void TestViewAggregateReduction()
{

#if ! KOKKOS_USING_EXP_VIEW

  const int count = 2 ;
  const long result = count % 2 ? ( count * ( ( count + 1 ) / 2 ) )
                                : ( ( count / 2 ) * ( count + 1 ) );

  Kokkos::View< long * , Space > a("a",count);
  Kokkos::View< long * , Space > b("b",count);
  Kokkos::View< StaticArray<long,4> * , Space > a4("a4",count);
  Kokkos::View< StaticArray<long,4> * , Space > b4("b4",count);
  Kokkos::View< StaticArray<long,10> * , Space > a10("a10",count);
  Kokkos::View< StaticArray<long,10> * , Space > b10("b10",count);

  Kokkos::parallel_for( count , FILL<long,Space>(a,b) );
  Kokkos::parallel_for( count , FILL< StaticArray<long,4> , Space >(a4,b4) );
  Kokkos::parallel_for( count , FILL< StaticArray<long,10> , Space >(a10,b10) );

  long r = 0;
  StaticArray<long,4> r4 ;
  StaticArray<long,10> r10 ;

  Kokkos::parallel_reduce( count , DOT<long,Space>(a,b) , r );
  Kokkos::parallel_reduce( count , DOT< StaticArray<long,4> , Space >(a4,b4) , r4 );
  Kokkos::parallel_reduce( count , DOT< StaticArray<long,10> , Space >(a10,b10) , r10 );

  ASSERT_EQ( result , r );
  for ( int i = 0 ; i < 10 ; ++i ) { ASSERT_EQ( result , r10.value[i] ); }
  for ( int i = 0 ; i < 4 ; ++i ) { ASSERT_EQ( result , r4.value[i] ); }

#endif

}
Exemple #2
0
void yylex()
{

/* Declaracao de Variaveis Locais */

int l,s;               /* Variaveis de controle do AF */

/* Inicializacao de Variaveis Locais */

l=0;s=0;

saida.classe[0]=EOF;
saida.classe[1]='\0';

/* AUTOMATO FINITO (AF) */
peg_ch();
while(ch != EOF && s!= FINAL_STATE)
   {
    if(compara_simbolo(ch,tab_trans[l])==TRUE)
       {
          s=tab_trans[l]->proximo_estado;
          switch(tab_trans[l]->acao_semantica)
            {
	     case 1: a1();break;
	     case 2: a2();break;
	     case 3: a3();break;
	     case 4: a4();break;
	     case 5: a5();break;
	     case 6: a6();break;
	     case 7: a7();break;
	     case 8: a8();break;
	     case 9: a9();break;
	     case 10: a10();break;
	     case 11: a11();break;
	     default:;
	    }
	  if(s!=FINAL_STATE) {
		  peg_ch();
		  l=tab_trans[l]->proxima_transicao;
		  }
        }
        else
            {
             ++l;
             if(s==tab_trans[l]->estado_atual) continue;
             else
		  error("* * Erro Fatal: transicao errada no ANALISADOR LEXICO * *\n");
            }
    }
return;
}
Exemple #3
0
void level_three()
{
	vector<DPipe> DirectPipes(13);
		vector<DoublePipe> DoublePipes(13);
		vector<CrossPipe> CrossPipes(2);
				DPipe a0(50,SCREEN_HEIGHT-50,100,40);
				DoublePipe b0(150,SCREEN_HEIGHT-50,70,40);
				DPipe a1(150,SCREEN_HEIGHT-150,100,40);
				DoublePipe b1(150,SCREEN_HEIGHT-250,70,40);
				DPipe a2(250,SCREEN_HEIGHT-350,100,40);
				DoublePipe b2(350,SCREEN_HEIGHT-250,70,40);
				DPipe a3(350,SCREEN_HEIGHT-350,100,40);
				DPipe a4(350,SCREEN_HEIGHT-150,100,40);
				DoublePipe b3(250,SCREEN_HEIGHT-450,70,40);
				DoublePipe b4(350,SCREEN_HEIGHT-450,70,40);
				CrossPipe c0(250,SCREEN_HEIGHT-250,100,40);
				DPipe a5(550,SCREEN_HEIGHT-50,100,40);
				DoublePipe b5(250,SCREEN_HEIGHT-150,70,40);
				DoublePipe b6(450,SCREEN_HEIGHT-50,70,40);
				DoublePipe b7(650,SCREEN_HEIGHT-150,70,40);
				DPipe a6(550,SCREEN_HEIGHT-50,100,40);
				DPipe a7(550,SCREEN_HEIGHT-150,100,40);
				DoublePipe b8(750,SCREEN_HEIGHT-50,70,40);
				DPipe a8(550,SCREEN_HEIGHT-250,100,40);
				DoublePipe b9(750,SCREEN_HEIGHT-350,70,40);
				CrossPipe c1(450,SCREEN_HEIGHT-150,100,40);
				DoublePipe b10(350,SCREEN_HEIGHT-450,70,40);
				DPipe a9(750,SCREEN_HEIGHT-150,100,40);
				DPipe a10(750,SCREEN_HEIGHT-250,100,40);
				DoublePipe b11(450,SCREEN_HEIGHT-250,70,40);
				DoublePipe b12(650,SCREEN_HEIGHT-250,70,40);
				DPipe a11(650,SCREEN_HEIGHT-50,100,40);
				DPipe a12(850,SCREEN_HEIGHT-350,100,40);

				DirectPipes[0] = a0; DoublePipes[0] = b0;
				DirectPipes[1] = a1; DoublePipes[1] = b1;
				DirectPipes[2] = a2; DoublePipes[2] = b2;
				DirectPipes[3] = a3; DoublePipes[3] = b3;
				DirectPipes[4] = a4; DoublePipes[4] = b4;
				DirectPipes[5] = a5; DoublePipes[5] = b5;
				DirectPipes[6] = a6; DoublePipes[6] = b6;
				DirectPipes[7] = a7; DoublePipes[7] = b7;
				DirectPipes[8] = a8; DoublePipes[8] = b8;
				DirectPipes[9] = a9; DoublePipes[9] = b9;
				DirectPipes[10] = a10; DoublePipes[10] = b10;
				DirectPipes[11] = a11; DoublePipes[11] = b11;
				DirectPipes[12] = a12; DoublePipes[12] = b12;
				CrossPipes[0] = c0; CrossPipes[1] = c1;
				Water a(20,SCREEN_HEIGHT-50,40,40);
}
Exemple #4
0
int main(int argc,char **argv)
{
	setlocale(LC_ALL,"RUSSIAN");

	SDL_DisplayMode displayMode;

	if (SDL_Init(SDL_INIT_EVERYTHING) != 0)
	{
    cout << "SDL_Init Error: " << SDL_GetError() << endl;
    return 1;
	}

	int request = SDL_GetDesktopDisplayMode(0,&displayMode); 

	SDL_Window *win = SDL_CreateWindow("Trubi", 300, 300,800, 800, SDL_WINDOW_SHOWN);
	if (win == nullptr)
	{
		cout << "SDL_CreateWindow Error: " << SDL_GetError() << endl;
	    return 1;
	}

	SDL_Renderer *ren = SDL_CreateRenderer(win, -1, SDL_RENDERER_ACCELERATED | SDL_RENDERER_PRESENTVSYNC);
	if (ren == nullptr)
	{
		cout << "SDL_CreateRenderer Error: " << SDL_GetError() << endl;
	    return 1;
	}

	vector<DPipe> DPIPES(13);
	vector<DoublePipe> DOUBPIPES(6);

	DPipe background(400,400,800,800);
	DPipe a0(70,300,100,40);
	DPipe a1(170,300,100,40);
	DPipe a2(270,300,100,40);
	DPipe a3(370,400,100,40);
	DPipe a4(370,500,100,40);
	DPipe a5(470,600,100,40);
	DPipe a6(570,600,100,40);
	DPipe a7(670,500,100,40);
	DPipe a8(670,400,100,40);
	
	DPipe a9(370,200,100,40);
	DPipe a10(470,100,100,40);
	DPipe a11(570,100,100,40);
	DPipe a12(670,200,100,40);
	DPipe kletka(370,300,100,100);

	DoublePipe b0(370,300,70,40);
	DoublePipe b1(370,600,70,40);
	DoublePipe b2(670,600,70,40);
	DoublePipe b3(670,300,70,40);
	DoublePipe b4(370,100,70,40);
	DoublePipe b5(670,100,70,40);

