/* * Lock a location for the running thread. Yield to allow other * threads to run if this thread is blocked because the lock is * not available. Note that this function does not sleep. It * assumes that the lock will be available very soon. * * This function checks if the running thread has already locked the * location, warns if this occurs and creates a thread dump before * returning. */ void _spinlock_debug(spinlock_t *lck, char *fname, int lineno) { struct pthread *curthread = _get_curthread(); int cnt = 0; /* * Try to grab the lock and loop if another thread grabs * it before we do. */ while(_atomic_lock(&lck->access_lock)) { cnt++; if (cnt > 100) { char str[256]; snprintf(str, sizeof(str), "%s - Warning: Thread %p attempted to lock %p from %s (%d) was left locked from %s (%d)\n", _getprogname(), curthread, lck, fname, lineno, lck->fname, lck->lineno); __sys_extpwrite(2, str, strlen(str), O_FBLOCKING, -1); __sleep(1); cnt = 0; } /* Block the thread until the lock. */ curthread->data.spinlock = lck; _thread_kern_sched_state(PS_SPINBLOCK, fname, lineno); } /* The running thread now owns the lock: */ lck->lock_owner = (long) curthread; lck->fname = fname; lck->lineno = lineno; }
ssize_t _sendmsg(int fd, const struct msghdr *msg, int flags) { struct pthread *curthread = _get_curthread(); int ret; if ((ret = _FD_LOCK(fd, FD_WRITE, NULL)) == 0) { while ((ret = __sys_sendmsg(fd, msg, flags)) < 0) { if (!(_thread_fd_getflags(fd) & O_NONBLOCK) && ((errno == EWOULDBLOCK) || (errno == EAGAIN))) { curthread->data.fd.fd = fd; /* Set the timeout: */ _thread_kern_set_timeout(NULL); curthread->interrupted = 0; _thread_kern_sched_state(PS_FDW_WAIT, __FILE__, __LINE__); /* Check if the operation was interrupted: */ if (curthread->interrupted) { errno = EINTR; ret = -1; break; } } else { ret = -1; break; } } _FD_UNLOCK(fd, FD_WRITE); } return (ret); }
void flockfile(FILE * fp) { int idx = file_idx(fp); struct file_lock *p; /* Lock the hash table: */ _SPINLOCK(&hash_lock); /* Check if the static array has not been initialised: */ if (!init_done) { /* Initialise the global array: */ memset(flh,0,sizeof(flh)); /* Flag the initialisation as complete: */ init_done = 1; } /* Get a pointer to any existing lock for the file: */ if ((p = find_lock(idx, fp)) == NULL) { /* * The file is not locked, so this thread can * grab the lock: */ p = do_lock(idx, fp); /* Unlock the hash table: */ _SPINUNLOCK(&hash_lock); /* * The file is already locked, so check if the * running thread is the owner: */ } else if (p->owner == _thread_run) { /* * The running thread is already the * owner, so increment the count of * the number of times it has locked * the file: */ p->count++; /* Unlock the hash table: */ _SPINUNLOCK(&hash_lock); } else { /* * The file is locked for another thread. * Append this thread to the queue of * threads waiting on the lock. */ TAILQ_INSERT_TAIL(&p->l_head,_thread_run,qe); /* Unlock the hash table: */ _SPINUNLOCK(&hash_lock); /* Wait on the FILE lock: */ _thread_kern_sched_state(PS_FILE_WAIT, "", 0); } }
int _poll(struct pollfd *fds, unsigned int nfds, int timeout) { struct pthread *curthread = _get_curthread(); struct timespec ts; int numfds = nfds; int i, ret = 0; struct pthread_poll_data data; if (numfds > _thread_dtablesize) { numfds = _thread_dtablesize; } /* Check if a timeout was specified: */ if (timeout == INFTIM) { /* Wait for ever: */ _thread_kern_set_timeout(NULL); } else if (timeout > 0) { /* Convert the timeout in msec to a timespec: */ ts.tv_sec = timeout / 1000; ts.tv_nsec = (timeout % 1000) * 1000000; /* Set the wake up time: */ _thread_kern_set_timeout(&ts); } else if (timeout < 0) { /* a timeout less than zero but not == INFTIM is invalid */ errno = EINVAL; return (-1); } if (((ret = __sys_poll(fds, numfds, 0)) == 0) && (timeout != 0)) { data.nfds = numfds; data.fds = fds; /* * Clear revents in case of a timeout which leaves fds * unchanged: */ for (i = 0; i < numfds; i++) { fds[i].revents = 0; } curthread->data.poll_data = &data; curthread->interrupted = 0; _thread_kern_sched_state(PS_POLL_WAIT, __FILE__, __LINE__); if (curthread->interrupted) { errno = EINTR; ret = -1; } else { ret = data.nfds; } } return (ret); }
