOK_GET, CONFIG_HOOK_BATTERYVAL,
	    CONFIG_HOOK_EXCLUSIVE, psh3pwr_apm_getpower_hook, sc);

	/* regisiter sleep function to APM */
	__sleep_func = psh3pwr_sleep;
	__sleep_ctx = self;

	phdr = _reg_read_1(SH7709_PHDR);
	_reg_write_1(SH7709_PHDR, phdr | PSH3_GREEN_LED_ON);

	aprint_naive("\n");
	aprint_normal("\n");

	sc->sc_ih_pout = intc_intr_establish(SH7709_INTEVT2_IRQ0,
	    IST_EDGE, IPL_TTY, psh3pwr_intr_plug_out, sc);
	sc->sc_ih_pin = intc_intr_establish(SH7709_INTEVT2_IRQ1,
	    IST_EDGE, IPL_TTY, psh3pwr_intr_plug_in, sc);

	/* XXXX: WindowsCE sets this bit. */
	aprint_normal_dev(self, "plug status: %s\n",
	    psh3pwr_ac_is_off() ? "out" : "in");
}
Exemple #12
0
void
smap_attach(struct device *parent, struct device *self, void *aux)
{
	struct spd_attach_args *spa = aux;
	struct smap_softc *sc = (void *)self;
	struct emac3_softc *emac3 = &sc->emac3;
	struct ifnet *ifp = &sc->ethercom.ec_if;
	struct mii_data *mii = &emac3->mii;
	void *txbuf, *rxbuf;
	u_int16_t r;

#ifdef SMAP_DEBUG
	__sc = sc;
#endif

	printf(": %s\n", spa->spa_product_name);

	/* SPD EEPROM */
	if (smap_get_eaddr(sc, emac3->eaddr) != 0)
		return;

	printf("%s: Ethernet address %s\n", DEVNAME,
	    ether_sprintf(emac3->eaddr));

	/* disable interrupts */
	r = _reg_read_2(SPD_INTR_ENABLE_REG16);
	r &= ~(SPD_INTR_RXEND | SPD_INTR_TXEND | SPD_INTR_RXDNV |
	    SPD_INTR_EMAC3);
	_reg_write_2(SPD_INTR_ENABLE_REG16, r);
	emac3_intr_disable();

	/* clear pending interrupts */
	_reg_write_2(SPD_INTR_CLEAR_REG16, SPD_INTR_RXEND | SPD_INTR_TXEND |
	    SPD_INTR_RXDNV);
	emac3_intr_clear();

	/* buffer descriptor mode */
	_reg_write_1(SMAP_DESC_MODE_REG8, 0);

	if (smap_fifo_init(sc) != 0)
		return;

	if (emac3_init(&sc->emac3) != 0)
		return;
	emac3_intr_disable();
	emac3_disable();

	smap_desc_init(sc);

	/* allocate temporary buffer */
	txbuf = malloc(ETHER_MAX_LEN - ETHER_CRC_LEN + SMAP_FIFO_ALIGN + 16,
	    M_DEVBUF, M_NOWAIT);
	if (txbuf == NULL) {
		printf("%s: no memory.\n", DEVNAME);		
		return;
	}

	rxbuf = malloc(ETHER_MAX_LEN + SMAP_FIFO_ALIGN + 16,
	    M_DEVBUF, M_NOWAIT);
	if (rxbuf == NULL) {
		printf("%s: no memory.\n", DEVNAME);
		free(txbuf, M_DEVBUF);
		return;
	}

	sc->tx_buf = (u_int32_t *)ROUND16((vaddr_t)txbuf);
	sc->rx_buf = (u_int32_t *)ROUND16((vaddr_t)rxbuf);

	/* 
	 * setup MI layer 
	 */
	strcpy(ifp->if_xname, DEVNAME);
	ifp->if_softc	= sc;
	ifp->if_start	= smap_start;
	ifp->if_ioctl	= smap_ioctl;
	ifp->if_init	= smap_init;
	ifp->if_stop	= smap_stop;
	ifp->if_watchdog= smap_watchdog;
	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS |
	    IFF_MULTICAST;
	IFQ_SET_READY(&ifp->if_snd);

