Exemple #1
0
  // Cycle through integer types
  TEST(Exp, VarySubgroup) {
    const int pbits = 2048;

    for(int qbits = 160; qbits<pbits; qbits+=64) {
      // Generate prime
      CryptoPP::AutoSeededX917RNG<CryptoPP::AES> rng(false, true);
      CryptoPP::PrimeAndGenerator pand(1, rng, pbits, qbits);

      const CryptoPP::Integer two(2);

      double total = 0.0f;
      // Do 1000 exps
      for(int i=0; i<1000; i++) {
        CryptoPP::Integer v = a_exp_b_mod_c(
            pand.Generator(),
            CryptoPP::Integer(rng, two, pand.SubPrime(), CryptoPP::Integer::ANY),
            pand.Prime());
        CryptoPP::Integer e(rng, two, pand.SubPrime(), CryptoPP::Integer::ANY);

        double start = QDateTime::currentMSecsSinceEpoch();
        CryptoPP::Integer r = a_exp_b_mod_c(v, e, pand.Prime());
        double end = QDateTime::currentMSecsSinceEpoch();

        total += (end-start);
      }

      qDebug() << qbits << total;

    }
  }
void ElGamalDecryptor::RawDecrypt(const Integer &a, const Integer &b, Integer &m) const
{
	if (x.BitCount()+20 < p.BitCount())	// if x is short
		m = b * EuclideanMultiplicativeInverse(a_exp_b_mod_c(a, x, p), p) % p;
	else	// save a multiplicative inverse calculation
		m = b * a_exp_b_mod_c(a, p-1-x, p) % p;
}
Exemple #3
0
// the following two functions are based on code and comments provided by Preda Mihailescu
static bool ProvePrime(const Integer &p, const Integer &q)
{
	assert(p < q*q*q);
	assert(p % q == 1);

// this is the Quisquater test. Numbers p having passed the Lucas - Lehmer test
// for q and verifying p < q^3 can only be built up of two factors, both = 1 mod q,
// or be prime. The next two lines build the discriminant of a quadratic equation
// which holds iff p is built up of two factors (excercise ... )

	Integer r = (p-1)/q;
	if (((r%q).Squared()-4*(r/q)).IsSquare())
		return false;

	unsigned int primeTableSize;
	const word16 * primeTable = GetPrimeTable(primeTableSize);

	assert(primeTableSize >= 50);
	for (int i=0; i<50; i++) 
	{
		Integer b = a_exp_b_mod_c(primeTable[i], r, p);
		if (b != 1) 
			return a_exp_b_mod_c(b, q, p) == 1;
	}
	return false;
}
Exemple #4
0
static void rsadecrypt(Integer* key, Integer* m)
{
    Integer xp = a_exp_b_mod_c(*m%key[AsymmCipher::PRIV_P],key[AsymmCipher::PRIV_D]%(key[AsymmCipher::PRIV_P]-Integer::One()),key[AsymmCipher::PRIV_P]);
    Integer xq = a_exp_b_mod_c(*m%key[AsymmCipher::PRIV_Q],key[AsymmCipher::PRIV_D]%(key[AsymmCipher::PRIV_Q]-Integer::One()),key[AsymmCipher::PRIV_Q]);

    if (xp > xq) *m = key[AsymmCipher::PRIV_Q]-(((xp-xq)*key[AsymmCipher::PRIV_U])%key[AsymmCipher::PRIV_Q]);
    else *m = ((xq-xp)*key[AsymmCipher::PRIV_U])%key[AsymmCipher::PRIV_Q];

    *m = *m*key[AsymmCipher::PRIV_P]+xp;
}
Integer Commiter::open() {
    Integer vp;

    vp = a_exp_b_mod_c(
             com.h,
             a_exp_b_mod_c(2, Integer::Power2(com.K) - com.l, phi),
             n);

    return vp;
}
Exemple #6
0
Integer ModularSquareRoot(const Integer &a, const Integer &p)
{
	if (p%4 == 3)
		return a_exp_b_mod_c(a, (p+1)/4, p);

