void SolverMUX::BaseAssert(SlvExpr exp)
{
  size_t ind_exp = (size_t) exp;

  for (size_t ind = 0; ind < m_solvers.Size(); ind++) {
    Timer _timer(NULL);

    SlvExpr new_exp = m_expr_list[ind][ind_exp];
    m_solvers[ind]->BaseAssert(new_exp);

    m_elapsed[ind] += _timer.Elapsed();
  }
}
void cd_logout_set_timer (void)
{
	time_t t_cur = (time_t) time (NULL);
	if (myConfig.iShutdownTime > t_cur)
	{
		if (myData.iSidTimer == 0)
			myData.iSidTimer = g_timeout_add_seconds (60, _timer, NULL);
		_timer (NULL);
	}
	else if (myData.iSidTimer != 0)
	{
		g_source_remove (myData.iSidTimer);
		myData.iSidTimer = 0;
		CD_APPLET_SET_QUICK_INFO_ON_MY_ICON (NULL);
	}
}
int TestApplication::run() {
    if (!initialize())
        return -1;
    
    PhysicsSimulation simulation(Vector2f(0.0f, 10.0f), 10);

    createGeometry();
    
    for (std::vector<CircleBody*>::const_iterator i = _circleBodies.begin(); i != _circleBodies.end(); ++i)
        simulation.addBody(*i);
    
    for (std::vector<PolygonBody*>::const_iterator i = _polygonBodies.begin(); i != _polygonBodies.end(); ++i)
        simulation.addBody(*i);

    Timer _timer(1000.0f / 60); //60 updates per second
    _timer.start();
    
    while (_window.isOpen()) {
        handleInput();
        
        if (_mouseForce.x < -100.0f)
            _mouseForce.x = -100.0f;
        else if (_mouseForce.x > 100.0f)
            _mouseForce.x = 100.0f;
        
        if (_mouseForce.y < -100.0f)
            _mouseForce.y = -100.0f;
        else if (_mouseForce.y > 100.0f)
            _mouseForce.y = 100.0f;

        _timer.update();
        
        while (_timer.checkTimeStep())
            simulation.update(_timer.timeStep() * 0.001f);
        
        _camera.update();
        
        _window.clear();
        
        checkMouseCollision();
        
        renderGeometry();
    }
    
    return 0;
}
Exemple #4
0
void	SFMLmultigameButton::click(SFMLshape *)
{

	ClientManager				*client = ClientManager::getInstance();
	gameOptions					*opts = gameOptions::getGameOptions();
	menuManager					*menuManager = menuManager::getInst();
	TickTimer					_timer(5, std::bind(&SFMLmultigameButton::outTimeLobbyAnswer, this));

	if (client->CurrentLobby)
		return ;

	try
	{
		client->askJoinGame(_text.getString().toAnsiString(), opts->getNickName());
		client->CurrentLobby = new Lobby(_text.getString().toAnsiString(), "UNDEFINED", opts->getNickName());

		while (client->CurrentLobby && client->CurrentLobby->isConfirmed() == false)
		{
			_timer.update();
			client->handleNetwork();
			std::cout << "Checking" << std::endl;
		}

		std::cout << client->CurrentLobby << std::endl;
		if (client->CurrentLobby)
		{
			SFMLmultiplayerLobbyMenu	lobby(GUEST);

			menuManager->goTo("MultiplayerLobby");
			lobby.launch();


		}
	}
	catch (std::runtime_error &)
	{}

	std::cout << "Try to deleting" << std::endl;
	if (client->CurrentLobby)
	{
		std::cout << "delete" << std::endl;
		delete client->CurrentLobby;
		client->CurrentLobby = nullptr;
	}
}
bool SolverMUX::BaseCheck()
{
  int true_solver = -1;
  int false_solver = -1;

  for (size_t ind = 0; ind < m_solvers.Size(); ind++) {
    Timer _timer(NULL);

    bool res = m_solvers[ind]->BaseCheck();

    if (res) true_solver = ind;
    else false_solver = ind;

    m_elapsed[ind] += _timer.Elapsed();
  }

  // make sure all the backends are consistent on whether the
  // constraints are satisfiable. this is the core of the
  // cross-checking we can do between the backends.
  if (true_solver >= 0 && false_solver >= 0) {
    logout << "ERROR: Conflict between solvers on satisfiability ["
           << m_parent->m_name << "]" << endl;

    // fill in the solver's satisfying assignment from the solver that
    // returned SAT.
    m_assign_solver = (size_t) true_solver;
    m_parent->PinAssign();