	DPIPES[0]=a0;
	DPIPES[1]=a1;
	DPIPES[2]=a2;
	DPIPES[3]=a3;
	DPIPES[4]=a4;
	DPIPES[5]=a5;
	DPIPES[6]=a6;
	DPIPES[7]=a7;
	DPIPES[8]=a8;
	DPIPES[9]=a9;
	DPIPES[10]=a10;
	DPIPES[11]=a11;
	DPIPES[12]=a12;
	
	DOUBPIPES[0]=b0;
	DOUBPIPES[1]=b1;
	DOUBPIPES[2]=b2;
	DOUBPIPES[3]=b3;
	DOUBPIPES[4]=b4;
	DOUBPIPES[5]=b5;

	SDL_RenderClear(ren);
	background.default_create(ren,"newbackground.bmp");
	for(int i=0;i<DPIPES.size();++i)
	{
		DPIPES[i].default_create(ren,"text1.bmp");
	}
	for(int i=0;i<DOUBPIPES.size();++i)
	{
		DOUBPIPES[i].default_create1(ren,"double1.bmp","double2.bmp");
	}
	SDL_RenderPresent(ren); 

	bool quit=false;
	while(!quit)
	{
		 while(SDL_PollEvent(&event))
		 {
			SDL_PumpEvents(); 

			if(event.type == SDL_QUIT)
				quit=true;
			else if(event.type==SDL_MOUSEBUTTONDOWN &&  event.button.button==SDL_BUTTON_LEFT)
			{
				for(int i=0;i<DPIPES.size();++i)
				{
					if(DPIPES[i].ismouse())
					{
						SDL_RenderClear(ren);
						background.default_create(ren,"newbackground.bmp");
						nochangesDoub(ren,DOUBPIPES);
						somechanges(ren,DPIPES,i);
					}
				}
				for(int i=0;i<DOUBPIPES.size();++i)
				{
					if(DOUBPIPES[i].ismouse())
					{
						SDL_RenderClear(ren);
						background.default_create(ren,"newbackground.bmp");
						nochanges(ren,DPIPES);
						somechangesDoub(ren,DOUBPIPES,i);
					}
				}
			}
		 }
	}
	return 1;
}
inline void
PanelHouseholder( DistMatrix<F>& A, DistMatrix<F,MD,STAR>& t )
{
#ifndef RELEASE
    CallStackEntry entry("lq::PanelHouseholder");
    if( A.Grid() != t.Grid() )
        LogicError("{A,t} must be distributed over the same grid");
    if( t.Height() != Min(A.Height(),A.Width()) || t.Width() != 1 )
        LogicError
        ("t must be a vector of height equal to the minimum dimension of A");
    if( !t.AlignedWithDiagonal( A, 0 ) )
        LogicError("t must be aligned with A's main diagonal");
#endif
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<F>
        ATL(g), ATR(g),  A00(g), a01(g),     A02(g),  aTopRow(g), ABottomPan(g),
        ABL(g), ABR(g),  a10(g), alpha11(g), a12(g),
                         A20(g), a21(g),     A22(g);
    DistMatrix<F,MD,STAR>
        tT(g),  t0(g),
        tB(g),  tau1(g),
                t2(g);

    // Temporary distributions
    DistMatrix<F> aTopRowConj(g);
    DistMatrix<F,STAR,MR  > aTopRowConj_STAR_MR(g);
    DistMatrix<F,MC,  STAR> z_MC_STAR(g);

    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    PartitionDown
    ( t, tT,
         tB, 0 );
    while( ATL.Height() < A.Height() && ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22, 1 );

        RepartitionDown
        ( tT,  t0,
         /**/ /****/
               tau1,
          tB,  t2, 1 );

        View1x2( aTopRow, alpha11, a12 );
        View1x2( ABottomPan, a21, A22 );

        aTopRowConj_STAR_MR.AlignWith( ABottomPan );
        z_MC_STAR.AlignWith( ABottomPan );
        //--------------------------------------------------------------------//
        // Compute the Householder reflector
        const F tau = Reflector( alpha11, a12 );
        tau1.Set( 0, 0, tau );

        // Apply the Householder reflector
        const bool myDiagonalEntry = ( g.Row() == alpha11.ColAlignment() &&
                                       g.Col() == alpha11.RowAlignment() );
        F alpha = 0;
        if( myDiagonalEntry )
        {
            alpha = alpha11.GetLocal(0,0);
            alpha11.SetLocal(0,0,1);
        }
        Conjugate( aTopRow, aTopRowConj );
        aTopRowConj_STAR_MR = aTopRowConj;
        Zeros( z_MC_STAR, ABottomPan.Height(), 1 );
        LocalGemv
        ( NORMAL, F(1), ABottomPan, aTopRowConj_STAR_MR, F(0), z_MC_STAR );
        z_MC_STAR.SumOverRow();
        Ger
        ( -Conj(tau),
          z_MC_STAR.LockedMatrix(),
          aTopRowConj_STAR_MR.LockedMatrix(),
          ABottomPan.Matrix() );
        if( myDiagonalEntry )
            alpha11.SetLocal(0,0,alpha);
        //--------------------------------------------------------------------//

        SlidePartitionDown
        ( tT,  t0,
               tau1,
         /**/ /****/
          tB,  t2 );

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
}
Exemple #6
0
void drive_resolve_primitive()
{


    const char* env = getenv("PEGASUS_HOME");
    String repositoryDir(env);
    repositoryDir.append("/repository");
    //String repositoryDir("c:/pegasus-cvs/pegasus/repository");
    CIMNamespaceName _ns("root/cimv2");
    CIMRepository *_rep = new CIMRepository(repositoryDir);
    RepositoryQueryContext _query(_ns, _rep);
    RepositoryQueryContext _query1(_ns, _rep);
    try {
        const CQLIdentifier _Id1(String("CIM_OperatingSystem"));

        _query.insertClassPath(_Id1);

        const CIMName _cimName(String("CIM_OperatingSystem"));

        CIMInstance _i1(_cimName);
        CIMProperty _p1(CIMName("Description"),CIMValue(String("Dave Rules")));
        CIMProperty _p2(CIMName("EnabledState"),CIMValue(Uint16(2)));
        CIMProperty _p3(CIMName("CurrentTimeZone"),CIMValue(Sint16(-600)));
        CIMProperty _p4(CIMName("TimeOfLastStateChange"),
                        CIMValue(CIMDateTime(String("20040811105625.000000-360"))));

        _i1.addProperty(_p1);
        _i1.addProperty(_p2);
        _i1.addProperty(_p3);
        _i1.addProperty(_p4);

        CQLChainedIdentifier ci1(
            String("CIM_OperatingSystem.CIM_OperatingSystem::Description"));
        CQLChainedIdentifier
        ci2(String("CIM_OperatingSystem.CIM_OperatingSystem::EnabledState"));
        CQLChainedIdentifier ci3(
            String("CIM_OperatingSystem.CIM_OperatingSystem::CurrentTimeZone"));
        CQLChainedIdentifier ci4(
            String("CIM_OperatingSystem.CIM_OperatingSystem::TimeOfLastStateChange"));

        CQLChainedIdentifier
        ci5(String(
                "CIM_OperatingSystem.CIM_EnabledLogicalElement::TimeOfLastStateChange"));

        CQLChainedIdentifier
        ci7(String("CIM_OperatingSystem"));

        CQLChainedIdentifier
        ci9(String(
                "CIM_EnabledLogicalElement.CIM_OperatingSystem::CSCreationClassName"));

        CQLChainedIdentifier
        ci10(String("CIM_OperatingSystem.CIM_OperatingSystem::Bubba"));

        CQLValue a1(ci1);
        CQLValue a2(ci2);
        CQLValue a3(ci3);
        CQLValue a4(ci4);
        CQLValue a5(ci5);

        CQLValue a7(ci7);

        CQLValue a9(ci9);
        CQLValue a10(ci10);

        CQLValue a11(_query.getClass(CIMName("CIM_OperatingSystem")));

        a1.resolve(_i1, _query);
        a2.resolve(_i1, _query);
        a3.resolve(_i1, _query);
        a4.resolve(_i1, _query);
        a5.resolve(_i1, _query);
        a7.resolve(_i1, _query);
        a10.resolve(_i1, _query1);

        a9.resolve(_i1, _query);