	Integer q=p-1;
	unsigned int r=0;
	while (q.IsEven())
	{
		r++;
		q >>= 1;
	}

	Integer n=2;
	while (Jacobi(n, p) != -1)
		++n;

	Integer y = a_exp_b_mod_c(n, q, p);
	Integer x = a_exp_b_mod_c(a, (q-1)/2, p);
	Integer b = (x.Squared()%p)*a%p;
	x = a*x%p;
	Integer tempb, t;

	while (b != 1)
	{
		unsigned m=0;
		tempb = b;
		do
		{
			m++;
			b = b.Squared()%p;
			if (m==r)
				return Integer::Zero();
		}
		while (b != 1);

		t = y;
		for (unsigned i=0; i<r-m-1; i++)
			t = t.Squared()%p;
		y = t.Squared()%p;
		r = m;
		x = x*t%p;
		b = tempb*y%p;
	}

	assert(x.Squared()%p == a);
	return x;
}
Exemple #7
0
// Generate public value
void DH::GeneratePublic(const byte* priv, byte* pub)
{
    const word32 bc(p_.ByteCount());
    Integer x(priv, bc);
    Integer y(a_exp_b_mod_c(g_, x, p_));
    y.Encode(pub, bc);
}
//--------------------------------------------------------------
//LinkableRingSignProver constructor check
TEST(LinkableRingSignProverTest, DefaultArgs) {

	unsigned int n = 100, identity = 12;
	Integer g_in, p_in, q_in, private_key_in;
	vector<Integer> public_keys_in;

	GetGroupParameters(g_in, p_in, q_in);

	RandomPool rng;

	//set safe_NO for private key here.
	Integer SAFE_NO = 1231;
	//generate private_public keys
	for(unsigned int i = 1; i <= n; i++)
	{
		Integer a = Integer(rng, SAFE_NO, q_in - 1);
		if(i == 11)
			private_key_in = a;		
		public_keys_in.push_back(a_exp_b_mod_c(g_in, a, p_in));
	}
	
	LinkableRingSignProver P(n, identity, g_in, p_in, q_in, public_keys_in, private_key_in);
	EXPECT_EQ(P.num_members, n);
	EXPECT_EQ(P.g, g_in);	EXPECT_EQ(P.q, q_in); EXPECT_EQ(P.p, p_in);
	
	vector<Integer>::iterator itr = public_keys_in.begin();
	unsigned int j = 0;
	for(itr = public_keys_in.begin(); itr != public_keys_in.end(); itr++)
	{
		ASSERT_EQ(P.public_keys[j++], *itr);
	}
}
// find order of a element mod (p1*p2)
// p1 and p2 are safe primes
static Integer find_order(const Integer &p1, const Integer &p2, const Integer &g) {
    Integer n = p1 * p2;
    Integer phi = (p1-1)*(p2-1);
    Integer q1 = (p1-1)/2;
    Integer q2 = (p2-2)/2;

    Integer order = phi;
    vector<Integer> primes;
    primes.push_back(q1);
    primes.push_back(q2);
    primes.push_back(2);

    for(Integer q: primes) {
        while(true) {
            Integer rest, quotient;
            Integer::Divide(rest, quotient, order, q);
            if (rest != 0)
                break;
            if (a_exp_b_mod_c(g, quotient, n) == 1) {
                order = quotient;
            }
            else
                break;
        }
    }

    return order;
}
Exemple #10
0
bool IsStrongProbablePrime(const Integer &n, const Integer &b)
{
	if (n <= 3)
		return n==2 || n==3;

	assert(n>3 && b>1 && b<n-1);

	if ((n.IsEven() && n!=2) || GCD(b, n) != 1)
		return false;

	Integer nminus1 = (n-1);
	unsigned int a;

	// calculate a = largest power of 2 that divides (n-1)
	for (a=0; ; a++)
		if (nminus1.GetBit(a))
			break;
	Integer m = nminus1>>a;

