/* * Update cache contents upon write completion. */ void vdev_cache_write(zio_t *zio) { vdev_cache_t *vc = &zio->io_vd->vdev_cache; vdev_cache_entry_t *ve, ve_search; uint64_t io_start = zio->io_offset; uint64_t io_end = io_start + zio->io_size; uint64_t min_offset = P2ALIGN(io_start, VCBS); uint64_t max_offset = P2ROUNDUP(io_end, VCBS); avl_index_t where; ASSERT(zio->io_type == ZIO_TYPE_WRITE); mutex_enter(&vc->vc_lock); ve_search.ve_offset = min_offset; ve = avl_find(&vc->vc_offset_tree, &ve_search, &where); if (ve == NULL) ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER); while (ve != NULL && ve->ve_offset < max_offset) { uint64_t start = MAX(ve->ve_offset, io_start); uint64_t end = MIN(ve->ve_offset + VCBS, io_end); if (ve->ve_fill_io != NULL) { ve->ve_missed_update = 1; } else { abd_copy_off(ve->ve_data, zio->io_data, end - start, start - ve->ve_offset, start - io_start); } ve = AVL_NEXT(&vc->vc_offset_tree, ve); } mutex_exit(&vc->vc_lock); }
static void vdev_queue_agg_io_done(zio_t *aio) { if (aio->io_type == ZIO_TYPE_READ) { zio_t *pio; while ((pio = zio_walk_parents(aio)) != NULL) { abd_copy_off(pio->io_data, aio->io_data, pio->io_size, 0, pio->io_offset - aio->io_offset); } } abd_free(aio->io_data, aio->io_size); }
static void vdev_queue_agg_io_done(zio_t *aio) { if (aio->io_type == ZIO_TYPE_READ) { zio_t *pio; zio_link_t *zl = NULL; while ((pio = zio_walk_parents(aio, &zl)) != NULL) { abd_copy_off(pio->io_abd, aio->io_abd, 0, pio->io_offset - aio->io_offset, pio->io_size); } } abd_free(aio->io_abd); }
static void vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio) { uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS); ASSERT(MUTEX_HELD(&vc->vc_lock)); ASSERT(ve->ve_fill_io == NULL); if (ve->ve_lastused != ddi_get_lbolt()) { avl_remove(&vc->vc_lastused_tree, ve); ve->ve_lastused = ddi_get_lbolt(); avl_add(&vc->vc_lastused_tree, ve); } ve->ve_hits++; abd_copy_off(zio->io_data, ve->ve_data, zio->io_size, 0, cache_phase); }
static zio_t * vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) { zio_t *first, *last, *aio, *dio, *mandatory, *nio; uint64_t maxgap = 0; uint64_t size; boolean_t stretch = B_FALSE; avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type); enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE) return (NULL); /* * Prevent users from setting the zfs_vdev_aggregation_limit * tuning larger than SPA_MAXBLOCKSIZE. */ zfs_vdev_aggregation_limit = MIN(zfs_vdev_aggregation_limit, SPA_MAXBLOCKSIZE); first = last = zio; if (zio->io_type == ZIO_TYPE_READ) maxgap = zfs_vdev_read_gap_limit; /* * We can aggregate I/Os that are sufficiently adjacent and of * the same flavor, as expressed by the AGG_INHERIT flags. * The latter requirement is necessary so that certain * attributes of the I/O, such as whether it's a normal I/O * or a scrub/resilver, can be preserved in the aggregate. * We can include optional I/Os, but don't allow them * to begin a range as they add no benefit in that situation. */ /* * We keep track of the last non-optional I/O. */ mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; /* * Walk backwards through sufficiently contiguous I/Os * recording the last non-optional I/O. */ while ((dio = AVL_PREV(t, first)) != NULL && (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit && IO_GAP(dio, first) <= maxgap && dio->io_type == zio->io_type) { first = dio; if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) mandatory = first; } /* * Skip any initial optional I/Os. */ while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { first = AVL_NEXT(t, first); ASSERT(first != NULL); } /* * Walk forward through sufficiently contiguous I/Os. * The aggregation limit does not apply to optional i/os, so that * we can issue contiguous writes even if they are larger than the * aggregation limit. */ while ((dio = AVL_NEXT(t, last)) != NULL && (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && (IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit || (dio->io_flags & ZIO_FLAG_OPTIONAL)) && IO_GAP(last, dio) <= maxgap && dio->io_type == zio->io_type) { last = dio; if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) mandatory = last; } /* * Now that we've established the range of the I/O aggregation * we must decide what to do with trailing optional I/Os. * For reads, there's nothing to do. While we are unable to * aggregate further, it's possible that a trailing optional * I/O would allow the underlying device to aggregate with * subsequent I/Os. We must therefore determine if the next * non-optional I/O is close enough to make aggregation * worthwhile. */ if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { zio_t *nio = last; while ((dio = AVL_NEXT(t, nio)) != NULL && IO_GAP(nio, dio) == 0 && IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { nio = dio; if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { stretch = B_TRUE; break; } } } if (stretch) { /* * We are going to include an optional io in our aggregated * span, thus closing the write gap. Only mandatory i/os can * start aggregated spans, so make sure that the next i/o * after our span is mandatory. */ dio = AVL_NEXT(t, last); dio->io_flags &= ~ZIO_FLAG_OPTIONAL; } else { /* do not include the optional i/o */ while (last != mandatory && last != first) { ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); last = AVL_PREV(t, last); ASSERT(last != NULL); } } if (first == last) return (NULL); size = IO_SPAN(first, last); ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, abd_alloc_for_io(size, B_TRUE), size, first->io_type, zio->io_priority, flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, vdev_queue_agg_io_done, NULL); aio->io_timestamp = first->io_timestamp; nio = first; do { dio = nio; nio = AVL_NEXT(t, dio); ASSERT3U(dio->io_type, ==, aio->io_type); if (dio->io_flags & ZIO_FLAG_NODATA) { ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); abd_zero_off(aio->io_abd, dio->io_offset - aio->io_offset, dio->io_size); } else if (dio->io_type == ZIO_TYPE_WRITE) { abd_copy_off(aio->io_abd, dio->io_abd, dio->io_offset - aio->io_offset, 0, dio->io_size); } zio_add_child(dio, aio); vdev_queue_io_remove(vq, dio); zio_vdev_io_bypass(dio); zio_execute(dio); } while (dio != last);