bool ZCE_Thread_Condition<ZCE_Thread_Recursive_Mutex>::duration_wait(ZCE_Thread_Recursive_Mutex *external_mutex,
                                                                     const ZCE_Time_Value &relative_time)
{
    ZCE_Time_Value abs_time (ZCE_OS::gettimeofday());
    abs_time += relative_time;
    return systime_wait(external_mutex, abs_time);
}
/*------------------------------------------------------------------------*/
  void fill_one_event (EVENT *ev, char *buff )
/*------------------------------------------------------------------------*/
{

  sscanf(&(buff[0]),"%4d", &(ev->yy) );
  sscanf(&(buff[5]),"%2d", &(ev->mm) );
  sscanf(&(buff[8]),"%2d", &(ev->dd) );
  //sscanf(&(buff[11]),"%2d", &(ev->h) );
  //sscanf(&(buff[13]),"%2d", &(ev->m) );
  //sscanf(&(buff[15]),"%2d", &(ev->s) );

  //  sscanf(&(buff[20]),"%2d", &(ev->ms) );
  //ev->ms = 10.*ev->ms;

  ev->h  = 0;
  ev->m  = 0;
  ev->ms = 0;


  printf("ev->yy %d, ev->mm %d,ev->dd %d, ev->h %d, ev->m %d, ev->s %d, ev->ms %d\n",
	  ev->yy,    ev->mm,   ev->dd,    ev->h,    ev->m,    ev->s,     ev->ms);



  ev->jday = jday( ev->yy, ev->mm, ev->dd );

  ev->t0 = abs_time (ev->yy, ev->jday, ev->h, ev->m, ev->s, ev->ms );
  sprintf(ev->name,"%d_%d_%d_%d_%d_%d",ev->yy, ev->mm, ev->dd, ev->h, ev->m, ev->s );
  printf(" ev->t0 %f\n",ev->t0);
  system(str);
}
Exemple #3
0
int main(int argc, char* argv[])
{
  // Instantiate a class with global functions.
  

  // Choose a Butcher's table or define your own.
  ButcherTable bt(butcher_table_type);
  if (bt.is_explicit()) info("Using a %d-stage explicit R-K method.", bt.get_size());
  if (bt.is_diagonally_implicit()) info("Using a %d-stage diagonally implicit R-K method.", bt.get_size());
  if (bt.is_fully_implicit()) info("Using a %d-stage fully implicit R-K method.", bt.get_size());

  // Turn off adaptive time stepping if R-K method is not embedded.
  if (bt.is_embedded() == false && ADAPTIVE_TIME_STEP_ON == true) {
    warn("R-K method not embedded, turning off adaptive time stepping.");
    ADAPTIVE_TIME_STEP_ON = false;
  }

  // Load the mesh.
  Mesh mesh, basemesh;
  MeshReaderH2D mloader;
  mloader.load("square.mesh", &basemesh);
  mesh.copy(&basemesh);

  // Initial mesh refinements.
  for(int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Convert initial condition into a Solution<std::complex<double> >.
  CustomInitialCondition psi_time_prev(&mesh);

  // Initialize the weak formulation.
  double current_time = 0;

  CustomWeakFormGPRK wf(h, m, g, omega);

  // Initialize boundary conditions.
  DefaultEssentialBCConst<std::complex<double> > bc_essential("Bdy", 0.0);
  EssentialBCs<std::complex<double> > bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  H1Space<std::complex<double> > space(&mesh, &bcs, P_INIT);
  int ndof = space.get_num_dofs();
  info("ndof = %d", ndof);
 
  // Initialize the FE problem.
  DiscreteProblem<std::complex<double> > dp(&wf, &space);

  // Create a refinement selector.
  H1ProjBasedSelector<std::complex<double> > selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // Visualize initial condition.
  char title[100];