ssize_t recvfrom(int fd, void *buf, size_t len, int flags, struct sockaddr * from, socklen_t *from_len) { struct pthread *curthread = _get_curthread(); ssize_t ret; /* This is a cancellation point: */ _thread_enter_cancellation_point(); if ((ret = _FD_LOCK(fd, FD_READ, NULL)) == 0) { while ((ret = _thread_sys_recvfrom(fd, buf, len, flags, from, from_len)) < 0) { if (!(_thread_fd_table[fd]->status_flags->flags & O_NONBLOCK) && !(flags & MSG_DONTWAIT) && ((errno == EWOULDBLOCK) || (errno == EAGAIN))) { curthread->data.fd.fd = fd; /* Set the timeout: */ _thread_kern_set_timeout(_FD_RCVTIMEO(fd)); curthread->interrupted = 0; curthread->closing_fd = 0; curthread->timeout = 0; _thread_kern_sched_state(PS_FDR_WAIT, __FILE__, __LINE__); /* Check if the wait was interrupted: */ if (curthread->interrupted) { /* Return an error status: */ errno = EINTR; ret = -1; break; } else if (curthread->closing_fd) { /* Return an error status: */ errno = EBADF; ret = -1; break; } else if (curthread->timeout) { /* Return an error status: */ errno = EWOULDBLOCK; ret = -1; break; } } else { ret = -1; break; } } _FD_UNLOCK(fd, FD_READ); } /* No longer in a cancellation point: */ _thread_leave_cancellation_point(); return (ret); }
int _sigsuspend(const sigset_t * set) { struct pthread *curthread = _get_curthread(); int ret = -1; sigset_t oset, sigset; /* Check if a new signal set was provided by the caller: */ if (set != NULL) { /* Save the current signal mask: */ oset = curthread->sigmask; /* Change the caller's mask: */ curthread->sigmask = *set; /* * Check if there are pending signals for the running * thread or process that aren't blocked: */ sigset = curthread->sigpend; SIGSETOR(sigset, _process_sigpending); SIGSETNAND(sigset, curthread->sigmask); if (SIGNOTEMPTY(sigset)) { /* * Call the kernel scheduler which will safely * install a signal frame for the running thread: */ _thread_kern_sched_sig(); } else { /* Wait for a signal: */ _thread_kern_sched_state(PS_SIGSUSPEND, __FILE__, __LINE__); } /* Always return an interrupted error: */ errno = EINTR; /* Restore the signal mask: */ curthread->sigmask = oset; } else { /* Return an invalid argument error: */ errno = EINVAL; } /* Return the completion status: */ return (ret); }
/* * Lock a location for the running thread. Yield to allow other * threads to run if this thread is blocked because the lock is * not available. Note that this function does not sleep. It * assumes that the lock will be available very soon. */ void _spinlock(spinlock_t *lck) { struct pthread *curthread = _get_curthread(); /* * Try to grab the lock and loop if another thread grabs * it before we do. */ while(_atomic_lock(&lck->access_lock)) { /* Block the thread until the lock. */ curthread->data.spinlock = lck; _thread_kern_sched_state(PS_SPINBLOCK, __FILE__, __LINE__); } /* The running thread now owns the lock: */ lck->lock_owner = (long) curthread; }