        PEGASUS_TEST_ASSERT(a1 == CQLValue(String("Dave Rules")));
        PEGASUS_TEST_ASSERT(a2 == CQLValue(Uint64(2)));
        PEGASUS_TEST_ASSERT(a3 == CQLValue(Sint64(-600)));
        PEGASUS_TEST_ASSERT(a4 == CQLValue(
                                CIMDateTime(String("20040811105625.000000-360"))));
        PEGASUS_TEST_ASSERT(a5 == CQLValue(
                                CIMDateTime(String("20040811105625.000000-360"))));
        //PEGASUS_TEST_ASSERT(a7 == CQLValue(_i1));
        PEGASUS_TEST_ASSERT(a9.isNull());
        PEGASUS_TEST_ASSERT(a10.isNull());

    }
    catch(Exception & e)
    {
        cout << e.getMessage() << endl;
        PEGASUS_TEST_ASSERT(0);
    }
    delete _rep;
    return;
}
Exemple #7
0
inline void UnblockedBidiagU
( DistMatrix<Complex<R> >& A, 
  DistMatrix<Complex<R>,MD,STAR>& tP,
  DistMatrix<Complex<R>,MD,STAR>& tQ )
{
#ifndef RELEASE
    PushCallStack("BidiagU");
#endif
    const int tPHeight = std::max(A.Width()-1,0);
    const int tQHeight = A.Width();
#ifndef RELEASE
    if( A.Grid() != tP.Grid() || tP.Grid() != tQ.Grid() )
        throw std::logic_error("Process grids do not match");
    if( A.Height() < A.Width() )
        throw std::logic_error("A must be at least as tall as it is wide");
    if( tP.Viewing() && (tP.Height() != tPHeight || tP.Width() != 1) )
        throw std::logic_error("tP is the wrong height");
    if( tQ.Viewing() && (tQ.Height() != tQHeight || tQ.Width() != 1) )
        throw std::logic_error("tQ is the wrong height");
#endif
    typedef Complex<R> C;
    const Grid& g = A.Grid();

    if( !tP.Viewing() )
        tP.ResizeTo( tPHeight, 1 );
    if( !tQ.Viewing() )
        tQ.ResizeTo( tQHeight, 1 );

    // Matrix views 
    DistMatrix<C>
        ATL(g), ATR(g),  A00(g), a01(g),     A02(g),  alpha12L(g), a12R(g),
        ABL(g), ABR(g),  a10(g), alpha11(g), a12(g),  aB1(g), AB2(g),
                         A20(g), a21(g),     A22(g);

    // Temporary matrices
    DistMatrix<C,STAR,MR  > a12_STAR_MR(g);
    DistMatrix<C,MC,  STAR> aB1_MC_STAR(g);
    DistMatrix<C,MR,  STAR> x12Adj_MR_STAR(g);
    DistMatrix<C,MC,  STAR> w21_MC_STAR(g);

    PushBlocksizeStack( 1 );
    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        View2x1
        ( aB1, alpha11,
               a21 );
        View2x1
        ( AB2, a12,
               A22 );

        aB1_MC_STAR.AlignWith( aB1 );
        a12_STAR_MR.AlignWith( a12 );
        x12Adj_MR_STAR.AlignWith( AB2 );
        w21_MC_STAR.AlignWith( A22 );
        Zeros( a12.Width(), 1, x12Adj_MR_STAR );
        Zeros( a21.Height(), 1, w21_MC_STAR );
        const bool thisIsMyRow = ( g.Row() == alpha11.ColAlignment() );
        const bool thisIsMyCol = ( g.Col() == alpha11.RowAlignment() );
        const bool nextIsMyCol = ( g.Col() == a12.RowAlignment() );
        //--------------------------------------------------------------------//

        // Find tauQ, u, and epsilonQ such that
        //     I - conj(tauQ) | 1 | | 1, u^H | | alpha11 | = | epsilonQ |
        //                    | u |            |    a21  |   |    0     |
        const C tauQ = Reflector( alpha11, a21 );
        tQ.Set(A00.Height(),0,tauQ );
        C epsilonQ=0;
        if( thisIsMyCol && thisIsMyRow )
            epsilonQ = alpha11.GetLocal(0,0);

        // Set aB1 = | 1 | and form x12^H := (aB1^H AB2)^H = AB2^H aB1
        //           | u |
        alpha11.Set(0,0,C(1));
        aB1_MC_STAR = aB1;
        internal::LocalGemv
        ( ADJOINT, C(1), AB2, aB1_MC_STAR, C(0), x12Adj_MR_STAR );
        x12Adj_MR_STAR.SumOverCol();

        // Update AB2 := AB2 - conj(tauQ) aB1 x12
        //             = AB2 - conj(tauQ) aB1 aB1^H AB2 
        //             = (I - conj(tauQ) aB1 aB1^H) AB2
        internal::LocalGer( -Conj(tauQ), aB1_MC_STAR, x12Adj_MR_STAR, AB2 );

        // Put epsilonQ back instead of the temporary value, 1
        if( thisIsMyCol && thisIsMyRow )
            alpha11.SetLocal(0,0,epsilonQ);

        if( A22.Width() != 0 )
        {
            // Due to the deficiencies in the BLAS ?gemv routines, this section
            // is easier if we temporarily conjugate a12
            Conjugate( a12 ); 

            // Expose the subvector we seek to zero, a12R
            PartitionRight( a12, alpha12L, a12R );

            // Find tauP, v, and epsilonP such that
            //     I - conj(tauP) | 1 | | 1, v^H | | alpha12L | = | epsilonP |
            //                    | v |            |  a12R^T  |   |    0     |
            const C tauP = Reflector( alpha12L, a12R );
            tP.Set(A00.Height(),0,tauP);
            C epsilonP=0;
            if( nextIsMyCol && thisIsMyRow )
                epsilonP = alpha12L.GetLocal(0,0);

            // Set a12^T = | 1 | and form w21 := A22 a12^T = A22 | 1 |
            //             | v |                                 | v |
            alpha12L.Set(0,0,C(1));
            a12_STAR_MR = a12;
            internal::LocalGemv
            ( NORMAL, C(1), A22, a12_STAR_MR, C(0), w21_MC_STAR );
            w21_MC_STAR.SumOverRow();

            // A22 := A22 - tauP w21 conj(a12)
            //      = A22 - tauP A22 a12^T conj(a12)
            //      = A22 (I - tauP a12^T conj(a12))
            //      = A22 conj(I - conj(tauP) a12^H a12)
            // which compensates for the fact that the reflector was generated
            // on the conjugated a12.
            internal::LocalGer( -tauP, w21_MC_STAR, a12_STAR_MR, A22 );

            // Put epsilonP back instead of the temporary value, 1
            if( nextIsMyCol && thisIsMyRow )
                alpha12L.SetLocal(0,0,epsilonP);

            // Undue the temporary conjugation
            Conjugate( a12 );
        }
        //--------------------------------------------------------------------//
        aB1_MC_STAR.FreeAlignments();
        a12_STAR_MR.FreeAlignments();
        x12Adj_MR_STAR.FreeAlignments();
        w21_MC_STAR.FreeAlignments();

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #8
0
inline void UnblockedBidiagU( DistMatrix<R>& A )
{
#ifndef RELEASE
    PushCallStack("bidiag::UnblockedBidiagU");
    if( A.Height() < A.Width() )
        throw std::logic_error("A must be at least as tall as it is wide");
#endif
    const Grid& g = A.Grid();

    // Matrix views 
    DistMatrix<R>
        ATL(g), ATR(g),  A00(g), a01(g),     A02(g),  alpha12L(g), a12R(g),
        ABL(g), ABR(g),  a10(g), alpha11(g), a12(g),  aB1(g), AB2(g),
                         A20(g), a21(g),     A22(g);

    // Temporary matrices
    DistMatrix<R,STAR,MR  > a12_STAR_MR(g);
    DistMatrix<R,MC,  STAR> aB1_MC_STAR(g);
    DistMatrix<R,MR,  STAR> x12Trans_MR_STAR(g);
    DistMatrix<R,MC,  STAR> w21_MC_STAR(g);

    PushBlocksizeStack( 1 );
    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        View2x1
        ( aB1, alpha11,
               a21 );
        View2x1
        ( AB2, a12,
               A22 );

        aB1_MC_STAR.AlignWith( aB1 );
        a12_STAR_MR.AlignWith( a12 );
        x12Trans_MR_STAR.AlignWith( AB2 );
        w21_MC_STAR.AlignWith( A22 );
        Zeros( a12.Width(), 1, x12Trans_MR_STAR );
        Zeros( a21.Height(), 1, w21_MC_STAR );
        const bool thisIsMyRow = ( g.Row() == alpha11.ColAlignment() );
        const bool thisIsMyCol = ( g.Col() == alpha11.RowAlignment() );
        const bool nextIsMyCol = ( g.Col() == a12.RowAlignment() );
        //--------------------------------------------------------------------//