  ScalarView sview_real("Initial condition - real part", new WinGeom(0, 0, 600, 500));
  ScalarView sview_imag("Initial condition - imaginary part", new WinGeom(610, 0, 600, 500));

  sview_real.show_mesh(false);
  sview_imag.show_mesh(false);
  sview_real.fix_scale_width(50);
  sview_imag.fix_scale_width(50);
  OrderView ord_view("Initial mesh", new WinGeom(445, 0, 440, 350));
  ord_view.fix_scale_width(50);
  ScalarView time_error_view("Temporal error", new WinGeom(0, 400, 440, 350));
  time_error_view.fix_scale_width(50);
  time_error_view.fix_scale_width(60);
  ScalarView space_error_view("Spatial error", new WinGeom(445, 400, 440, 350));
  space_error_view.fix_scale_width(50);
  RealFilter real(&psi_time_prev);
  ImagFilter imag(&psi_time_prev);
  sview_real.show(&real);
  sview_imag.show(&imag);
  ord_view.show(&space);

  // Graph for time step history.
  SimpleGraph time_step_graph;
  if (ADAPTIVE_TIME_STEP_ON) info("Time step history will be saved to file time_step_history.dat.");
  
  // Time stepping:
  int num_time_steps = (int)(T_FINAL/time_step + 0.5);
  for(int ts = 1; ts <= num_time_steps; ts++)
  // Time stepping loop.
  double current_time = 0.0; int ts = 1;
  do 
  {
    info("Begin time step %d.", ts);
    // Periodic global derefinement.
    if (ts > 1 && ts % UNREF_FREQ == 0) 
    {
      info("Global mesh derefinement.");
      switch (UNREF_METHOD) {
        case 1: mesh.copy(&basemesh);
                space.set_uniform_order(P_INIT);
                break;
        case 2: mesh.unrefine_all_elements();
                space.set_uniform_order(P_INIT);
                break;
        case 3: mesh.unrefine_all_elements();
                //space.adjust_element_order(-1, P_INIT);
                space.adjust_element_order(-1, -1, P_INIT, P_INIT);
                break;
        default: error("Wrong global derefinement method.");
      }

      ndof = Space<std::complex<double> >::get_num_dofs(&space);
    }
    info("ndof: %d", ndof);

    // Spatial adaptivity loop. Note: psi_time_prev must not be 
    // changed during spatial adaptivity. 
    Solution<std::complex<double> > ref_sln;
    Solution<std::complex<double> >* time_error_fn;
    if (bt.is_embedded() == true) time_error_fn = new Solution<std::complex<double> >(&mesh);
    else time_error_fn = NULL;
    bool done = false; int as = 1;
    double err_est;
    do {
      // Construct globally refined reference mesh and setup reference space.
      Space<std::complex<double> >* ref_space = Space<std::complex<double> >::construct_refined_space(&space);

      // Initialize discrete problem on reference mesh.
      DiscreteProblem<std::complex<double> >* ref_dp = new DiscreteProblem<std::complex<double> >(&wf, ref_space);
      
      RungeKutta<std::complex<double> > runge_kutta(ref_dp, &bt, matrix_solver_type);

      // Runge-Kutta step on the fine mesh.
      info("Runge-Kutta time step on fine mesh (t = %g s, time step = %g s, stages: %d).", 
         current_time, time_step, bt.get_size());
      bool verbose = true;

      try
      {
        runge_kutta.rk_time_step_newton(current_time, time_step, &psi_time_prev, 
                                    &ref_sln, time_error_fn, false, false, verbose, 
                                    NEWTON_TOL_FINE, NEWTON_MAX_ITER);
      }
      catch(Exceptions::Exception& e)
      {
        e.printMsg();
        error("Runge-Kutta time step failed");
      }

      /* If ADAPTIVE_TIME_STEP_ON == true, estimate temporal error. 
         If too large or too small, then adjust it and restart the time step. */

      double rel_err_time = 0;
      if (bt.is_embedded() == true) {
        info("Calculating temporal error estimate.");