    // make sure this is a legitimate satisfying assignment.
    // a failure here indicates a problem with true_solver.
    m_parent->CheckAssignmentBits();

    logout << "Failed Solver: " << m_solvers[false_solver]->Name() << endl;
    abort();
  }

  return (true_solver >= 0);
}
void InferSummaries(const Vector<BlockSummary*> &summary_list)
{
  static BaseTimer infer_timer("infer_summaries");
  Timer _timer(&infer_timer);

  if (summary_list.Empty())
    return;

  Variable *function = summary_list[0]->GetId()->BaseVar();
  Vector<BlockCFG*> *annot_list = BodyAnnotCache.Lookup(function->GetName());

  // all traces which might refer to the result of pointer arithmetic.
  Vector<Exp*> arithmetic_list;
  ArithmeticEscape escape(function, arithmetic_list);

  // initial pass over the CFGs to get traces used in pointer arithmetic.
  for (size_t ind = 0; ind < summary_list.Size(); ind++) {
    BlockSummary *sum = summary_list[ind];

    BlockCFG *cfg = sum->GetMemory()->GetCFG();
    for (size_t eind = 0; eind < cfg->GetEdgeCount(); eind++) {
      PEdge *edge = cfg->GetEdge(eind);

      if (PEdgeAssign *assign_edge = edge->IfAssign()) {
        Exp *left = assign_edge->GetLeftSide();
        Exp *right = assign_edge->GetRightSide();
        ProcessArithmeticAssign(&escape, cfg->GetId(), left, right);
      }
    }
  }

  for (size_t ind = 0; ind < summary_list.Size(); ind++) {
    BlockSummary *sum = summary_list[ind];
    BlockMemory *mcfg = sum->GetMemory();
    BlockCFG *cfg = mcfg->GetCFG();

    // accumulate all the assertions at points in the CFG.
    Vector<AssertInfo> asserts;

    // add assertions at function exit for any postconditions.
    if (cfg->GetId()->Kind() == B_Function) {
      for (size_t aind = 0; annot_list && aind < annot_list->Size(); aind++) {
        BlockCFG *annot_cfg = annot_list->At(aind);

        if (annot_cfg->GetAnnotationKind() != AK_Postcondition)
          continue;
        if (Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg)) {
          AssertInfo info;
          info.kind = ASK_Annotation;
          info.cls = ASC_Check;
          info.point = cfg->GetExitPoint();
          info.bit = bit;
          asserts.PushBack(info);
        }
      }
    }

    // add assertions for any point annotations within the CFG.
    for (size_t pind = 0; pind < cfg->GetPointAnnotationCount(); pind++) {
      PointAnnotation pann = cfg->GetPointAnnotation(pind);
      BlockCFG *annot_cfg = GetAnnotationCFG(pann.annot);
      if (!annot_cfg) continue;

      if (annot_cfg->GetAnnotationKind() != AK_Assert)
        continue;

      if (Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg)) {
        AssertInfo info;
        info.kind = ASK_Annotation;
        info.cls = ASC_Check;
        info.point = pann.point;
        info.bit = bit;
        asserts.PushBack(info);
      }
    }

    for (size_t eind = 0; eind < cfg->GetEdgeCount(); eind++) {
      PEdge *edge = cfg->GetEdge(eind);
      PPoint point = edge->GetSource();

      if (PEdgeAnnotation *nedge = edge->IfAnnotation()) {
        // add an assertion for this annotation if it not an assume.
        BlockCFG *annot_cfg = GetAnnotationCFG(nedge->GetAnnotationId());
        if (!annot_cfg) continue;

        if (annot_cfg->GetAnnotationKind() != AK_Assert &&
            annot_cfg->GetAnnotationKind() != AK_AssertRuntime) {
          continue;
        }

        if (Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg)) {
          AssertInfo info;
          info.kind = (annot_cfg->GetAnnotationKind() == AK_Assert)
            ? ASK_Annotation : ASK_AnnotationRuntime;
          info.cls = ASC_Check;
          info.point = point;
          info.bit = bit;
          asserts.PushBack(info);
        }
      }

      // add assertions for any invariants affected by a write.