        // Find tauQ, u, and epsilonQ such that
        //     I - tauQ | 1 | | 1, u^T | | alpha11 | = | epsilonQ |
        //              | u |            |   a21   | = |    0     |
        const R tauQ = Reflector( alpha11, a21 );
        R epsilonQ=0;
        if( thisIsMyCol && thisIsMyRow )
            epsilonQ = alpha11.GetLocal(0,0);

        // Set aB1 = | 1 | and form x12^T := (aB1^T AB2)^T = AB2^T aB1
        //           | u |
        alpha11.Set(0,0,R(1));
        aB1_MC_STAR = aB1;
        internal::LocalGemv
        ( TRANSPOSE, R(1), AB2, aB1_MC_STAR, R(0), x12Trans_MR_STAR );
        x12Trans_MR_STAR.SumOverCol();

        // Update AB2 := AB2 - tauQ aB1 x12
        //             = AB2 - tauQ aB1 aB1^T AB2
        //             = (I - tauQ aB1 aB1^T) AB2
        internal::LocalGer( -tauQ, aB1_MC_STAR, x12Trans_MR_STAR, AB2 );

        // Put epsilonQ back instead of the temporary value, 1
        if( thisIsMyCol && thisIsMyRow )
            alpha11.SetLocal(0,0,epsilonQ);

        if( A22.Width() != 0 )
        {
            // Expose the subvector we seek to zero, a12R
            PartitionRight( a12, alpha12L, a12R );

            // Find tauP, v, and epsilonP such that
            //     I - tauP | 1 | | 1, v^T | | alpha12L | = | epsilonP |
            //              | v |            |  a12R^T  | = |    0     |
            const R tauP = Reflector( alpha12L, a12R );
            R epsilonP=0;
            if( nextIsMyCol && thisIsMyRow )
                epsilonP = alpha12L.GetLocal(0,0);

            // Set a12^T = | 1 | and form w21 := A22 a12^T = A22 | 1 |
            //             | v |                                 | v |
            alpha12L.Set(0,0,R(1));
            a12_STAR_MR = a12;
            internal::LocalGemv
            ( NORMAL, R(1), A22, a12_STAR_MR, R(0), w21_MC_STAR );
            w21_MC_STAR.SumOverRow();

            // A22 := A22 - tauP w21 a12
            //      = A22 - tauP A22 a12^T a12
            //      = A22 (I - tauP a12^T a12)
            internal::LocalGer( -tauP, w21_MC_STAR, a12_STAR_MR, A22 );

            // Put epsilonP back instead of the temporary value, 1
            if( nextIsMyCol && thisIsMyRow )
                alpha12L.SetLocal(0,0,epsilonP);
        }
        //--------------------------------------------------------------------//
        aB1_MC_STAR.FreeAlignments();
        a12_STAR_MR.FreeAlignments();
        x12Trans_MR_STAR.FreeAlignments();
        w21_MC_STAR.FreeAlignments();

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #9
0
inline void
PanelLU
( DistMatrix<F,  STAR,STAR>& A, 
  DistMatrix<F,  MC,  STAR>& B, 
  DistMatrix<int,STAR,STAR>& p, 
  int pivotOffset )
{
#ifndef RELEASE
    PushCallStack("internal::PanelLU");
    if( A.Grid() != p.Grid() || p.Grid() != B.Grid() )
        throw std::logic_error
        ("Matrices must be distributed over the same grid");
    if( A.Width() != B.Width() )
        throw std::logic_error("A and B must be the same width");
    if( A.Height() != p.Height() || p.Width() != 1 )
        throw std::logic_error("p must be a vector that conforms with A");
#endif
    const Grid& g = A.Grid();
    const int r = g.Height();
    const int colShift = B.ColShift();
    const int colAlignment = B.ColAlignment();

    // Matrix views
    DistMatrix<F,STAR,STAR> 
        ATL(g), ATR(g),  A00(g), a01(g),     A02(g),  
        ABL(g), ABR(g),  a10(g), alpha11(g), a12(g),  
                         A20(g), a21(g),     A22(g);

    DistMatrix<F,MC,STAR>
        BL(g), BR(g),
        B0(g), b1(g), B2(g);

    const int width = A.Width();
    const int numBytes = (width+1)*sizeof(F)+sizeof(int);
    std::vector<byte> sendData(numBytes);
    std::vector<byte> recvData(numBytes);

    // Extract pointers to send and recv data
    // TODO: Think of how to make this safer with respect to alignment issues
    F* sendBufFloat = (F*)&sendData[0];
    F* recvBufFloat = (F*)&recvData[0];
    int* sendBufInt = (int*)&sendData[(width+1)*sizeof(F)];
    int* recvBufInt = (int*)&recvData[(width+1)*sizeof(F)];

    // Start the algorithm
    PushBlocksizeStack( 1 );
    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    PartitionRight( B, BL, BR, 0 );
    while( ATL.Height() < A.Height() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        RepartitionRight
        ( BL, /**/ BR,  
          B0, /**/ b1, B2 );

        //--------------------------------------------------------------------//
        const int currentRow = a01.Height();
        
        // Store the index/value of the pivot candidate in A
        F pivot = alpha11.GetLocal(0,0);
        int pivotRow = currentRow;
        for( int i=0; i<a21.Height(); ++i )
        {
            F value = a21.GetLocal(i,0);
            if( FastAbs(value) > FastAbs(pivot) )
            {
                pivot = value;
                pivotRow = currentRow + i + 1;
            }
        }

        // Update the pivot candidate to include local data from B
        for( int i=0; i<B.LocalHeight(); ++i )
        {
            F value = b1.GetLocal(i,0);
            if( FastAbs(value) > FastAbs(pivot) )
            {
                pivot = value;
                pivotRow = A.Height() + colShift + i*r;
            }
        }

        // Fill the send buffer with:
        // [ pivotValue | pivot row data | pivotRow ]
        if( pivotRow < A.Height() )
        {
            sendBufFloat[0] = A.GetLocal(pivotRow,a10.Width());

            const int ALDim = A.LocalLDim();
            const F* ABuffer = A.LocalBuffer(pivotRow,0);
            for( int j=0; j<width; ++j )
                sendBufFloat[j+1] = ABuffer[j*ALDim];
        }
        else
        {
            const int localRow = ((pivotRow-A.Height())-colShift)/r;
            sendBufFloat[0] = b1.GetLocal(localRow,0);

            const int BLDim = B.LocalLDim();
            const F* BBuffer = B.LocalBuffer(localRow,0);
            for( int j=0; j<width; ++j )
                sendBufFloat[j+1] = BBuffer[j*BLDim];
        }
        *sendBufInt = pivotRow;

        // Communicate to establish the pivot information
        mpi::AllReduce
        ( &sendData[0], &recvData[0], numBytes, PivotOp<F>(), g.ColComm() );

        // Update the pivot vector
        pivotRow = *recvBufInt;
        p.SetLocal(currentRow,0,pivotRow+pivotOffset);

        // Copy the current row into the pivot row
        if( pivotRow < A.Height() )
        {
            const int ALDim = A.LocalLDim();
            F* ASetBuffer = A.LocalBuffer(pivotRow,0);
            const F* AGetBuffer = A.LocalBuffer(currentRow,0);
            for( int j=0; j<width; ++j )
                ASetBuffer[j*ALDim] = AGetBuffer[j*ALDim];
        }
        else
        {
            const int ownerRank = (colAlignment+(pivotRow-A.Height())) % r;
            if( g.Row() == ownerRank )
            {
                const int localRow = ((pivotRow-A.Height())-colShift) / r;

                const int ALDim = A.LocalLDim();
                const int BLDim = B.LocalLDim();
                F* BBuffer = B.LocalBuffer(localRow,0);
                const F* ABuffer = A.LocalBuffer(currentRow,0);
                for( int j=0; j<width; ++j )
                    BBuffer[j*BLDim] = ABuffer[j*ALDim];
            }
        }

        // Copy the pivot row into the current row
        {
            F* ABuffer = A.LocalBuffer(currentRow,0);
            const int ALDim = A.LocalLDim();
            for( int j=0; j<width; ++j )
                ABuffer[j*ALDim] = recvBufFloat[j+1];
        }