	Integer z = a_exp_b_mod_c(b, m, n);
	if (z==1 || z==nminus1)
		return true;
	for (unsigned j=1; j<a; j++)
	{
		z = z.Squared()%n;
		if (z==nminus1)
			return true;
		if (z==1)
			return false;
	}
	return false;
}
vI Commiter::zk_4(const vI &commit_values) {

    if (commit_values.size() != com.K+1) {
        throw ProtocolException("invalid commit_values size");
    }

    for(unsigned i = 1; i <= com.K; ++i) {
        if (!regular_verify(commits[i], commit_values[i])) {
            throw ProtocolException("regular commit didn't verify");
        }
    }

    vI y(com.K+1);
    for(unsigned i = 1; i <= com.K; ++i) {
        Integer yi = a_times_b_mod_c(
                         commit_values[i],
                         a_exp_b_mod_c(2, Integer::Power2(i-1), order),
                         order);
        yi += alpha[i];
        yi %= order;
        y[i] = yi;
    }

    return y;
}
Exemple #12
0
void DL_GroupParameters_DSA::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
{
	Integer p, q, g;

	if (alg.GetValue("Modulus", p) && alg.GetValue("SubgroupGenerator", g))
	{
		q = alg.GetValueWithDefault("SubgroupOrder", ComputeGroupOrder(p)/2);
	}
	else
	{
		int modulusSize = 1024;
		alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);

		if (!DSA::IsValidPrimeLength(modulusSize))
			throw InvalidArgument("DSA: not a valid prime length");

		SecByteBlock seed(SHA::DIGESTSIZE);
		Integer h;
		int c;

		do
		{
			rng.GenerateBlock(seed, SHA::DIGESTSIZE);
		} while (!DSA::GeneratePrimes(seed, SHA::DIGESTSIZE*8, c, p, modulusSize, q));

		do
		{
			h.Randomize(rng, 2, p-2);
			g = a_exp_b_mod_c(h, (p-1)/q, p);
		} while (g <= 1);
	}

	Initialize(p, q, g);
}
//--------------------------------------------------------------
//GenerateGroupParameters
TEST(GenerateGroupParametersTest, IntegerInputs) {

	Integer p, q, g;
	GetGroupParameters(g, p, q);

	EXPECT_EQ(1, a_exp_b_mod_c(g, q, p));
}
Exemple #14
0
bool IsFermatProbablePrime(const Integer &n, const Integer &b)
{
	if (n <= 3)
		return n==2 || n==3;

	assert(n>3 && b>1 && b<n-1);
	return a_exp_b_mod_c(b, n-1, n)==1;
}
Exemple #15
0
void BlumBlumShub::Seek(lword index)
{
	Integer i(Integer::POSITIVE, index);
	i *= 8;
	Integer e = a_exp_b_mod_c (2, i / maxBits + 1, (p-1)*(q-1));
	current = modn.Exponentiate(x0, e);
	bitsLeft = maxBits - i % maxBits;
}
Exemple #16
0
 Ed25519 ()
 {
     q = CryptoPP::Integer::Power2 (255) - CryptoPP::Integer (19); // 2^255-19
     l = CryptoPP::Integer::Power2 (252) + CryptoPP::Integer ("27742317777372353535851937790883648493");
     // 2^252 + 27742317777372353535851937790883648493
     d = CryptoPP::Integer (-121665) * CryptoPP::Integer (121666).InverseMod (q); // -121665/121666
     I = a_exp_b_mod_c (CryptoPP::Integer::Two (), (q - CryptoPP::Integer::One ()).DividedBy (4), q);
     B = DecodePoint (CryptoPP::Integer (4)*CryptoPP::Integer (5).InverseMod (q));
 }
unsigned int BlumGoldwasserPrivateKey::Decrypt(const byte *input, unsigned int cipherTextLength, byte *output)
{
	if (cipherTextLength <= modulusLen)
		return 0;