	/* ifmedia setup. */
	mii->mii_ifp		= ifp;
	mii->mii_readreg	= emac3_phy_readreg;
	mii->mii_writereg	= emac3_phy_writereg;
	mii->mii_statchg	= emac3_phy_statchg;
	sc->ethercom.ec_mii = mii;
	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
	mii_attach(&emac3->dev, mii, 0xffffffff, MII_PHY_ANY,
	    MII_OFFSET_ANY, 0);
	    
	/* Choose a default media. */
	if (LIST_FIRST(&mii->mii_phys) == NULL) {
		ifmedia_add(&mii->mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
		ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_NONE);
	} else {
		ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
	}

	if_attach(ifp);
	ether_ifattach(ifp, emac3->eaddr);
	
	spd_intr_establish(SPD_NIC, smap_intr, sc);

#if NRND > 0
	rnd_attach_source(&sc->rnd_source, DEVNAME,
	    RND_TYPE_NET, RND_FLAG_DEFAULT);
#endif
}
void
InitializeBsc(void)
{

	/*
	 * Drive RAS,CAS in stand by mode and bus release mode
	 * Area0 = Normal memory, Area5,6=Normal(no burst)
	 * Area2 = Normal memory, Area3 = SDRAM, Area5 = Normal memory
	 * Area4 = Normal Memory
	 * Area6 = Normal memory
	 */
	_reg_write_4(SH4_BCR1, BSC_BCR1_VAL);

	/*
	 * Bus Width
	 * Area4: Bus width = 16bit
	 * Area6,5 = 16bit
	 * Area1 = 8bit
	 * Area2,3: Bus width = 32bit
	 */
	_reg_write_2(SH4_BCR2, BSC_BCR2_VAL);

#if defined(SH4) && defined(SH7751R)
	if (cpu_product == CPU_PRODUCT_7751R) {
#ifdef BSC_BCR3_VAL
		_reg_write_2(SH4_BCR3, BSC_BCR3_VAL);
#endif
#ifdef BSC_BCR4_VAL
		_reg_write_4(SH4_BCR4, BSC_BCR4_VAL);
#endif
	}
#endif	/* SH4 && SH7751R */

	/*
	 * Idle cycle number in transition area and read to write
	 * Area6 = 3, Area5 = 3, Area4 = 3, Area3 = 3, Area2 = 3
	 * Area1 = 3, Area0 = 3
	 */
	_reg_write_4(SH4_WCR1, BSC_WCR1_VAL);

	/*
	 * Wait cycle
	 * Area 6 = 6
	 * Area 5 = 2
	 * Area 4 = 10
	 * Area 3 = 3
	 * Area 2,1 = 3
	 * Area 0 = 6
	 */
	_reg_write_4(SH4_WCR2, BSC_WCR2_VAL);

#ifdef BSC_WCR3_VAL
	_reg_write_4(SH4_WCR3, BSC_WCR3_VAL);
#endif

	/*
	 * RAS pre-charge = 2cycle, RAS-CAS delay = 3 cycle,
	 * write pre-charge=1cycle
	 * CAS before RAS refresh RAS assert time = 3 cycle
	 * Disable burst, Bus size=32bit, Column Address=10bit, Refresh ON
	 * CAS before RAS refresh ON, EDO DRAM
	 */
	_reg_write_4(SH4_MCR, BSC_MCR_VAL);

#ifdef BSC_SDMR2_VAL
	_reg_write_1(BSC_SDMR2_VAL, 0);
#endif

#ifdef BSC_SDMR3_VAL
	_reg_write_1(BSC_SDMR3_VAL, 0);
#endif /* BSC_SDMR3_VAL */

	/*
	 * PCMCIA Control Register
	 * OE/WE assert delay 3.5 cycle
	 * OE/WE negate-address delay 3.5 cycle
	 */
#ifdef BSC_PCR_VAL
	_reg_write_2(SH4_PCR, BSC_PCR_VAL);
#endif

	/*
	 * Refresh Timer Control/Status Register
	 * Disable interrupt by CMF, closk 1/16, Disable OVF interrupt
	 * Count Limit = 1024
	 * In following statement, the reason why high byte = 0xa5(a4 in RFCR)
	 * is the rule of SH3 in writing these register.
	 */
	_reg_write_2(SH4_RTCSR, BSC_RTCSR_VAL);