        // Now we can perform the update of the current panel
        const F alpha = alpha11.GetLocal(0,0);
        if( alpha == F(0) )
            throw SingularMatrixException();
        const F alpha11Inv = F(1) / alpha;
        Scale( alpha11Inv, a21.LocalMatrix() );
        Scale( alpha11Inv, b1.LocalMatrix()  );
        Geru( F(-1), a21.LocalMatrix(), a12.LocalMatrix(), A22.LocalMatrix() );
        Geru( F(-1), b1.LocalMatrix(), a12.LocalMatrix(), B2.LocalMatrix() );
        //--------------------------------------------------------------------//

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );

        SlidePartitionRight
        ( BL,     /**/ BR,  
          B0, b1, /**/ B2 );
    }
    PopBlocksizeStack();

#ifndef RELEASE
    PopCallStack();
#endif
}
bool 
TestQuaternion( )
{
    bool ok = true;
    cout << "Testing Quaternion" << endl;

    cout << "Quaternion( ) [default constructor]" << endl;
    QuaternionF quat0;
    float w = 3.f;
    float x = 0.f;
    float y = 4.f;
    float z = 0.f;
    cout << "Set( " << w << ", " << x << ", " << y << ", " << z << " )" << endl;
    quat0.Set( w, x, y, z );
    TESTCHECK( quat0.W(), w, &ok );
    TESTCHECK( quat0.X(), x, &ok );
    TESTCHECK( quat0.Y(), y, &ok );
    TESTCHECK( quat0.Z(), z, &ok );
    TESTCHECK( quat0[0], w, &ok );
    TESTCHECK( quat0[1], x, &ok );
    TESTCHECK( quat0[2], y, &ok );
    TESTCHECK( quat0[3], z, &ok );
    TESTCHECK( quat0.At( 0 ), w, &ok );
    TESTCHECK( quat0.At( 1 ), x, &ok );
    TESTCHECK( quat0.At( 2 ), y, &ok );
    TESTCHECK( quat0.At( 3 ), z, &ok );
    try
    {
        TESTCHECK( quat0.At(4), 0.f, &ok );
        cout << "At(4) should have thrown an exception." << endl;
        ok = false;
    }
    catch( out_of_range & exceptn )
    {
        cout << "Exception here is OK" << endl;
        cout << exceptn.what() << endl;
    }
    cout << "quat0.Array()" << endl;
    const float * pF = quat0.Array();
    TESTCHECK( pF[0], w, &ok );
    TESTCHECK( pF[1], x, &ok );
    TESTCHECK( pF[2], y, &ok );
    TESTCHECK( pF[3], z, &ok );
    TESTCHECK( quat0.Real(), w, &ok );
    TESTCHECK( quat0.Imaginary().X(), x, &ok );
    TESTCHECK( quat0.Imaginary().Y(), y, &ok );
    TESTCHECK( quat0.Imaginary().Z(), z, &ok );
    cout << "Conjugate( )" << endl;
    QuaternionF quat1 = quat0.Conjugate( );
    TESTCHECK( quat1.W(), w, &ok );
    TESTCHECK( quat1.X(), -x, &ok );
    TESTCHECK( quat1.Y(), -y, &ok );
    TESTCHECK( quat1.Z(), -z, &ok );
    TESTCHECK( quat0.Length(), 5.f, &ok );
    TESTCHECK( quat0.Norm(), 25.f, &ok );
    TESTCHECK( quat1.Length(), 5.f, &ok );
    TESTCHECK( quat1.Norm(), 25.f, &ok );
    TESTCHECK( (quat0 + quat1).W(), 6.f, &ok );
    TESTCHECK( (quat0 + quat1).X(), 0.f, &ok );
    TESTCHECK( (quat0 + quat1).Y(), 0.f, &ok );
    TESTCHECK( (quat0 + quat1).Z(), 0.f, &ok );
    ostringstream ost;
    cout << "operator<<" << endl;
    ost << quat0;
    TESTCHECK( ost.str(), string( "( 3, 0, 4, 0 )" ), &ok );
    TESTCHECK( ToJSON( quat0 ),
               string( "[ +3.00000e+00, +0.00000e+00, +4.00000e+00,"
                       " +0.00000e+00 ]" ),
               &ok );
    FromJSON( "[ 3, 0, -4.0, 0. ]", &quat1 );
    TESTCHECK( quat1.W(), w, &ok );
    TESTCHECK( quat1.X(), -x, &ok );
    TESTCHECK( quat1.Y(), -y, &ok );
    TESTCHECK( quat1.Z(), -z, &ok );
    cout << "Normalize( )" << endl;
    quat1.Normalize( );
    TESTCHECKF( quat1.W(), 0.6f, &ok );
    TESTCHECKF( quat1.X(), 0.f, &ok );
    TESTCHECKF( quat1.Y(), -0.8f, &ok );
    TESTCHECKF( quat1.Z(), 0.f, &ok );
    TESTCHECKF( quat1.Norm(), 1.f, &ok );
    cout << "Inverse( )" << endl;
    quat1 = quat0.Inverse( );
    TESTCHECKF( quat1.W(), 0.12f, &ok );
    TESTCHECKF( quat1.X(), 0.f, &ok );
    TESTCHECKF( quat1.Y(), -0.16f, &ok );
    TESTCHECKF( quat1.Z(), 0.f, &ok );
    TESTCHECKF( (quat0 * quat1).W(), 1.f, &ok );
    TESTCHECKF( (quat0 * quat1).X(), 0.f, &ok );
    TESTCHECKF( (quat0 * quat1).Y(), 0.f, &ok );
    TESTCHECKF( (quat0 * quat1).Z(), 0.f, &ok );
    float coords[4] = { 0.5f, 0.5f, 0.5f, 0.5f };
    cout << "QuaternionF( coords ) [array constructor]" << endl;
    QuaternionF quat2( coords );
    TESTCHECKF( quat2.W(), 0.5f, &ok );
    TESTCHECKF( quat2.X(), 0.5f, &ok );
    TESTCHECKF( quat2.Y(), 0.5f, &ok );
    TESTCHECKF( quat2.Z(), 0.5f, &ok );
    TESTCHECKF( quat2.Norm(), 1.f, &ok );
    cout << "Normalize( )" << endl;
    quat2.Normalize( );
    TESTCHECKF( quat2.W(), 0.5f, &ok );
    TESTCHECKF( quat2.X(), 0.5f, &ok );
    TESTCHECKF( quat2.Y(), 0.5f, &ok );
    TESTCHECKF( quat2.Z(), 0.5f, &ok );
    TESTCHECKF( quat2.Norm(), 1.f, &ok );
    cout << "Conjugate( )" << endl;
    quat1 = quat2.Conjugate( );
    TESTCHECKF( quat1.W(), 0.5f, &ok );
    TESTCHECKF( quat1.X(), -0.5f, &ok );
    TESTCHECKF( quat1.Y(), -0.5f, &ok );
    TESTCHECKF( quat1.Z(), -0.5f, &ok );
    TESTCHECKF( quat1.Norm(), 1.f, &ok );
    TESTCHECKF( (quat1 + quat2).W(), 1.f, &ok );
    TESTCHECKF( (quat1 + quat2).X(), 0.f, &ok );
    TESTCHECKF( (quat1 + quat2).Y(), 0.f, &ok );
    TESTCHECKF( (quat1 + quat2).Z(), 0.f, &ok );
    TESTCHECKF( (quat1 - quat2).W(), 0.f, &ok );
    TESTCHECKF( (quat1 - quat2).X(), -1.f, &ok );
    TESTCHECKF( (quat1 - quat2).Y(), -1.f, &ok );
    TESTCHECKF( (quat1 - quat2).Z(), -1.f, &ok );
    TESTCHECKF( (quat1 * quat2).W(), 1.f, &ok );
    TESTCHECKF( (quat1 * quat2).X(), 0.f, &ok );
    TESTCHECKF( (quat1 * quat2).Y(), 0.f, &ok );
    TESTCHECKF( (quat1 * quat2).Z(), 0.f, &ok );
    cout << "Inverse( )" << endl;
    quat1 = quat2.Inverse( );
    TESTCHECKF( quat1.W(), 0.5f, &ok );
    TESTCHECKF( quat1.X(), -0.5f, &ok );
    TESTCHECKF( quat1.Y(), -0.5f, &ok );
    TESTCHECKF( quat1.Z(), -0.5f, &ok );
    TESTCHECKF( quat1.Norm(), 1.f, &ok );
    double a = M_PI / 2.;
    cout << "QuaternionF( AxisAngle( Vector3F::UnitZ, Angle( " << a
         << " ) ) ) [axis-angle constructor]" << endl;
    QuaternionF quat3( AxisAngleF( Vector3F::UnitZ, Angle( a ) ) );
    TESTCHECKF( quat3.W(), sqrt( 0.5f ), &ok );
    TESTCHECKF( quat3.X(), 0.f, &ok );
    TESTCHECKF( quat3.Y(), 0.f, &ok );
    TESTCHECKF( quat3.Z(), sqrt( 0.5f ), &ok );
    TESTCHECKF( quat3.Norm(), 1.f, &ok );
    cout << "GetAxisAngle( )" << endl;
    AxisAngleF axisAngle = quat3.GetAxisAngle( );
    TESTCHECKF( axisAngle.Axis().X(), 0.f, &ok );
    TESTCHECKF( axisAngle.Axis().Y(), 0.f, &ok );
    TESTCHECKF( axisAngle.Axis().Z(), 1.f, &ok );
    TESTCHECKF( axisAngle.GetAngle().Radians(), M_PI / 2., &ok );
    cout << "Set( 2, a )" << endl;
    quat1.Set( 2, a );
    TESTCHECKF( quat1.W(), sqrt( 0.5f ), &ok );
    TESTCHECKF( quat1.X(), 0.f, &ok );
    TESTCHECKF( quat1.Y(), 0.f, &ok );
    TESTCHECKF( quat1.Z(), sqrt( 0.5f ), &ok );
    TESTCHECKF( quat1.Norm(), 1.f, &ok );
    cout << "Log()" << endl;
    quat1 = quat3.Log( );
    TESTCHECKF( quat1.W(), 0.f, &ok );
    TESTCHECKF( quat1.X(), 0.f, &ok );
    TESTCHECKF( quat1.Y(), 0.f, &ok );
    TESTCHECKF( quat1.Z(), M_PI / 4.f, &ok );
    cout << "SetW( 1. )" << endl;
    quat1.SetW( 1.f );
    cout << "Exp()" << endl;
    quat1 = quat1.Exp( );
    TESTCHECKF( quat1.W(), exp( 1.f ) * sqrt( 0.5f ), &ok );
    TESTCHECKF( quat1.X(), 0.f, &ok );
    TESTCHECKF( quat1.Y(), 0.f, &ok );
    TESTCHECKF( quat1.Z(), exp( 1.f ) * sqrt( 0.5f ), &ok );
    TESTCHECK( (quat1 == quat3), false, &ok );
    cout << "Log()" << endl;
    quat1 = quat1.Log( );
    TESTCHECKF( quat1.W(), 1.f, &ok );
    TESTCHECKF( quat1.X(), 0.f, &ok );
    TESTCHECKF( quat1.Y(), 0.f, &ok );