        // Show temporal error.
        char title[100];
        sprintf(title, "Temporal error est, spatial adaptivity step %d", as);     
        time_error_view.set_title(title);
        time_error_view.show_mesh(false);
        RealFilter abs_time(time_error_fn);
        AbsFilter abs_tef(&abs_time);
        time_error_view.show(&abs_tef, HERMES_EPS_HIGH);

        rel_err_time = Global<std::complex<double> >::calc_norm(time_error_fn, HERMES_H1_NORM) / 
                       Global<std::complex<double> >::calc_norm(&ref_sln, HERMES_H1_NORM) * 100;
        if (ADAPTIVE_TIME_STEP_ON == false) info("rel_err_time: %g%%", rel_err_time);
      }

      if (ADAPTIVE_TIME_STEP_ON) {
        if (rel_err_time > TIME_ERR_TOL_UPPER) {
          info("rel_err_time %g%% is above upper limit %g%%", rel_err_time, TIME_ERR_TOL_UPPER);
          info("Decreasing time step from %g to %g s and restarting time step.", 
               time_step, time_step * TIME_STEP_DEC_RATIO);
          time_step *= TIME_STEP_DEC_RATIO;
          delete ref_space;
          delete ref_dp;
          continue;
        }
        else if (rel_err_time < TIME_ERR_TOL_LOWER) {
          info("rel_err_time = %g%% is below lower limit %g%%", rel_err_time, TIME_ERR_TOL_LOWER);
          info("Increasing time step from %g to %g s.", time_step, time_step * TIME_STEP_INC_RATIO);
          time_step *= TIME_STEP_INC_RATIO;
          delete ref_space;
          delete ref_dp;
          continue;
        }
        else {
          info("rel_err_time = %g%% is in acceptable interval (%g%%, %g%%)", 
            rel_err_time, TIME_ERR_TOL_LOWER, TIME_ERR_TOL_UPPER);
        }

        // Add entry to time step history graph.
        time_step_graph.add_values(current_time, time_step);
        time_step_graph.save("time_step_history.dat");
      }

      /* Estimate spatial errors and perform mesh refinement */

      info("Spatial adaptivity step %d.", as);

      // Project the fine mesh solution onto the coarse mesh.
      Solution<std::complex<double> > sln;
      info("Projecting fine mesh solution on coarse mesh for error estimation.");
      OGProjection<std::complex<double> >::project_global(&space, &ref_sln, &sln, matrix_solver_type); 

      // Show spatial error.
      sprintf(title, "Spatial error est, spatial adaptivity step %d", as);  
      DiffFilter<std::complex<double> >* space_error_fn = new DiffFilter<std::complex<double> >(Hermes::vector<MeshFunction<std::complex<double> >*>(&ref_sln, &sln));   
      space_error_view.set_title(title);
      space_error_view.show_mesh(false);
      RealFilter abs_space(space_error_fn);
      AbsFilter abs_sef(&abs_space);
      space_error_view.show(&abs_sef);

      // Calculate element errors and spatial error estimate.
      info("Calculating spatial error estimate.");
      Adapt<std::complex<double> >* adaptivity = new Adapt<std::complex<double> >(&space);
      double err_rel_space = adaptivity->calc_err_est(&sln, &ref_sln) * 100;

      // Report results.
      info("ndof: %d, ref_ndof: %d, err_rel_space: %g%%", 
           Space<std::complex<double> >::get_num_dofs(&space), Space<std::complex<double> >::get_num_dofs(ref_space), err_rel_space);

      // If err_est too large, adapt the mesh.
      if (err_rel_space < SPACE_ERR_TOL) done = true;
      else 
      {
        info("Adapting the coarse mesh.");
        done = adaptivity->adapt(&selector, THRESHOLD, STRATEGY, MESH_REGULARITY);

        if (Space<std::complex<double> >::get_num_dofs(&space) >= NDOF_STOP) 
          done = true;
        else
          // Increase the counter of performed adaptivity steps.
          as++;
      }
      