/* * Note: a thread calling wait4 may have its state changed to waiting * until awakened by a signal. Also note that system(3), for example, * blocks SIGCHLD and calls waitpid (which calls wait4). If the process * started by system(3) doesn't finish before this function is called the * function will never awaken -- system(3) also ignores SIGINT and SIGQUIT. * * Thus always unmask SIGCHLD here. */ pid_t wait4(pid_t pid, int *istat, int options, struct rusage * rusage) { struct pthread *curthread = _get_curthread(); pid_t ret; sigset_t mask, omask; /* This is a cancellation point: */ _thread_enter_cancellation_point(); _thread_kern_sig_defer(); sigemptyset(&mask); sigaddset(&mask, SIGCHLD); sigprocmask(SIG_UNBLOCK, &mask, &omask); /* Perform a non-blocking wait4 syscall: */ while ((ret = _thread_sys_wait4(pid, istat, options | WNOHANG, rusage)) == 0 && (options & WNOHANG) == 0) { /* Reset the interrupted operation flag: */ curthread->interrupted = 0; /* Schedule the next thread while this one waits: */ _thread_kern_sched_state(PS_WAIT_WAIT, __FILE__, __LINE__); /* Check if this call was interrupted by a signal: */ if (curthread->interrupted) { errno = EINTR; ret = -1; break; } } sigprocmask(SIG_SETMASK, &omask, NULL); _thread_kern_sig_undefer(); /* No longer in a cancellation point: */ _thread_leave_cancellation_point(); return (ret); }
ssize_t read(int fd, void *buf, size_t nbytes) { struct pthread *curthread = _get_curthread(); ssize_t ret; int type; /* This is a cancellation point: */ _thread_enter_cancellation_point(); /* POSIX says to do just this: */ if (nbytes == 0) ret = 0; /* Lock the file descriptor for read: */ else if ((ret = _FD_LOCK(fd, FD_READ, NULL)) == 0) { /* Get the read/write mode type: */ type = _thread_fd_table[fd]->status_flags->flags & O_ACCMODE; /* Check if the file is not open for read: */ if (type != O_RDONLY && type != O_RDWR) { /* File is not open for read: */ errno = EBADF; ret = -1; } /* Perform a non-blocking read syscall: */ else while ((ret = _thread_sys_read(fd, buf, nbytes)) < 0) { if ((_thread_fd_table[fd]->status_flags->flags & O_NONBLOCK) == 0 && (errno == EWOULDBLOCK || errno == EAGAIN)) { curthread->data.fd.fd = fd; _thread_kern_set_timeout(NULL); /* Reset the interrupted operation flag: */ curthread->interrupted = 0; curthread->closing_fd = 0; _thread_kern_sched_state(PS_FDR_WAIT, __FILE__, __LINE__); /* * Check if the operation was * interrupted by a signal or * a closing fd. */ if (curthread->interrupted) { errno = EINTR; ret = -1; break; } else if (curthread->closing_fd) { errno = EBADF; ret = -1; break; } } else { break; } } _FD_UNLOCK(fd, FD_READ); } /* No longer in a cancellation point: */ _thread_leave_cancellation_point(); return (ret); }
void pthread_exit(void *status) { struct pthread *curthread = _get_curthread(); pthread_t pthread; /* Check if this thread is already in the process of exiting: */ if ((curthread->flags & PTHREAD_EXITING) != 0) { PANIC("Thread has called pthread_exit() from a destructor. POSIX 1003.1 1996 s16.2.5.2 does not allow this!"); } /* Flag this thread as exiting: */ curthread->flags |= PTHREAD_EXITING; /* Save the return value: */ curthread->ret = status; while (curthread->cleanup != NULL) { pthread_cleanup_pop(1); } if (curthread->attr.cleanup_attr != NULL) { curthread->attr.cleanup_attr(curthread->attr.arg_attr); } /* Check if there is thread specific data: */ if (curthread->specific_data != NULL) { /* Run the thread-specific data destructors: */ _thread_cleanupspecific(); } /* * Lock the garbage collector mutex to ensure that the garbage * collector is not using the dead thread list. */ if (pthread_mutex_lock(&_gc_mutex) != 0) PANIC("Cannot lock gc mutex"); /* Add this thread to the list of dead threads. */ TAILQ_INSERT_HEAD(&_dead_list, curthread, dle); /* * Signal the garbage collector thread that there is something * to clean up. */ if (pthread_cond_signal(&_gc_cond) != 0) PANIC("Cannot signal gc cond"); /* * Avoid a race condition where a scheduling signal can occur * causing the garbage collector thread to run. If this happens, * the current thread can be cleaned out from under us. */ _thread_kern_sig_defer(); /* Unlock the garbage collector