	/*
	 * Refresh Timer Counter
	 * Initialize to 0
	 */
#ifdef BSC_RTCNT_VAL
	_reg_write_2(SH4_RTCNT, BSC_RTCNT_VAL);
#endif

	/* set Refresh Time Constant Register */
	_reg_write_2(SH4_RTCOR, BSC_RTCOR_VAL);

	/* init Refresh Count Register */
#ifdef BSC_RFCR_VAL
	_reg_write_2(SH4_RFCR, BSC_RFCR_VAL);
#endif

	/*
	 * Clock Pulse Generator
	 */
	/* Set Clock mode (make internal clock double speed) */
	_reg_write_2(SH4_FRQCR, FRQCR_VAL);
}
Exemple #14
0
void
smap_start(struct ifnet *ifp)
{
	struct smap_softc *sc = ifp->if_softc;
	struct smap_desc *d;
	struct mbuf *m0, *m;
	u_int8_t *p, *q;
	u_int32_t *r;
	int i, sz, pktsz;
	u_int16_t fifop;
	u_int16_t r16;

	KDASSERT(ifp->if_flags & IFF_RUNNING);
	FUNC_ENTER();

	while (1) {
		IFQ_POLL(&ifp->if_snd, m0);
		if (m0 == NULL)
			goto end;

		pktsz = m0->m_pkthdr.len;
		KDASSERT(pktsz <= ETHER_MAX_LEN - ETHER_CRC_LEN);
		sz = ROUND4(pktsz);

		if (sz > sc->tx_buf_freesize ||
		    sc->tx_desc_cnt >= SMAP_DESC_MAX ||
		    emac3_tx_done() != 0) {
			ifp->if_flags |= IFF_OACTIVE;
			goto end;
		}

		IFQ_DEQUEUE(&ifp->if_snd, m0);
		KDASSERT(m0 != NULL);
		if (ifp->if_bpf)
			bpf_mtap(ifp->if_bpf, m0);

		p = (u_int8_t *)sc->tx_buf;
		q = p + sz;
		/* copy to temporary buffer area */
		for (m = m0; m != 0; m = m->m_next) {
			memcpy(p, mtod(m, void *), m->m_len);
			p += m->m_len;
		}
		m_freem(m0);

		/* zero padding area */
		for (; p < q; p++)
			*p = 0;

		/* put to FIFO */
		fifop = sc->tx_fifo_ptr;
		KDASSERT((fifop & 3) == 0);
		_reg_write_2(SMAP_TXFIFO_PTR_REG16, fifop);
		sc->tx_fifo_ptr = (fifop + sz) & 0xfff;

		r = sc->tx_buf;
		for (i = 0; i < sz; i += sizeof(u_int32_t))
			*(volatile u_int32_t *)SMAP_TXFIFO_DATA_REG = *r++;
		_wbflush();

		/* put FIFO to EMAC3 */
		d = &sc->tx_desc[sc->tx_start_index];
		KDASSERT((d->stat & SMAP_TXDESC_READY) == 0);

		d->sz = pktsz;
		d->ptr = fifop + SMAP_TXBUF_BASE;
		d->stat = SMAP_TXDESC_READY | SMAP_TXDESC_GENFCS |
		    SMAP_TXDESC_GENPAD;
		_wbflush();

		sc->tx_buf_freesize -= sz;
		sc->tx_desc_cnt++;
		sc->tx_start_index = (sc->tx_start_index + 1) & 0x3f;
		_reg_write_1(SMAP_TXFIFO_FRAME_INC_REG8, 1);

		emac3_tx_kick();
		r16 = _reg_read_2(SPD_INTR_ENABLE_REG16);
		if ((r16 & SPD_INTR_TXDNV) == 0) {
			r16 |= SPD_INTR_TXDNV;
			_reg_write_2(SPD_INTR_ENABLE_REG16, r16);
		}
	}
 end:
	/* set watchdog timer */
	ifp->if_timer = 5;

	FUNC_EXIT();
}
Exemple #15
0
void
smap_rxeof(void *arg)
{
	struct smap_softc *sc = arg;
	struct smap_desc *d;
	struct ifnet *ifp = &sc->ethercom.ec_if;
	struct mbuf *m;
	u_int16_t r16, stat;
	u_int32_t *p;
	int i, j, sz, rxsz, cnt;