    TESTCHECKF( quat1.Z(), M_PI / 4.f, &ok );
    a = 2. * M_PI / 3.;
    float f = static_cast<float>( sqrt( 1./3. ) );
    cout << "RotationMatrix3F( AxisAngleF( Vector3F( " << f << ", " << f
         << ", " << f << "), Angle( " << a << " ) ) )" << endl;
    axisAngle.Set( Vector3F( f, f, f ), Angle( a ) );
    RotationMatrix3F mat0( axisAngle );
    cout << "QuaternionF( mat0 ) [rotation matrix constructor]" << endl;
    QuaternionF quat4( mat0 );
    TESTCHECKF( quat4.W(), quat2.W(), &ok );
    TESTCHECKF( quat4.X(), quat2.X(), &ok );
    TESTCHECKF( quat4.Y(), quat2.Y(), &ok );
    TESTCHECKF( quat4.Z(), quat2.Z(), &ok );
    TESTCHECKF( quat4.Norm(), 1.f, &ok );
    cout << "GetAxisAngle( )" << endl;
    axisAngle = quat4.GetAxisAngle( );
    TESTCHECKF( axisAngle.Axis().X(), f, &ok );
    TESTCHECKF( axisAngle.Axis().Y(), f, &ok );
    TESTCHECKF( axisAngle.Axis().Z(), f, &ok );
    TESTCHECKF( axisAngle.GetAngle().Radians(), a, &ok );
    cout << "Matrix( )" << endl;
    RotationMatrix3F mat1 = quat4.Matrix( );
    TESTCHECKF( mat1(0,0), mat0(0,0), &ok );
    TESTCHECKF( mat1(0,1), mat0(0,1), &ok );
    TESTCHECKF( mat1(0,2), mat0(0,2), &ok );
    TESTCHECKF( mat1(1,0), mat0(1,0), &ok );
    TESTCHECKF( mat1(1,1), mat0(1,1), &ok );
    TESTCHECKF( mat1(1,2), mat0(1,2), &ok );
    TESTCHECKF( mat1(2,0), mat0(2,0), &ok );
    TESTCHECKF( mat1(2,1), mat0(2,1), &ok );
    TESTCHECKF( mat1(2,2), mat0(2,2), &ok );
    cout << "(quat4 * Quaternion( Vector3F::UnitX )"
         << "* quat4.Conjugate()).Imaginary() [rotation]" << endl;
    Vector3F vec1 = (quat4 * QuaternionF( Vector3F::UnitX )
                     * quat4.Conjugate()).Imaginary();
    TESTCHECKF( vec1.X(), 0.f, &ok );
    TESTCHECKF( vec1.Y(), 1.f, &ok );
    TESTCHECKF( vec1.Z(), 0.f, &ok );
    cout << "Rotate( Vector3F::UnitX )" << endl;
    vec1 = quat4.Rotate( Vector3F::UnitX );
    TESTCHECKF( vec1.X(), 0.f, &ok );
    TESTCHECKF( vec1.Y(), 1.f, &ok );
    TESTCHECKF( vec1.Z(), 0.f, &ok );
    float a0 = -2.9f;
    float a1 = 1.8f;
    float a2 = -0.7f;
    cout << "Quaternion qrot0( 0, " << a0 << " )" << endl;
    QuaternionF qrot0( 0, Angle( a0 ) );
    cout << "Quaternion qrot1( 1, " << a1 << " )" << endl;
    QuaternionF qrot1( 1, Angle( a1 ) );
    cout << "Quaternion qrot2( 2, " << a2 << " )" << endl;
    QuaternionF qrot2( 2, Angle( a2 ) );
    cout << "quat1 = qrot1 * qrot2 * qrot0" << endl;
    quat1 = qrot1 * qrot2 * qrot0;
    cout << "GetEulerAngles( EulerAngles::YZX )" << endl;
    EulerAngles euler = quat1.GetEulerAngles( EulerAngles::YZX );
    TESTCHECKF( euler[0].Radians(), a1, &ok );
    TESTCHECKF( euler[1].Radians(), a2, &ok );
    TESTCHECKF( euler[2].Radians(), a0, &ok );
    cout << "Quaternion( EulerAngles( " << a1 << ", " << a2 << ", " << a0
         << " ), EulerAngles::YZX ) [Euler angles constructor]" << endl;
    QuaternionF quat5( EulerAngles( a1, a2, a0 ), EulerAngles::YZX );
    TESTCHECKF( quat5.W(), quat1.W(), &ok );
    TESTCHECKF( quat5.X(), quat1.X(), &ok );
    TESTCHECKF( quat5.Y(), quat1.Y(), &ok );
    TESTCHECKF( quat5.Z(), quat1.Z(), &ok );
    cout << "GetEulerAngles( EulerAngles::YZX )" << endl;
    euler = quat5.GetEulerAngles( EulerAngles::YZX );
    TESTCHECKF( euler[0].Radians(), a1, &ok );
    TESTCHECKF( euler[1].Radians(), a2, &ok );
    TESTCHECKF( euler[2].Radians(), a0, &ok );
    a2 = static_cast<float>( - M_PI / 2. );
    cout << "qrot2.Set( 2, " << a2 << " )" << endl;
    qrot2.Set( 2, Angle( a2 ) );
    cout << "quat1 = qrot1 * qrot2 * qrot0" << endl;
    quat1 = qrot1 * qrot2 * qrot0;
    cout << "GetEulerAngles( EulerAngles::YZX )" << endl;
    euler = quat1.GetEulerAngles( EulerAngles::YZX );
    Angle a10( a1 - a0 );
    a10.Normalize();
    float a1_a0 = static_cast<float>( a10.Radians() );
    TESTCHECKF( euler[0].Radians(), a1_a0, &ok );
    TESTCHECKF( euler[1].Radians(), a2, &ok );
    TESTCHECKF( euler[2].Radians(), 0.f, &ok );
    cout << "Matrix().GetEulerAngles( EulerAngles::YZX )" << endl;
    euler = quat1.Matrix().GetEulerAngles( EulerAngles::YZX );
    TESTCHECKF( euler[0].Radians(), a1_a0, &ok );
    TESTCHECKF( euler[1].Radians(), a2, &ok );
    TESTCHECKF( euler[2].Radians(), 0.f, &ok );
    cout << "Set( EulerAngles( " << a1 << ", " << a2 << ", " << a0
         << " ), EulerAngles::YZX )" << endl;
    quat5.Set( EulerAngles( a1, a2, a0 ), EulerAngles::YZX );
    TESTCHECKF( quat5.W(), quat1.W(), &ok );
    TESTCHECKF( quat5.X(), quat1.X(), &ok );
    TESTCHECKF( quat5.Y(), quat1.Y(), &ok );
    TESTCHECKF( quat5.Z(), quat1.Z(), &ok );
    cout << "GetEulerAngles( EulerAngles::YZX )" << endl;
    euler = quat5.GetEulerAngles( EulerAngles::YZX );
    TESTCHECKF( euler[0].Radians(), a1_a0, &ok );
    TESTCHECKF( euler[1].Radians(), a2, &ok );
    TESTCHECKF( euler[2].Radians(), 0.f, &ok );
    a0 = 1.1f;
    a1 = -1.0f;
    a2 = 0.5f;
    cout << "qrot0.Set( 0, " << a0 << " )" << endl;
    qrot0.Set( 0, Angle( a0 ) );
    cout << "qrot1.Set( 1, " << a1 << " )" << endl;
    qrot1.Set( 1, Angle( a1 ) );
    cout << "qrot2.Set( 2, " << a2 << " )" << endl;
    qrot2.Set( 2, Angle( a2 ) );
    cout << "quat1 = qrot2 * qrot1 * qrot0" << endl;
    quat1 = qrot2 * qrot1 * qrot0;
    cout << "GetEulerAngles( EulerAngles::ZYX )" << endl;
    euler = quat1.GetEulerAngles( EulerAngles::ZYX );
    TESTCHECKF( euler[0].Radians(), a2, &ok );
    TESTCHECKF( euler[1].Radians(), a1, &ok );
    TESTCHECKF( euler[2].Radians(), a0, &ok );
    cout << "Matrix().GetEulerAngles( EulerAngles::ZYX )" << endl;
    euler = quat1.Matrix().GetEulerAngles( EulerAngles::ZYX );
    TESTCHECKF( euler[0].Radians(), a2, &ok );
    TESTCHECKF( euler[1].Radians(), a1, &ok );
    TESTCHECKF( euler[2].Radians(), a0, &ok );
    cout << "Set( EulerAngles( " << a2 << ", " << a1 << ", " << a0
         << " ), EulerAngles::ZYX )" << endl;
    quat5.Set( EulerAngles( a2, a1, a0 ), EulerAngles::ZYX );
    TESTCHECKF( quat5.W(), quat1.W(), &ok );
    TESTCHECKF( quat5.X(), quat1.X(), &ok );
    TESTCHECKF( quat5.Y(), quat1.Y(), &ok );
    TESTCHECKF( quat5.Z(), quat1.Z(), &ok );
    cout << "GetEulerAngles( EulerAngles::ZYX )" << endl;
    euler = quat5.GetEulerAngles( EulerAngles::ZYX );
    TESTCHECKF( euler[0].Radians(), a2, &ok );
    TESTCHECKF( euler[1].Radians(), a1, &ok );
    TESTCHECKF( euler[2].Radians(), a0, &ok );
    a1 = static_cast<float>( M_PI / 2. );
    cout << "qrot1.Set( 1, " << a1 << " )" << endl;
    qrot1.Set( 1, Angle( a1 ) );
    cout << "quat1 = qrot2 * qrot1 * qrot0" << endl;
    quat1 = qrot2 * qrot1 * qrot0;
    cout << "GetEulerAngles( EulerAngles::ZYX )" << endl;
    euler = quat1.GetEulerAngles( EulerAngles::ZYX );
    Angle a20 = Angle( a2 - a0 );
    a20.Normalize();
    float a2_a0 = static_cast<float>( a20.Radians() );
    TESTCHECKF( euler[0].Radians(), a2_a0, &ok );
    TESTCHECKF( euler[1].Radians(), a1, &ok );
    TESTCHECKF( euler[2].Radians(), 0.f, &ok );
    cout << "Set( EulerAngles( " << a2 << ", " << a1 << ", " << a0
         << " ), EulerAngles::ZYX )" << endl;
    quat5.Set( EulerAngles( a2, a1, a0 ), EulerAngles::ZYX );
    TESTCHECKF( quat5.W(), quat1.W(), &ok );
    TESTCHECKF( quat5.X(), quat1.X(), &ok );
    TESTCHECKF( quat5.Y(), quat1.Y(), &ok );
    TESTCHECKF( quat5.Z(), quat1.Z(), &ok );
    cout << "GetEulerAngles( EulerAngles::ZYX )" << endl;
    euler = quat5.GetEulerAngles( EulerAngles::ZYX );
    TESTCHECKF( euler[0].Radians(), a2_a0, &ok );
    TESTCHECKF( euler[1].Radians(), a1, &ok );
    TESTCHECKF( euler[2].Radians(), 0.f, &ok );
    