      // Clean up.
      delete adaptivity;
      delete ref_space;
      delete ref_dp;
      delete space_error_fn;
    }
    while (done == false);

    // Clean up.
    if (time_error_fn != NULL) delete time_error_fn;

    // Visualize the solution and mesh.
    char title[100];
    sprintf(title, "Solution - real part, Time %3.2f s", current_time);
    sview_real.set_title(title);
    sprintf(title, "Solution - imaginary part, Time %3.2f s", current_time);
    sview_imag.set_title(title);
    RealFilter real(&ref_sln);
    ImagFilter imag(&ref_sln);
    sview_real.show(&real);
    sview_imag.show(&imag);
    sprintf(title, "Mesh, time %g s", current_time);
    ord_view.set_title(title);
    ord_view.show(&space);

    // Copy last reference solution into psi_time_prev.
    psi_time_prev.copy(&ref_sln);

    // Increase current time and counter of time steps.
    current_time += time_step;
    ts++;
  }
  while (current_time < T_FINAL);

  // Wait for all views to be closed.
  View::wait();
  return 0;
}
/*------------------------------------------------------------------------*/
 void mk_one_rec (SAC_DB *sdb, int ne, int ns, char *nseed, char *ch, char *DATAROOT)
/*------------------------------------------------------------------------*/
{
  FILE *ff;
  static char resp_name[150];
  char seisname,ch2[4];
  char filename[300]; 
  double t1;
  if ( sdb->rec[ne][ns].n > 0 ) return;

  sprintf(filename, "%s/%s.%s.SAC", sdb->ev[ne].name, sdb->st[ns].name, ch);
 
   if (ch[2]=='Z') sprintf(ch2,"BHZ");
   if (ch[2]=='N') sprintf(ch2,"BHN");
   if (ch[2]=='E') sprintf(ch2,"BHE");

  if ( access(filename,F_OK) != 0) return;

  printf("filename %s iev %d ista %d\n",filename, ne,ns);

         if ( !read_sac (filename, sig1, &sd, NPTSMAX) )
	{
	  fprintf(stderr,"file %s not found\n", filename );
	}

  printf(" sd.nzyear %d,sd.nzjday %d,sd.nzhour %d ,sd.nzmin %d,sd.nzsec %d,sd.nzmsec %d\n",
	   sd.nzyear,   sd.nzjday,   sd.nzhour,    sd.nzmin,   sd.nzsec,   sd.nzmsec);

  t1 = abs_time(sd.nzyear,sd.nzjday,sd.nzhour,sd.nzmin,sd.nzsec,sd.nzmsec);

  sdb->rec[ne][ns].t0 = t1;
  sdb->rec[ne][ns].dt = sd.delta;
  sdb->rec[ne][ns].n =  sd.npts;


  /*---------- response file -----------*/

  //    sprintf(str,"ls %s/RESP*%s* > list_resp\0", sdb->ev[ne].name, sdb->st[ns].name);
//here we change the polezero file to RESP file
//        sprintf(str,"ls ~/work/noise/northeast/PZs/SAC_%s_%s_PZs > list_resp\0", sdb->st[ns].name,ch2);
//        sprintf(str,"ls /home/zheng/work/noise/northeast/response_CH/RESP.%s.00.%s > list_resp\0", sdb->st[ns].name,ch2);
 //	  sprintf(str,"ls /mtera/weisen/for_yong/response_CH/RESP.%s.00.%s > list_resp\0", sdb->st[ns].name,ch2);
	  sprintf(str,"ls /Users/jiayixie/Tianshan/RESP/RESP.%s.00.%s > list_resp",sdb->st[ns].name,ch2);
 //       sprintf(str,"ls ~/work/noise/northeast/PZs/SAC_%s_%s_PZs > list_resp\0", sdb->st[ns].name,ch);

	printf("%s\n",str);
       system(str);

   ff = fopen("list_resp","r");