	Integer xt(input, modulusLen);
	PublicBlumBlumShub bbs(n, Integer::Zero());
	unsigned int plainTextLength = cipherTextLength - modulusLen;
	unsigned int t = ((plainTextLength)*8 + bbs.maxBits-1) / bbs.maxBits;
	Integer dp = a_exp_b_mod_c((p+1)/4, t, p-1);
	Integer dq = a_exp_b_mod_c((q+1)/4, t, q-1);
	Integer xp = a_exp_b_mod_c(xt%p, dp, p);
	Integer xq = a_exp_b_mod_c(xt%q, dq, q);
	bbs.current = CRT(xp, p, xq, q, u);
	bbs.bitsLeft = bbs.maxBits;

	bbs.ProcessString(output, input+modulusLen, plainTextLength);
	return plainTextLength;
}
Exemple #18
0
 CryptoPP::Integer RecoverX (const CryptoPP::Integer& y) const
 {
     auto y2 = y.Squared ();
     auto xx = (y2 - CryptoPP::Integer::One())*(d*y2 + CryptoPP::Integer::One()).InverseMod (q); 
     auto x = a_exp_b_mod_c (xx, (q + CryptoPP::Integer (3)).DividedBy (8), q);
     if (!(x.Squared () - xx).Modulo (q).IsZero ())
         x = a_times_b_mod_c (x, I, q);
     if (x.IsOdd ()) x = q - x;
     return x;
 }
Exemple #19
0
Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
{
	const unsigned smallPrimeBound = 29, c_opt=10;
	Integer p;

	unsigned int primeTableSize;
	const word16 * primeTable = GetPrimeTable(primeTableSize);

	if (bits < smallPrimeBound)
	{
		do
			p.Randomize(rng, Integer::Power2(bits-1), Integer::Power2(bits)-1, Integer::ANY, 1, 2);
		while (TrialDivision(p, 1 << ((bits+1)/2)));
	}
	else
	{
		const unsigned margin = bits > 50 ? 20 : (bits-10)/2;
		double relativeSize;
		do
			relativeSize = pow(2.0, double(rng.GenerateWord32())/0xffffffff - 1);
		while (bits * relativeSize >= bits - margin);

		Integer a,b;
		Integer q = MaurerProvablePrime(rng, unsigned(bits*relativeSize));
		Integer I = Integer::Power2(bits-2)/q;
		Integer I2 = I << 1;
		unsigned int trialDivisorBound = (unsigned int)STDMIN((unsigned long)primeTable[primeTableSize-1], (unsigned long)bits*bits/c_opt);
		bool success = false;
		while (!success)
		{
			p.Randomize(rng, I, I2, Integer::ANY);
			p *= q; p <<= 1; ++p;
			if (!TrialDivision(p, trialDivisorBound))
			{
				a.Randomize(rng, 2, p-1, Integer::ANY);
				b = a_exp_b_mod_c(a, (p-1)/q, p);
				success = (GCD(b-1, p) == 1) && (a_exp_b_mod_c(b, q, p) == 1);
			}
		}
	}
	return p;
}
Exemple #20
0
bool DH::Agree(byte *agreedValue, const byte *privateKey, const byte *otherPublicKey, bool validateOtherPublicKey) const
{
	Integer w(otherPublicKey, PublicKeyLength());
	if (validateOtherPublicKey && !(w > 1 && w < p && Jacobi(w, p) == 1))
		return false;

	Integer s(privateKey, PrivateKeyLength());
	Integer z = a_exp_b_mod_c(w, s, p);
	z.Encode(agreedValue, AgreedValueLength());
	return true;
}
vector<bool> Receiver::open(Integer vp) {

    Integer v = get_g(com.n, vp);