    if ( ok )
        cout << "Quaternion PASSED." << endl << endl;
    else
        cout << "Quaternion FAILED." << endl << endl;
    return ok;
}
Exemple #11
0
void level_two()
{
		vector<DPipe> DPIPES(44);
	vector<DoublePipe> DOUBPIPES(18);
	vector<CrossPipe> CROSSPIPES(3);

	DPipe background(600,400,1200,800);

	DPipe a0(50,750,100,40);
	DPipe a1(150,650,100,40);
	DPipe a2(150,550,100,40);
	DPipe a3(650,450,100,40);
	DPipe a4(550,550,100,40);
	DPipe a5(450,350,100,40);
	DPipe a6(550,250,100,40);
	DPipe a7(650,250,100,40);
	DPipe a8(750,350,100,40);
	DPipe a9(750,450,100,40);
	DPipe a10(750,550,100,40);
	DPipe a11(650,650,100,40);
	DPipe a12(550,650,100,40);
	DPipe a13(450,650,100,40);
	DPipe a14(350,550,100,40);
	DPipe a15(350,350,100,40);
	DPipe a16(350,250,100,40);
	DPipe a17(450,150,100,40);
	DPipe a18(550,150,100,40);
	DPipe a19(650,150,100,40);
	DPipe a20(750,150,100,40);
	DPipe a21(850,250,100,40);
	DPipe a22(850,350,100,40);
	DPipe a23(850,450,100,40);
	DPipe a24(850,550,100,40);
	DPipe a25(850,650,100,40);
	DPipe a26(750,750,100,40);
	DPipe a27(650,750,100,40);
	DPipe a28(550,750,100,40);
	DPipe a29(450,750,100,40);
	DPipe a30(350,750,100,40);
	DPipe a31(250,650,100,40);
	DPipe a32(250,550,100,40);
	DPipe a33(250,350,100,40);
	DPipe a34(250,250,100,40);
	DPipe a35(250,150,100,40);
	DPipe a36(350,50,100,40);
	DPipe a37(450,50,100,40);
	DPipe a38(550,50,100,40);
	DPipe a39(650,50,100,40);
	DPipe a40(750,50,100,40);
	DPipe a41(850,50,100,40);
	DPipe a42(950,150,100,40);
	DPipe a43(950,250,100,40);

	DoublePipe b0(150,750,70,40);
	DoublePipe b1(150,450,70,40);
	DoublePipe b2(550,450,70,40);
	DoublePipe b3(550,350,70,40);
	DoublePipe b4(650,350,70,40);
	DoublePipe b5(650,550,70,40);
	DoublePipe b6(450,550,70,40);
	DoublePipe b7(450,250,70,40);
	DoublePipe b8(750,250,70,40);
	DoublePipe b9(750,650,70,40);
	DoublePipe b10(350,650,70,40);
	DoublePipe b11(350,150,70,40);
	DoublePipe b12(850,150,70,40);
	DoublePipe b13(850,750,70,40);
	DoublePipe b14(250,750,70,40);
	DoublePipe b15(250,50,70,40);
	DoublePipe b16(950,50,70,40);
	DoublePipe b17(950,350,70,40);