   if ( fscanf(ff,"%s", resp_name ) == EOF )
    {
      sdb->rec[ne][ns].n = 0;
      return;
      sprintf(resp_name,"no_resp");
    }
  fclose(ff);
  

  sprintf(sdb->rec[ne][ns].resp_fname,"%s",  resp_name);
	// we set the ft_name in cut_today_throw1.c, so we don;t need to declam it here
  //sprintf(sdb->rec[ne][ns].ft_name,"%s/%s/%s/%s.%s..%s.%d.%d",DATAROOT,shd1.knetwk,shd1.kstnm,shd1.kstnm,shd1.knetwk,shd1.kcmpnm,shd1.nzyear,shd1.nzjday);
  sprintf(sdb->rec[ne][ns].fname,"%s/%s.%s.SAC", sdb->ev[ne].name, sdb->st[ns].name, ch);
 // sprintf(sdb->rec[ne][ns].ft_fname,"%s/ft_%s.%s.SAC\0", sdb->ev[ne].name, sdb->st[ns].name, ch);
  sprintf(sdb->rec[ne][ns].chan,"%s", ch );
  
  printf("make_one_rec  sdb->rec[ne][ns].t0 %f\n",sdb->rec[ne][ns].t0);
  
}
Exemple #5
0
int main(int argc, char* argv[])
{
  // Choose a Butcher's table or define your own.
  ButcherTable bt(butcher_table_type);
  if (bt.is_explicit()) Hermes::Mixins::Loggable::Static::info("Using a %d-stage explicit R-K method.", bt.get_size());
  if (bt.is_diagonally_implicit()) Hermes::Mixins::Loggable::Static::info("Using a %d-stage diagonally implicit R-K method.", bt.get_size());
  if (bt.is_fully_implicit()) Hermes::Mixins::Loggable::Static::info("Using a %d-stage fully implicit R-K method.", bt.get_size());

  // Turn off adaptive time stepping if R-K method is not embedded.
  if (bt.is_embedded() == false && ADAPTIVE_TIME_STEP_ON == true) {
    Hermes::Mixins::Loggable::Static::warn("R-K method not embedded, turning off adaptive time stepping.");
    ADAPTIVE_TIME_STEP_ON = false;
  }

  // Load the mesh.
  MeshSharedPtr mesh(new Mesh), basemesh(new Mesh);
  MeshReaderH2D mloader;
  mloader.load("square.mesh", basemesh);
  mesh->copy(basemesh);

  // Initial mesh refinements.
  for(int i = 0; i < INIT_REF_NUM; i++) mesh->refine_all_elements();

  // Convert initial condition into a Solution<complex>.
  MeshFunctionSharedPtr<complex> psi_time_prev(new CustomInitialCondition(mesh));

  // Initialize the weak formulation.
  double current_time = 0;

  // Initialize weak formulation.
  CustomWeakFormGPRK wf(h, m, g, omega);

  // Initialize boundary conditions.
  DefaultEssentialBCConst<complex> bc_essential("Bdy", 0.0);
  EssentialBCs<complex> bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  SpaceSharedPtr<complex> space(new H1Space<complex> (mesh, &bcs, P_INIT));
  int ndof = space->get_num_dofs();
  Hermes::Mixins::Loggable::Static::info("ndof = %d", ndof);

  // Initialize the FE problem.
  DiscreteProblem<complex> dp(&wf, space);

  // Create a refinement selector.
  H1ProjBasedSelector<complex> selector(CAND_LIST);

  // Visualize initial condition.
  char title[100];