      Exp *left = NULL;
      if (PEdgeAssign *nedge = edge->IfAssign())
        left = nedge->GetLeftSide();
      if (PEdgeCall *nedge = edge->IfCall())
        left = nedge->GetReturnValue();

      // for now our detection of affected invariants is pretty crude;
      // writes to fields can affect type invariants on the field's type
      // which use that field, and writes to global variables can affect
      // invariants on that global. TODO: pin this down once we draw a
      // precise line between which invariants can and can't be checked.

      if (left && left->IsFld()) {
        ExpFld *nleft = left->AsFld();
        String *csu_name = nleft->GetField()->GetCSUType()->GetCSUName();
        Vector<BlockCFG*> *comp_annot_list = CompAnnotCache.Lookup(csu_name);

        for (size_t aind = 0; comp_annot_list &&
                              aind < comp_annot_list->Size(); aind++) {
          BlockCFG *annot_cfg = comp_annot_list->At(aind);

          if (annot_cfg->GetAnnotationKind() != AK_Invariant)
            continue;
          Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg);
          if (!bit) continue;

          Vector<Exp*> lval_list;
          LvalListVisitor visitor(&lval_list);
          bit->DoVisit(&visitor);

          bool uses_field = false;
          for (size_t ind = 0; ind < lval_list.Size(); ind++) {
            if (ExpFld *lval = lval_list[ind]->IfFld()) {
              if (lval->GetField() == nleft->GetField())
                uses_field = true;
            }
          }

          if (uses_field) {
            // this is a type invariant which uses the field being written
            // as an lvalue. we need to assert this write preserves
            // the invariant.
            BlockId *id = annot_cfg->GetId();
            Variable *this_var = Variable::Make(id, VK_This, NULL, 0, NULL);
            Exp *this_exp = Exp::MakeVar(this_var);
            Exp *this_drf = Exp::MakeDrf(this_exp);

            Bit *new_bit = BitReplaceExp(bit, this_drf, nleft->GetTarget());

            AssertInfo info;
            info.kind = ASK_Invariant;
            info.cls = ASC_Check;
            info.point = point;
            info.bit = new_bit;
            asserts.PushBack(info);
          }
        }

        CompAnnotCache.Release(csu_name);
      }

      if (left && left->IsVar()) {
        Variable *var = left->AsVar()->GetVariable();
        if (var->Kind() == VK_Glob) {
          Vector<BlockCFG*> *glob_annot_list =
            InitAnnotCache.Lookup(var->GetName());

          for (size_t aind = 0; glob_annot_list &&
                                aind < glob_annot_list->Size(); aind++) {
            BlockCFG *annot_cfg = glob_annot_list->At(aind);

            Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg);
            if (!bit) continue;

            AssertInfo info;
            info.kind = ASK_Invariant;
            info.cls = ASC_Check;
            info.point = point;
            info.bit = bit;
            asserts.PushBack(info);
          }

          InitAnnotCache.Release(var->GetName());
        }
      }

      if (PEdgeCall *nedge = edge->IfCall()) {
        // add assertions for any callee preconditions.

        // pull preconditions from both direct and indirect calls.
        Vector<Variable*> callee_names;

        if (Variable *callee = nedge->GetDirectFunction()) {
          callee_names.PushBack(callee);
        }
        else {
          CallEdgeSet *callees = CalleeCache.Lookup(function);

          if (callees) {
            for (size_t cind = 0; cind < callees->GetEdgeCount(); cind++) {
              const CallEdge &edge = callees->GetEdge(cind);
              if (edge.where.id == cfg->GetId() && edge.where.point == point)
                callee_names.PushBack(edge.callee);
            }
          }

          // CalleeCache release is below.
        }

        for (size_t cind = 0; cind < callee_names.Size(); cind++) {
          String *callee = callee_names[cind]->GetName();
          Vector<BlockCFG*> *call_annot_list = BodyAnnotCache.Lookup(callee);

          for (size_t aind = 0;
               call_annot_list && aind < call_annot_list->Size(); aind++) {
            BlockCFG *annot_cfg = call_annot_list->At(aind);

            if (annot_cfg->GetAnnotationKind() != AK_Precondition)
              continue;
            if (Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg)) {
              ConvertCallsiteMapper mapper(cfg, point, false);
              Bit *caller_bit = bit->DoMap(&mapper);
              if (!caller_bit)
                continue;

              AssertInfo info;
              info.kind = ASK_Annotation;
              info.cls = ASC_Check;
              info.point = point;
              info.bit = caller_bit;
              asserts.PushBack(info);
            }
          }

          BodyAnnotCache.Release(callee);
        }

        if (!nedge->GetDirectFunction())
          CalleeCache.Release(function);
      }

      BufferScanVisitor write_visitor(asserts, arithmetic_list, point, true);
      BufferScanVisitor read_visitor(asserts, arithmetic_list, point, false);
      IntegerScanVisitor integer_visitor(asserts, point);
      GCScanVisitor gcsafe_visitor(asserts, point);