	CrossPipe c0(250,450,100,40);
	CrossPipe c1(350,450,100,40);
	CrossPipe c2(450,450,100,40);

	DPIPES[0]=a0;
	DPIPES[1]=a1;
	DPIPES[2]=a2;
	DPIPES[3]=a3;
	DPIPES[4]=a4;
	DPIPES[5]=a5;
	DPIPES[6]=a6;
	DPIPES[7]=a7;
	DPIPES[8]=a8;
	DPIPES[9]=a9;
	DPIPES[10]=a10;
	DPIPES[11]=a11;
	DPIPES[12]=a12;
	DPIPES[13]=a13;
	DPIPES[14]=a14;
	DPIPES[15]=a15;
	DPIPES[16]=a16;
	DPIPES[17]=a17;
	DPIPES[18]=a18;
	DPIPES[19]=a19;
	DPIPES[20]=a20;
	DPIPES[21]=a21;
	DPIPES[22]=a22;
	DPIPES[23]=a23;
	DPIPES[24]=a24;
	DPIPES[25]=a25;
	DPIPES[26]=a26;
	DPIPES[27]=a27;
	DPIPES[28]=a28;
	DPIPES[29]=a29;
	DPIPES[30]=a30;
	DPIPES[31]=a31;
	DPIPES[32]=a32;
	DPIPES[33]=a33;
	DPIPES[34]=a34;
	DPIPES[35]=a35;
	DPIPES[36]=a36;
	DPIPES[37]=a37;
	DPIPES[38]=a38;
	DPIPES[39]=a39;
	DPIPES[40]=a40;
	DPIPES[41]=a41;
	DPIPES[42]=a42;
	DPIPES[43]=a43;

	DOUBPIPES[0]=b0;
	DOUBPIPES[1]=b1;
	DOUBPIPES[2]=b2;
	DOUBPIPES[3]=b3;
	DOUBPIPES[4]=b4;
	DOUBPIPES[5]=b5;
	DOUBPIPES[6]=b6;
	DOUBPIPES[7]=b7;
	DOUBPIPES[8]=b8;
	DOUBPIPES[9]=b9;
	DOUBPIPES[10]=b10;
	DOUBPIPES[11]=b11;
	DOUBPIPES[12]=b12;
	DOUBPIPES[13]=b13;
	DOUBPIPES[14]=b14;
	DOUBPIPES[15]=b15;
	DOUBPIPES[16]=b16;
	DOUBPIPES[17]=b17;

	CROSSPIPES[0]=c0;
	CROSSPIPES[1]=c1;
	CROSSPIPES[2]=c2;
}
Exemple #12
0
inline void
PanelLQ( DistMatrix<Real>& A )
{
#ifndef RELEASE
    PushCallStack("internal::PanelLQ");
#endif
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<Real>
        ATL(g), ATR(g),  A00(g), a01(g),     A02(g),  aTopRow(g), ABottomPan(g),
        ABL(g), ABR(g),  a10(g), alpha11(g), a12(g),
                         A20(g), a21(g),     A22(g);

    // Temporary distributions
    DistMatrix<Real,STAR,MR> aTopRow_STAR_MR(g);
    DistMatrix<Real,MC,STAR> z_MC_STAR(g);

    PushBlocksizeStack( 1 );
    PartitionDownLeftDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ATL.Height() < A.Height() && ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        aTopRow.View1x2( alpha11, a12 );
        ABottomPan.View1x2( a21, A22 );

        aTopRow_STAR_MR.AlignWith( ABottomPan );
        z_MC_STAR.AlignWith( ABottomPan );
        Zeros( ABottomPan.Height(), 1, z_MC_STAR );
        //--------------------------------------------------------------------//
        const Real tau = Reflector( alpha11, a12 );

        const bool myDiagonalEntry = ( g.Row() == alpha11.ColAlignment() &&
                                       g.Col() == alpha11.RowAlignment() );
        Real alpha = 0;
        if( myDiagonalEntry )
        {
            alpha = alpha11.GetLocal(0,0);
            alpha11.SetLocal(0,0,1);
        }

        aTopRow_STAR_MR = aTopRow;

        Gemv
        ( NORMAL,
          Real(1), ABottomPan.LockedLocalMatrix(),
                   aTopRow_STAR_MR.LockedLocalMatrix(),
          Real(0), z_MC_STAR.LocalMatrix() );
        z_MC_STAR.SumOverRow();

        Ger
        ( -tau,
          z_MC_STAR.LockedLocalMatrix(),
          aTopRow_STAR_MR.LockedLocalMatrix(),
          ABottomPan.LocalMatrix() );

        if( myDiagonalEntry )
            alpha11.SetLocal(0,0,alpha);
        //--------------------------------------------------------------------//
        aTopRow_STAR_MR.FreeAlignments();
        z_MC_STAR.FreeAlignments();

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #13
0
inline void
PanelLQ
( DistMatrix<Complex<Real> >& A,
  DistMatrix<Complex<Real>,MD,STAR>& t )
{
#ifndef RELEASE
    PushCallStack("internal::PanelLQ");
    if( A.Grid() != t.Grid() )
        throw std::logic_error("{A,t} must be distributed over the same grid");
    if( t.Height() != std::min(A.Height(),A.Width()) || t.Width() != 1 )
        throw std::logic_error
        ("t must be a vector of height equal to the minimum dimension of A");
    if( !t.AlignedWithDiagonal( A, 0 ) )
        throw std::logic_error("t must be aligned with A's main diagonal");
#endif
    typedef Complex<Real> C;
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<C>
        ATL(g), ATR(g),  A00(g), a01(g),     A02(g),  aTopRow(g), ABottomPan(g),
        ABL(g), ABR(g),  a10(g), alpha11(g), a12(g),
                         A20(g), a21(g),     A22(g);
    DistMatrix<C,MD,STAR>
        tT(g),  t0(g),
        tB(g),  tau1(g),
                t2(g);

    // Temporary distributions
    DistMatrix<C> aTopRowConj(g);
    DistMatrix<C,STAR,MR  > aTopRowConj_STAR_MR(g);
    DistMatrix<C,MC,  STAR> z_MC_STAR(g);

    PushBlocksizeStack( 1 );
    PartitionDownLeftDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    PartitionDown
    ( t, tT,
         tB, 0 );
    while( ATL.Height() < A.Height() && ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        RepartitionDown
        ( tT,  t0,
         /**/ /****/
               tau1,
          tB,  t2 );

        aTopRow.View1x2( alpha11, a12 );
        ABottomPan.View1x2( a21, A22 );

        aTopRowConj_STAR_MR.AlignWith( ABottomPan );
        z_MC_STAR.AlignWith( ABottomPan );
        Zeros( ABottomPan.Height(), 1, z_MC_STAR );
        //--------------------------------------------------------------------//
        const C tau = Reflector( alpha11, a12 );
        tau1.Set( 0, 0, tau );

        const bool myDiagonalEntry = ( g.Row() == alpha11.ColAlignment() &&
                                       g.Col() == alpha11.RowAlignment() );
        C alpha = 0;
        if( myDiagonalEntry )
        {
            alpha = alpha11.GetLocal(0,0);
            alpha11.SetLocal(0,0,1);
        }

        Conjugate( aTopRow, aTopRowConj );
        aTopRowConj_STAR_MR = aTopRowConj;

        Gemv
        ( NORMAL,
          C(1), ABottomPan.LockedLocalMatrix(),
                aTopRowConj_STAR_MR.LockedLocalMatrix(),
          C(0), z_MC_STAR.LocalMatrix() );
        z_MC_STAR.SumOverRow();

        Ger
        ( -Conj(tau),
          z_MC_STAR.LockedLocalMatrix(),
          aTopRowConj_STAR_MR.LockedLocalMatrix(),
          ABottomPan.LocalMatrix() );

        if( myDiagonalEntry )
            alpha11.SetLocal(0,0,alpha);
        //--------------------------------------------------------------------//
        aTopRowConj_STAR_MR.FreeAlignments();
        z_MC_STAR.FreeAlignments();

        SlidePartitionDown
        ( tT,  t0,
               tau1,
         /**/ /****/
          tB,  t2 );

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}