  ScalarView sview_real("Initial condition - real part", new WinGeom(0, 0, 600, 500));
  ScalarView sview_imag("Initial condition - imaginary part", new WinGeom(610, 0, 600, 500));

  sview_real.show_mesh(false);
  sview_imag.show_mesh(false);
  sview_real.fix_scale_width(50);
  sview_imag.fix_scale_width(50);
  OrderView ord_view("Initial mesh", new WinGeom(445, 0, 440, 350));
  ord_view.fix_scale_width(50);
  ScalarView time_error_view("Temporal error", new WinGeom(0, 400, 440, 350));
  time_error_view.fix_scale_width(50);
  time_error_view.fix_scale_width(60);
  ScalarView space_error_view("Spatial error", new WinGeom(445, 400, 440, 350));
  space_error_view.fix_scale_width(50);
  MeshFunctionSharedPtr<double> real(new RealFilter(psi_time_prev));

  MeshFunctionSharedPtr<double> imag(new ImagFilter(psi_time_prev));

  sview_real.show(real);
  sview_imag.show(imag);
  ord_view.show(space);

  // Graph for time step history.
  SimpleGraph time_step_graph;
  if (ADAPTIVE_TIME_STEP_ON) Hermes::Mixins::Loggable::Static::info("Time step history will be saved to file time_step_history.dat.");

  // Time stepping:
  int num_time_steps = (int)(T_FINAL/time_step + 0.5);
  for(int ts = 1; ts <= num_time_steps; ts++)
    // Time stepping loop.
      double current_time = 0.0; int ts = 1;
  do 
  {
    Hermes::Mixins::Loggable::Static::info("Begin time step %d.", ts);
    // Periodic global derefinement.
    if (ts > 1 && ts % UNREF_FREQ == 0) 
    {
      Hermes::Mixins::Loggable::Static::info("Global mesh derefinement.");
      switch (UNREF_METHOD) {
      case 1: mesh->copy(basemesh);
        space->set_uniform_order(P_INIT);
        break;
      case 2: space->unrefine_all_mesh_elements();
        space->set_uniform_order(P_INIT);
        break;
      case 3: space->unrefine_all_mesh_elements();
        space->adjust_element_order(-1, -1, P_INIT, P_INIT);
        break;
      default: throw Hermes::Exceptions::Exception("Wrong global derefinement method.");
      }

      ndof = Space<complex>::get_num_dofs(space);
    }
    Hermes::Mixins::Loggable::Static::info("ndof: %d", ndof);

    // Spatial adaptivity loop. Note: psi_time_prev must not be 
    // changed during spatial adaptivity. 
    MeshFunctionSharedPtr<complex> ref_sln(new Solution<complex>());
    MeshFunctionSharedPtr<complex> time_error_fn(new Solution<complex>);
    bool done = false;
    int as = 1;
    double err_est;
    do {
      // Construct globally refined reference mesh and setup reference space.
      Mesh::ReferenceMeshCreator refMeshCreator(mesh);
      MeshSharedPtr ref_mesh = refMeshCreator.create_ref_mesh();

      Space<complex>::ReferenceSpaceCreator refSpaceCreator(space, ref_mesh);
      SpaceSharedPtr<complex> ref_space = refSpaceCreator.create_ref_space();

      // Initialize discrete problem on reference mesh.
      DiscreteProblem<complex>* ref_dp = new DiscreteProblem<complex>(&wf, ref_space);

      RungeKutta<complex> runge_kutta(&wf, ref_space, &bt);

      // Runge-Kutta step on the fine mesh->
      Hermes::Mixins::Loggable::Static::info("Runge-Kutta time step on fine mesh (t = %g s, time step = %g s, stages: %d).", 
        current_time, time_step, bt.get_size());
      bool verbose = true;

      try
      {
        runge_kutta.set_time(current_time);
        runge_kutta.set_time_step(time_step);
        runge_kutta.set_max_allowed_iterations(NEWTON_MAX_ITER);
        runge_kutta.set_tolerance(NEWTON_TOL_FINE);
        runge_kutta.rk_time_step_newton(psi_time_prev, ref_sln, time_error_fn);
      }
      catch(Exceptions::Exception& e)
      {
        e.print_msg();
        throw Hermes::Exceptions::Exception("Runge-Kutta time step failed");
      }