mutex: */ if (pthread_mutex_unlock(&_gc_mutex) != 0) PANIC("Cannot unlock gc mutex"); /* Check if there is a thread joining this one: */ if (curthread->joiner != NULL) { pthread = curthread->joiner; curthread->joiner = NULL; switch (pthread->suspended) { case SUSP_JOIN: /* * The joining thread is suspended. Change the * suspension state to make the thread runnable when it * is resumed: */ pthread->suspended = SUSP_NO; break; case SUSP_NO: /* Make the joining thread runnable: */ PTHREAD_NEW_STATE(pthread, PS_RUNNING); break; default: PANIC("Unreachable code reached"); } /* Set the return value for the joining thread: */ pthread->join_status.ret = curthread->ret; pthread->join_status.error = 0; pthread->join_status.thread = NULL; /* Make this thread collectable by the garbage collector. */ PTHREAD_ASSERT(((curthread->attr.flags & PTHREAD_DETACHED) == 0), "Cannot join a detached thread"); curthread->attr.flags |= PTHREAD_DETACHED; } /* Remove this thread from the thread list: */ TAILQ_REMOVE(&_thread_list, curthread, tle); /* This thread will never be re-scheduled. */ _thread_kern_sched_state(PS_DEAD, __FILE__, __LINE__); /* This point should not be reached. */ PANIC("Dead thread has resumed"); }
ssize_t writev(int fd, const struct iovec * iov, int iovcnt) { struct pthread *curthread = _get_curthread(); int blocking; int idx = 0; int type; ssize_t num = 0; size_t cnt; ssize_t n; ssize_t ret; struct iovec liov[20]; struct iovec *p_iov = liov; /* This is a cancellation point: */ _thread_enter_cancellation_point(); /* Check if the array size exceeds to compiled in size: */ if (iovcnt > (int) (sizeof(liov) / sizeof(struct iovec))) { /* Allocate memory for the local array: */ if ((p_iov = (struct iovec *) malloc((size_t)iovcnt * sizeof(struct iovec))) == NULL) { /* Insufficient memory: */ errno = ENOMEM; _thread_leave_cancellation_point(); return (-1); } } else if (iovcnt <= 0) { errno = EINVAL; _thread_leave_cancellation_point(); return (-1); } /* Copy the caller's array so that it can be modified locally: */ memcpy(p_iov,iov,(size_t)iovcnt * sizeof(struct iovec)); /* Lock the file descriptor for write: */ if ((ret = _FD_LOCK(fd, FD_WRITE, NULL)) == 0) { /* Get the read/write mode type: */ type = _thread_fd_table[fd]->status_flags->flags & O_ACCMODE; /* Check if the file is not open for write: */ if (type != O_WRONLY && type != O_RDWR) { /* File is not open for write: */ errno = EBADF; _FD_UNLOCK(fd, FD_WRITE); if (p_iov != liov) free(p_iov); _thread_leave_cancellation_point(); return (-1); } /* Check if file operations are to block */ blocking = ((_thread_fd_table[fd]->status_flags->flags & O_NONBLOCK) == 0); /* * Loop while no error occurs and until the expected number * of bytes are written if performing a blocking write: */ while (ret == 0) { /* Perform a non-blocking write syscall: */ n = _thread_sys_writev(fd, &p_iov[idx], iovcnt - idx); /* Check if one or more bytes were written: */ if (n > 0) { /* * Keep a count of the number of bytes * written: */ num += n; /* * Enter a loop to check if a short write * occurred and move the index to the * array entry where the short write * ended: */ cnt = (size_t)n; while (cnt > 0 && idx < iovcnt) { /* * If the residual count exceeds * the size of this vector, then * it was completely written: */ if (cnt >= p_iov[idx].iov_len) /* * Decrement the residual * count and increment the * index to the next array * entry: */ cnt -= p_iov[idx++].iov_len; else { /* * This entry was only * partially written, so * adjust it's length * and base pointer ready * for the next write: */ p_iov[idx].iov_len -= cnt; p_iov[idx].iov_base = (char *)p_iov[idx].iov_base + (ptrdiff_t)cnt; cnt = 0; } } } else if (n == 0) { /* * Avoid an infinite loop if the last iov_len is * 0. */ while (idx < iovcnt && p_iov[idx].iov_len == 0) idx++; if (idx == iovcnt) { ret = num; break; } } /* * If performing a blocking write, check if the * write would have blocked or if some bytes * were written but there are still more to * write: */ if (blocking && ((n < 0 && (errno == EWOULDBLOCK || errno == EAGAIN)) || (n >= 0 && idx < iovcnt))) { curthread->data.fd.fd = fd; _thread_kern_set_timeout(NULL); /* Reset the interrupted operation flag: */ curthread->interrupted = 0; curthread->closing_fd = 0; _thread_kern_sched_state(PS_FDW_WAIT, __FILE__, __LINE__); /* * Check if the operation was * interrupted by a signal */ if (curthread->interrupted || curthread->closing_fd) { if (num > 0) { /* Return partial success: */ ret = num; } else { /* Return an error: */ if (curthread->closing_fd) errno = EBADF; else errno = EINTR; ret = -1; } } /* * If performing a non-blocking write, * just return whatever the write syscall did: */ } else if (!blocking) { /* A non-blocking call might return zero: */ ret = n; break; /* * If there was an error, return partial success * (if any bytes were written) or else the error: */ } else if (n < 0) { if (num > 0) ret = num; else ret = n; /* Check if the write has completed: */ } else if (idx == iovcnt) /* Return the number of bytes written: */ ret = num; } _FD_UNLOCK(fd, FD_WRITE); } /* If memory was allocated for the array, free it: */ if (p_iov != liov) free(p_iov); /* No longer in a cancellation point: */ _thread_leave_cancellation_point(); return (ret); }
int accept(int fd, struct sockaddr * name, socklen_t *namelen) { struct pthread *curthread = _get_curthread(); int ret; int newfd; enum fd_entry_mode init_mode; /* This is a cancellation point: */ _thread_enter_cancellation_point(); /* Lock the file descriptor: */ if ((ret = _FD_LOCK(fd, FD_RDWR, NULL)) == 0) { /* Enter a loop to wait for a connection request: */ while ((ret = _thread_sys_accept(fd, name, namelen)) < 0) { /* Check if the socket is to block: */ if ((_thread_fd_table[fd]->status_flags->flags & O_NONBLOCK) == 0 && (errno == EWOULDBLOCK || errno == EAGAIN)) { /* Save the socket file descriptor: */ curthread->data.fd.fd = fd; curthread->data.fd.fname = __FILE__; curthread->data.fd.branch = __LINE__; /* Set the timeout: */ _thread_kern_set_timeout(NULL); curthread->interrupted = 0; curthread->closing_fd = 0; /* Schedule the next thread: */ _thread_kern_sched_state(PS_FDR_WAIT, __FILE__, __LINE__); /* Check if the wait was interrupted: */ if (curthread->interrupted) { /* Return an error status: */ errno = EINTR; ret = -1; break; } else if (curthread->closing_fd) { /* Return an error status: */ errno = EBADF; ret = -1; break; } } else { /* * Another error has occurred, so exit the * loop here: */ break; } } /* * If no errors initialize the file descriptor table * for the new socket. If the client's view of the * status_flags for fd is blocking, then force newfd * to be viewed as blocking too. */ if (ret != -1) { newfd = ret; if ((_thread_fd_table[fd]->status_flags->flags & O_NONBLOCK) == 0) init_mode = FD_INIT_BLOCKING; else init_mode = FD_INIT_NEW; if((ret = _thread_fd_table_init(newfd, init_mode, NULL)) != -1) ret = newfd; else { /* quitely close the fd */ _thread_sys_close(ret); } } /* Unlock the file descriptor: */ _FD_UNLOCK(fd, FD_RDWR); } /* No longer in a cancellation point: */ _thread_leave_cancellation_point(); /* Return the socket file descriptor or -1 on error: */ return (ret); }