    Integer u = a_exp_b_mod_c(v, Integer::Power2(com.l), com.n);

    if (u != com.u) {
        throw ProtocolException("u != com.u");
    }

    return decode(v);
}
Exemple #22
0
// generate a random prime p of the form 2*r*q+delta, where q is also prime
PrimeAndGenerator::PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned int qbits)
{
	// no prime exists for delta = -1, qbits = 4, and pbits = 5
	assert(qbits > 4);
	assert(pbits > qbits);

	Integer minQ = Integer::Power2(qbits-1);
	Integer maxQ = Integer::Power2(qbits) - 1;
	Integer minP = Integer::Power2(pbits-1);
	Integer maxP = Integer::Power2(pbits) - 1;

	do
	{
		q.Randomize(rng, minQ, maxQ, Integer::PRIME);
	} while (!p.Randomize(rng, minP, maxP, Integer::PRIME, delta%q, q));

	// find a random g of order q
	if (delta==1)
	{
		do
		{
			Integer h(rng, 2, p-2, Integer::ANY);
			g = a_exp_b_mod_c(h, (p-1)/q, p);
		} while (g <= 1);
		assert(a_exp_b_mod_c(g, q, p)==1);
	}
	else
	{
		assert(delta==-1);
		do
		{
			Integer h(rng, 3, p-1, Integer::ANY);
			if (Jacobi(h*h-4, p)==1)
				continue;
			g = Lucas((p+1)/q, h, p);
		} while (g <= 2);
		assert(Lucas(q, g, p) == 2);
	}
}
	void B::cont_sig(ECPPoint Ks, Integer cs, byte *m, unsigned m_len){
		kb.Randomize(common::rng(), Integer::One(), n-1);
		K = ec.Multiply(kb, Ks);
		r = K.x % n;
		if (r == 0)
			throw ProtocolException("r == 0");

		Integer hi = hash_m_to_int(m, m_len, n.ByteCount());
		Integer c1 = paillier.enc( a_times_b_mod_c(kb.InverseMod(n), hi, n) );
		Integer t = a_times_b_mod_c(a_times_b_mod_c(kb.InverseMod(n), r, n), db, n);
		Integer c2 = a_times_b_mod_c(c1, a_exp_b_mod_c(cs, t, paillier.get_n2()), paillier.get_n2());
		Integer u(common::rng(), Integer::Zero(), n*n - 1);
		cb = a_times_b_mod_c(c2, paillier.enc(u*n), paillier.get_n2());
	}
vIvI Commiter::zk_2(const vector<RegularCommitment> &commits) {

    if (commits.size() != com.K+1) {
        throw ProtocolException("ERR zk_2 commits size");
    }

    this->commits = commits;

    vector<Integer> z, w;

    alpha.resize(com.K+1);
    for(unsigned i = 1; i <= com.K; ++i) {
        alpha[i].Randomize(common::rng(), Integer::Zero(), order-1);
    }
    z.resize(com.K+1);
    w.resize(com.K+1);
    for(unsigned i = 1; i <= com.K; ++i) {
        z[i] = a_exp_b_mod_c(com.g, alpha[i], n);
        w[i] = a_exp_b_mod_c(com.W[i-1], alpha[i], n);
    }

    return vIvI(z, w);
}
Exemple #25
0
// Generate Agreement
void DH::Agree(byte* agree, const byte* priv, const byte* otherPub, word32
               otherSz)
{
    const word32 bc(p_.ByteCount());
    Integer x(priv, bc);
    Integer y;
    if (otherSz)
        y.Decode(otherPub, otherSz);
    else
        y.Decode(otherPub, bc);

    Integer z(a_exp_b_mod_c(y, x, p_));
    z.Encode(agree, bc);
}
void Receiver::zk_5(const vI &y) {
    if (y.size() != com.K+1) {
        throw ProtocolException("y size != K+1");
    }

    for(unsigned i = 1; i <= com.K; ++i) {

        Integer zi = a_times_b_mod_c(
                         a_exp_b_mod_c(com.g, y[i], com.n),
                         a_exp_b_mod_c(com.W[i-1].InverseMod(com.n), commit_values[i], com.n),
                         com.n);
        if (zi != zw.first[i]) {
            throw ProtocolException("zi verification failed");
        }