      /* If ADAPTIVE_TIME_STEP_ON == true, estimate temporal error. 
      If too large or too small, then adjust it and restart the time step. */

      double rel_err_time = 0;
      if (bt.is_embedded() == true) {
        Hermes::Mixins::Loggable::Static::info("Calculating temporal error estimate.");

        // Show temporal error.
        char title[100];
        sprintf(title, "Temporal error est, spatial adaptivity step %d", as);     
        time_error_view.set_title(title);
        time_error_view.show_mesh(false);
        MeshFunctionSharedPtr<double> abs_time(new RealFilter(time_error_fn));

        MeshFunctionSharedPtr<double> abs_tef(new AbsFilter(abs_time));

        time_error_view.show(abs_tef);

        rel_err_time = Global<complex>::calc_norm(time_error_fn.get(), HERMES_H1_NORM) / 
          Global<complex>::calc_norm(ref_sln.get(), HERMES_H1_NORM) * 100;
        if (ADAPTIVE_TIME_STEP_ON == false) Hermes::Mixins::Loggable::Static::info("rel_err_time: %g%%", rel_err_time);
      }

      if (ADAPTIVE_TIME_STEP_ON) {
        if (rel_err_time > TIME_ERR_TOL_UPPER) {
          Hermes::Mixins::Loggable::Static::info("rel_err_time %g%% is above upper limit %g%%", rel_err_time, TIME_ERR_TOL_UPPER);
          Hermes::Mixins::Loggable::Static::info("Decreasing time step from %g to %g s and restarting time step.", 
            time_step, time_step * TIME_STEP_DEC_RATIO);
          time_step *= TIME_STEP_DEC_RATIO;

          delete ref_dp;
          continue;
        }
        else if (rel_err_time < TIME_ERR_TOL_LOWER) {
          Hermes::Mixins::Loggable::Static::info("rel_err_time = %g%% is below lower limit %g%%", rel_err_time, TIME_ERR_TOL_LOWER);
          Hermes::Mixins::Loggable::Static::info("Increasing time step from %g to %g s.", time_step, time_step * TIME_STEP_INC_RATIO);
          time_step *= TIME_STEP_INC_RATIO;

          delete ref_dp;
          continue;
        }
        else {
          Hermes::Mixins::Loggable::Static::info("rel_err_time = %g%% is in acceptable interval (%g%%, %g%%)", 
            rel_err_time, TIME_ERR_TOL_LOWER, TIME_ERR_TOL_UPPER);
        }

        // Add entry to time step history graph.
        time_step_graph.add_values(current_time, time_step);
        time_step_graph.save("time_step_history.dat");
      }

      /* Estimate spatial errors and perform mesh refinement */

      Hermes::Mixins::Loggable::Static::info("Spatial adaptivity step %d.", as);

      // Project the fine mesh solution onto the coarse mesh.
      MeshFunctionSharedPtr<complex> sln(new Solution<complex>);
      Hermes::Mixins::Loggable::Static::info("Projecting fine mesh solution on coarse mesh for error estimation.");
      OGProjection<complex> ogProjection; ogProjection.project_global(space, ref_sln, sln); 

      // Show spatial error.
      sprintf(title, "Spatial error est, spatial adaptivity step %d", as);  
      MeshFunctionSharedPtr<complex> space_error_fn(new DiffFilter<complex>(Hermes::vector<MeshFunctionSharedPtr<complex> >(ref_sln, sln)));

      space_error_view.set_title(title);
      space_error_view.show_mesh(false);

      MeshFunctionSharedPtr<double> abs_space(new RealFilter(space_error_fn));
      MeshFunctionSharedPtr<double> abs_sef(new AbsFilter(abs_space));

      space_error_view.show(abs_sef);

      // Calculate element errors and spatial error estimate.
      Hermes::Mixins::Loggable::Static::info("Calculating spatial error estimate.");
      Adapt<complex> adaptivity(space);
      double err_rel_space = errorCalculator.get_total_error_squared() * 100;