      // only look at the written lvalues for the write visitor.
      if (PEdgeAssign *assign = edge->IfAssign())
        write_visitor.Visit(assign->GetLeftSide());
      if (PEdgeCall *call = edge->IfCall()) {
        if (Exp *returned = call->GetReturnValue())
          write_visitor.Visit(returned);
      }

      edge->DoVisit(&read_visitor);

      // disable integer overflow visitor for now.
      // edge->DoVisit(&integer_visitor);

      edge->DoVisit(&gcsafe_visitor);
    }

    if (cfg->GetId()->Kind() == B_Function) {
      BlockModset *modset = GetBlockModset(cfg->GetId());
      if (modset->CanGC()) {
        AssertInfo info;
        info.kind = ASK_CanGC;
        info.cls = ASC_Check;
        info.point = cfg->GetExitPoint();

        String *name = cfg->GetId()->BaseVar()->GetName();
        Variable *var = Variable::Make(NULL, VK_Glob, name, 0, name);
        Exp *varexp = Exp::MakeVar(var);
        Exp *gcsafe = Exp::MakeGCSafe(varexp, false);
        info.bit = Bit::MakeVar(gcsafe);
        asserts.PushBack(info);
      }
    }

    MarkRedundantAssertions(mcfg, asserts);

    // move the finished assertion list into the summary.
    for (size_t ind = 0; ind < asserts.Size(); ind++) {
      const AssertInfo &info = asserts[ind];
      sum->AddAssert(info.kind, info.cls, info.point, info.bit);
    }
  }

  // infer delta and termination invariants for all summaries.
  for (size_t ind = 0; ind < summary_list.Size(); ind++)
    InferInvariants(summary_list[ind], arithmetic_list);

  BodyAnnotCache.Release(function->GetName());
}
Exemple #7
0
void BlockModset::ComputeModset(BlockMemory *mcfg, bool indirect)
{
  static BaseTimer compute_timer("modset_compute");
  Timer _timer(&compute_timer);

  // get any indirect callees for this function, provided they have been
  // computed and stored in the callee database (indirect is set).
  CallEdgeSet *indirect_callees = NULL;
  if (indirect)
    indirect_callees = CalleeCache.Lookup(m_id->BaseVar());

  BlockCFG *cfg = mcfg->GetCFG();
  for (size_t eind = 0; eind < cfg->GetEdgeCount(); eind++) {
    PEdge *edge = cfg->GetEdge(eind);
    PPoint point = edge->GetSource();

    if (edge->IsAssign() || edge->IsCall()) {
      // process direct assignments along this edge.

      const Vector<GuardAssign>* assigns = mcfg->GetAssigns(point);
      if (assigns) {
        for (size_t aind = 0; aind < assigns->Size(); aind++) {
          const GuardAssign &gasn = assigns->At(aind);
          ProcessUpdatedLval(mcfg, gasn.left, NULL, true, false);

          Exp *use_lval = NULL;
          Exp *kind = mcfg->GetTerminateAssign(point, gasn.left, gasn.right,
                                               &use_lval);
          if (kind) {
            ProcessUpdatedLval(mcfg, use_lval, kind, false, false);
            kind->DecRef();
          }
        }
      }
    }

    // pull in modsets from the direct and indirect callees of the edge.
    if (BlockId *callee = edge->GetDirectCallee()) {
      ComputeModsetCall(mcfg, edge, callee, NULL);
      callee->DecRef();
    }
    else if (edge->IsCall() && indirect_callees) {
      for (size_t ind = 0; ind < indirect_callees->GetEdgeCount(); ind++) {
        const CallEdge &cedge = indirect_callees->GetEdge(ind);

        // when comparing watch out for the case that this is a temporary
        // modset and does not share the same block kind as the edge point.
        if (cedge.where.version == cfg->GetVersion() &&
            cedge.where.point == point &&
            cedge.where.id->Function() == m_id->Function() &&
            cedge.where.id->Loop() == m_id->Loop()) {
          cedge.callee->IncRef();
          BlockId *callee = BlockId::Make(B_Function, cedge.callee);

          ComputeModsetCall(mcfg, edge, callee, cedge.rfld_chain);
          callee->DecRef();
        }
      }
    }
  }

  // sort the modset exps to ensure a consistent representation.
  if (m_modset_list)
    SortVector<PointValue,compare_PointValue>(m_modset_list);
  if (m_assign_list)
    SortVector<GuardAssign,compare_GuardAssign>(m_assign_list);

  if (indirect)
    CalleeCache.Release(m_id->BaseVar());
}