	FUNC_ENTER();

	i = sc->rx_done_index;

	for (cnt = 0;; cnt++, i = (i + 1) & 0x3f) {
		m = NULL;
		d = &sc->rx_desc[i];
		stat = d->stat;

		if ((stat & SMAP_RXDESC_EMPTY) != 0) {
			break;
		} else if (stat & 0x7fff) {
			ifp->if_ierrors++;
			goto next_packet;
		}

		sz = d->sz;
		rxsz = ROUND4(sz);

		KDASSERT(sz >= ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN);
		KDASSERT(sz <= ETHER_MAX_LEN);

		/* load data from FIFO */
		_reg_write_2(SMAP_RXFIFO_PTR_REG16, d->ptr & 0x3ffc);
		p = sc->rx_buf;
		for (j = 0; j < rxsz; j += sizeof(u_int32_t)) {
			*p++ = _reg_read_4(SMAP_RXFIFO_DATA_REG);
		}

		/* put to mbuf */
		MGETHDR(m, M_DONTWAIT, MT_DATA);
		if (m == NULL) {
			printf("%s: unable to allocate Rx mbuf\n", DEVNAME);
			ifp->if_ierrors++;
			goto next_packet;
		}

		if (sz > (MHLEN - 2)) {
			MCLGET(m, M_DONTWAIT);
			if ((m->m_flags & M_EXT) == 0) {
				printf("%s: unable to allocate Rx cluster\n",
				    DEVNAME);
				m_freem(m);
				m = NULL;
				ifp->if_ierrors++;
				goto next_packet;
			}
		}

		m->m_data += 2; /* for alignment */
		m->m_pkthdr.rcvif = ifp;
		m->m_pkthdr.len = m->m_len = sz;
		memcpy(mtod(m, void *), (void *)sc->rx_buf, sz);

	next_packet:
		ifp->if_ipackets++;

		_reg_write_1(SMAP_RXFIFO_FRAME_DEC_REG8, 1);

		/* free descriptor */
		d->sz	= 0;
		d->ptr	= 0;
		d->stat	= SMAP_RXDESC_EMPTY;
		_wbflush();
		
		if (m != NULL) {
			if (ifp->if_bpf)
				bpf_mtap(ifp->if_bpf, m);
			(*ifp->if_input)(ifp, m);
		}
	}
	sc->rx_done_index = i;

	r16 = _reg_read_2(SPD_INTR_ENABLE_REG16);
	if (((r16 & SPD_INTR_RXDNV) == 0) && cnt > 0) {
		r16  |= SPD_INTR_RXDNV;
		_reg_write_2(SPD_INTR_ENABLE_REG16, r16);
	}

	FUNC_EXIT();
}
Exemple #16
0
void
sh_cpu_init(int arch, int product)
{
	/* CPU type */
	cpu_arch = arch;
	cpu_product = product;

#if defined(SH3) && defined(SH4)
	/* Set register addresses */
	sh_devreg_init();
#endif
	/* Cache access ops. */
	sh_cache_init();

	/* MMU access ops. */
	sh_mmu_init();

	/* Hardclock, RTC initialize. */
	machine_clock_init();

	/* ICU initiailze. */
	curcpu()->ci_idepth = -1;
	intc_init();

	/* Exception vector. */
	memcpy(VBR + 0x100, sh_vector_generic,
	    sh_vector_generic_end - sh_vector_generic);
#ifdef SH3
	if (CPU_IS_SH3)
		memcpy(VBR + 0x400, sh3_vector_tlbmiss,
		    sh3_vector_tlbmiss_end - sh3_vector_tlbmiss);
#endif
#ifdef SH4
	if (CPU_IS_SH4)
		memcpy(VBR + 0x400, sh4_vector_tlbmiss,
		    sh4_vector_tlbmiss_end - sh4_vector_tlbmiss);
#endif
	memcpy(VBR + 0x600, sh_vector_interrupt,
	    sh_vector_interrupt_end - sh_vector_interrupt);

	if (!SH_HAS_UNIFIED_CACHE)
		sh_icache_sync_all();

	__asm volatile("ldc %0, vbr" :: "r"(VBR));

	/* kernel stack setup */
	__sh_switch_resume = CPU_IS_SH3 ? sh3_switch_resume : sh4_switch_resume;

	/* Set page size (4KB) */
	uvm_setpagesize();