int connect(int fd, const struct sockaddr * name, socklen_t namelen) { struct pthread *curthread = _get_curthread(); struct sockaddr tmpname; socklen_t errnolen, tmpnamelen; int ret; /* This is a cancellation point: */ _thread_enter_cancellation_point(); if ((ret = _FD_LOCK(fd, FD_RDWR, NULL)) == 0) { if ((ret = _thread_sys_connect(fd, name, namelen)) < 0) { if (!(_thread_fd_table[fd]->status_flags->flags & O_NONBLOCK) && ((errno == EWOULDBLOCK) || (errno == EINPROGRESS) || (errno == EALREADY) || (errno == EAGAIN))) { curthread->data.fd.fd = fd; /* Reset the interrupted operation flag: */ curthread->interrupted = 0; curthread->closing_fd = 0; /* Set the timeout: */ _thread_kern_set_timeout(NULL); _thread_kern_sched_state(PS_FDW_WAIT, __FILE__, __LINE__); /* * Check if the operation was * interrupted by a signal or * a closing fd. */ if (curthread->interrupted) { errno = EINTR; ret = -1; } else if (curthread->closing_fd) { errno = EBADF; ret = -1; } else { tmpnamelen = sizeof(tmpname); /* 0 now lets see if it really worked */ if (((ret = _thread_sys_getpeername(fd, &tmpname, &tmpnamelen)) < 0) && (errno == ENOTCONN)) { /* * Get the error, this function * should not fail */ errnolen = sizeof(errno); _thread_sys_getsockopt(fd, SOL_SOCKET, SO_ERROR, &errno, &errnolen); } } } else { ret = -1; } } _FD_UNLOCK(fd, FD_RDWR); } /* No longer in a cancellation point: */ _thread_leave_cancellation_point(); return (ret); }
int _nanosleep(const struct timespec * time_to_sleep, struct timespec * time_remaining) { struct pthread *curthread = _get_curthread(); int ret = 0; struct timespec current_time; struct timespec current_time1; struct timespec remaining_time; struct timeval tv; /* Check if the time to sleep is legal: */ if (time_to_sleep == NULL || time_to_sleep->tv_sec < 0 || time_to_sleep->tv_nsec < 0 || time_to_sleep->tv_nsec >= 1000000000) { /* Return an EINVAL error : */ errno = EINVAL; ret = -1; } else { /* * As long as we're going to get the time of day, we * might as well store it in the global time of day: */ gettimeofday((struct timeval *) &_sched_tod, NULL); GET_CURRENT_TOD(tv); TIMEVAL_TO_TIMESPEC(&tv, ¤t_time); /* Calculate the time for the current thread to wake up: */ curthread->wakeup_time.tv_sec = current_time.tv_sec + time_to_sleep->tv_sec; curthread->wakeup_time.tv_nsec = current_time.tv_nsec + time_to_sleep->tv_nsec; /* Check if the nanosecond field has overflowed: */ if (curthread->wakeup_time.tv_nsec >= 1000000000) { /* Wrap the nanosecond field: */ curthread->wakeup_time.tv_sec += 1; curthread->wakeup_time.tv_nsec -= 1000000000; } curthread->interrupted = 0; /* Reschedule the current thread to sleep: */ _thread_kern_sched_state(PS_SLEEP_WAIT, __FILE__, __LINE__); /* * As long as we're going to get the time of day, we * might as well store it in the global time of day: */ gettimeofday((struct timeval *) &_sched_tod, NULL); GET_CURRENT_TOD(tv); TIMEVAL_TO_TIMESPEC(&tv, ¤t_time1); /* Calculate the remaining time to sleep: */ remaining_time.tv_sec = time_to_sleep->tv_sec + current_time.tv_sec - current_time1.tv_sec; remaining_time.tv_nsec = time_to_sleep->tv_nsec + current_time.tv_nsec - current_time1.tv_nsec; /* Check if the nanosecond field has underflowed: */ if (remaining_time.tv_nsec < 0) { /* Handle the underflow: */ remaining_time.tv_sec -= 1; remaining_time.tv_nsec += 1000000000; } /* Check if the nanosecond field has overflowed: */ if (remaining_time.tv_nsec >= 1000000000) { /* Handle the overflow: */ remaining_time.tv_sec += 1; remaining_time.tv_nsec -= 1000000000; } /* Check if the sleep was longer than the required time: */ if (remaining_time.tv_sec < 0) { /* Reset the time left: */ remaining_time.tv_sec = 0; remaining_time.tv_nsec = 0; } /* Check if the time remaining is to be returned: */ if (time_remaining != NULL) { /* Return the actual time slept: */ time_remaining->tv_sec = remaining_time.tv_sec; time_remaining->tv_nsec = remaining_time.tv_nsec; } /* Check if the sleep was interrupted: */ if (curthread->interrupted) { /* Return an EINTR error : */ errno = EINTR; ret = -1; } } return (ret); }