        Integer wi = a_times_b_mod_c(
                         a_exp_b_mod_c(com.W[i-1], y[i], com.n),
                         a_exp_b_mod_c(com.W[i].InverseMod(com.n), commit_values[i], com.n),
                         com.n);
        if (wi != zw.second[i]) {
            throw ProtocolException("wi verification failed");
        }
    }
}
vector<bool> Receiver::force_open_smart() {

    Integer v = com.W[com.K-1];

    for(Integer i = 0; i < Integer::Power2(com.K-1) - com.l; ++i) {
        v = a_times_b_mod_c(v, v, com.n);
    }

    Integer u = a_exp_b_mod_c(v, Integer::Power2(com.l), com.n);

    if (u != com.u) {
        throw ProtocolException("u != com.u");
    }

    return decode(v);
}
// computes g as h ** ( mult (qi ** n) )
// where qi are all primes smaller than B
Integer get_g(const Integer &n, const Integer &h) {

    const word16 *primes;
    unsigned available_primes;

    // get the array of primes
    primes = GetPrimeTable(available_primes);
    if (available_primes <= B) {
        throw ProtocolException("not enough primes");
    }

    Integer mult = 1;
    for(int i = 0; primes[i] < B; ++i) {
        mult *= exp(primes[i], BITS);
    }
    return a_exp_b_mod_c(h, mult, n);
}
Exemple #29
0
word32 DSA_Signer::Sign(const byte* sha_digest, byte* sig,
                        RandomNumberGenerator& rng)
{
    const Integer& p = key_.GetModulus();
    const Integer& q = key_.GetSubGroupOrder();
    const Integer& g = key_.GetSubGroupGenerator();
    const Integer& x = key_.GetPrivatePart();
    byte* tmpPtr = sig;  // initial signature output

    Integer k(rng, 1, q - 1);

    r_ =  a_exp_b_mod_c(g, k, p);
    r_ %= q;

    Integer H(sha_digest, SHA::DIGEST_SIZE);  // sha Hash(m)

    Integer kInv = k.InverseMod(q);
    s_ = (kInv * (H + x*r_)) % q;

    if (!(!!r_ && !!s_))
        return -1;

    int rSz = r_.ByteCount();
    int tmpSz = rSz;

    while (tmpSz++ < SHA::DIGEST_SIZE) {
        *sig++ = 0;
    }

    r_.Encode(sig,  rSz);

    sig = tmpPtr + SHA::DIGEST_SIZE;  // advance sig output to s
    int sSz = s_.ByteCount();
    tmpSz = sSz;

    while (tmpSz++ < SHA::DIGEST_SIZE) {
        *sig++ = 0;
    }

    s_.Encode(sig, sSz);

    return 40;
}
Exemple #30
0
word32 DSA_Signer::Sign(const byte* sha_digest, byte* sig,
                        RandomNumberGenerator& rng)
{
    const Integer& p = key_.GetModulus();
    const Integer& q = key_.GetSubGroupOrder();
    const Integer& g = key_.GetSubGroupGenerator();
    const Integer& x = key_.GetPrivatePart();

    Integer k(rng, 1, q - 1);

    r_ =  a_exp_b_mod_c(g, k, p);
    r_ %= q;

    Integer H(sha_digest, SHA::DIGEST_SIZE);  // sha Hash(m)

    Integer kInv = k.InverseMod(q);
    s_ = (kInv * (H + x*r_)) % q;

    if (!(!!r_ && !!s_))
      return (word32) -1;

    int rSz = r_.ByteCount();

    if (rSz == 19) {
        sig[0] = 0;
        sig++;
    }
    
    r_.Encode(sig,  rSz);

    int sSz = s_.ByteCount();

    if (sSz == 19) {
        sig[rSz] = 0;
        sig++;
    }

    s_.Encode(sig + rSz, sSz);

    return 40;
}