	/* setup UBC channel A for single-stepping */
#if defined(PTRACE) || defined(DDB)
	_reg_write_2(SH_(BBRA), 0); /* disable channel A */
	_reg_write_2(SH_(BBRB), 0); /* disable channel B */

#ifdef SH3
	if (CPU_IS_SH3) {
		/* A: break after execution, ignore ASID */
		_reg_write_4(SH3_BRCR, (UBC_CTL_A_AFTER_INSN
					| SH3_UBC_CTL_A_MASK_ASID));

		/* A: compare all address bits */
		_reg_write_4(SH3_BAMRA, 0x00000000);
	}
#endif	/* SH3 */

#ifdef SH4
	if (CPU_IS_SH4) {
		/* A: break after execution */
		_reg_write_2(SH4_BRCR, UBC_CTL_A_AFTER_INSN);

		/* A: compare all address bits, ignore ASID */
		_reg_write_1(SH4_BAMRA, SH4_UBC_MASK_NONE | SH4_UBC_MASK_ASID);
	}
#endif	/* SH4 */
#endif
}
Exemple #17
0
void
sh_clock_init(int flags, struct rtc_ops *rtc)
{
	uint32_t s, t0, cnt_1s;

	sh_clock.flags = flags;
	if (rtc != NULL)
		sh_clock.rtc = *rtc;	/* structure copy */

	/* Initialize TMU */
	_reg_write_2(SH_(TCR0), 0);
	_reg_write_2(SH_(TCR1), 0);
	_reg_write_2(SH_(TCR2), 0);

	/* Reset RTC alarm and interrupt */
	_reg_write_1(SH_(RCR1), 0);

	/* Stop all counter */
	_reg_write_1(SH_(TSTR), 0);

	/*
	 * Estimate CPU clock.
	 */
	if (sh_clock.flags & SH_CLOCK_NORTC) {
		/* Set TMU channel 0 source to PCLOCK / 16 */
		_reg_write_2(SH_(TCR0), TCR_TPSC_P16);
		sh_clock.tmuclk = sh_clock.pclock / 16;
	} else {
		/* Set TMU channel 0 source to RTC counter clock (16.384kHz) */
		_reg_write_2(SH_(TCR0),
		    CPU_IS_SH3 ? SH3_TCR_TPSC_RTC : SH4_TCR_TPSC_RTC);
		sh_clock.tmuclk = SH_RTC_CLOCK;

		/* Make sure RTC oscillator is enabled */
		_reg_bset_1(SH_(RCR2), SH_RCR2_ENABLE);
	}

	s = _cpu_exception_suspend();
	_cpu_spin(1);	/* load function on cache. */
	TMU_START(0);
	_cpu_spin(10000000);
	t0 = TMU_ELAPSED(0);
	_cpu_exception_resume(s);

	sh_clock.cpucycle_1us = (sh_clock.tmuclk * 10) / t0;

	cnt_1s = ((uint64_t)sh_clock.tmuclk * 10000000 * 10 + t0 / 2) / t0;
	if (CPU_IS_SH4)
		sh_clock.cpuclock = cnt_1s / 2;	/* two-issue */
	else
		sh_clock.cpuclock = cnt_1s;

	/*
	 * Estimate PCLOCK
	 */
	if (sh_clock.pclock == 0) {
		uint32_t t1;

		/* set TMU channel 1 source to PCLOCK / 4 */
		_reg_write_2(SH_(TCR1), TCR_TPSC_P4);
		s = _cpu_exception_suspend();
		_cpu_spin(1);	/* load function on cache. */
		TMU_START(0);
		TMU_START(1);
		_cpu_spin(cnt_1s); /* 1 sec. */
		t0 = TMU_ELAPSED(0);
		t1 = TMU_ELAPSED(1);
		_cpu_exception_resume(s);

		sh_clock.pclock =
		    ((uint64_t)t1 * 4 * SH_RTC_CLOCK + t0 / 2) / t0;
	}

	/* Stop all counters */
	_reg_write_1(SH_(TSTR), 0);

#undef TMU_START
#undef TMU_ELAPSED
}
Exemple #18
0
void
sh_rtc_init(void *cookie)
{
	/* Make sure to start RTC */
	_reg_write_1(SH_(RCR2), SH_RCR2_ENABLE | SH_RCR2_START);
}