      // Report results.
      Hermes::Mixins::Loggable::Static::info("ndof: %d, ref_ndof: %d, err_rel_space: %g%%", 
        Space<complex>::get_num_dofs(space), Space<complex>::get_num_dofs(ref_space), err_rel_space);

      // If err_est too large, adapt the mesh.
      if (err_rel_space < SPACE_ERR_TOL) done = true;
      else 
      {
        Hermes::Mixins::Loggable::Static::info("Adapting the coarse mesh.");
        done = adaptivity.adapt(&selector);

        // Increase the counter of performed adaptivity steps.
        as++;
      }

      // Clean up.
      
      delete ref_dp;
    }
    while (done == false);

    // Visualize the solution and mesh->
    char title[100];
    sprintf(title, "Solution - real part, Time %3.2f s", current_time);
    sview_real.set_title(title);
    sprintf(title, "Solution - imaginary part, Time %3.2f s", current_time);
    sview_imag.set_title(title);
    MeshFunctionSharedPtr<double> real(new RealFilter(ref_sln));
    MeshFunctionSharedPtr<double> imag(new ImagFilter(ref_sln));
    sview_real.show(real);
    sview_imag.show(imag);
    sprintf(title, "Mesh, time %g s", current_time);
    ord_view.set_title(title);
    ord_view.show(space);

    // Copy last reference solution into psi_time_prev.
    psi_time_prev->copy(ref_sln);

    // Increase current time and counter of time steps.
    current_time += time_step;
    ts++;
  }
  while (current_time < T_FINAL);

  // Wait for all views to be closed.
  View::wait();
  return 0;
}
Exemple #6
0
int
main(int argc, char **argv)
{
	char *s_arch;
	char *executable;
	cpu_arch_t arch;
	cpu_t *cpu;
	uint8_t *RAM;
	FILE *f;
	int ramsize;
	int r1, r2;
	uint64_t t1, t2, t3, t4;
	unsigned start_no = START_NO;

	int singlestep = SINGLESTEP_NONE;
	int log = 1;
	int print_ir = 1;

	/* parameter parsing */
	if (argc < 3) {
		printf("Usage: %s executable [arch] [itercount] [entries]\n", argv[0]);
		return 0;
	}
	s_arch = argv[1];
	executable = argv[2];
	if (argc >= 4)
		start_no = atoi(argv[3]);
	if (!strcmp("mips", s_arch))
		arch = CPU_ARCH_MIPS;
	else if (!strcmp("m88k", s_arch))
		arch = CPU_ARCH_M88K;
	else if (!strcmp("arm", s_arch))
		arch = CPU_ARCH_ARM;
	else if (!strcmp("fapra", s_arch))
		arch = CPU_ARCH_FAPRA;
	else {
		printf("unknown architecture '%s'!\n", s_arch);
		return 0;
	}

	ramsize = 5*1024*1024;
	RAM = (uint8_t*)malloc(ramsize);

	cpu = cpu_new(arch, 0, 0);

	cpu_set_flags_codegen(cpu, CPU_CODEGEN_OPTIMIZE);
	cpu_set_flags_debug(cpu, 0
		| (print_ir? CPU_DEBUG_PRINT_IR : 0)
		| (print_ir? CPU_DEBUG_PRINT_IR_OPTIMIZED : 0)
		| (log? CPU_DEBUG_LOG :0)
		| (singlestep == SINGLESTEP_STEP? CPU_DEBUG_SINGLESTEP    : 0)
		| (singlestep == SINGLESTEP_BB?   CPU_DEBUG_SINGLESTEP_BB : 0)
		);

	cpu_set_ram(cpu, RAM);
	
	/* load code */
	if (!(f = fopen(executable, "rb"))) {
		printf("Could not open %s!\n", executable);
		return 2;
	}
	cpu->code_start = START;
	cpu->code_end = cpu->code_start + fread(&RAM[cpu->code_start], 1, ramsize-cpu->code_start, f);
	fclose(f);
	cpu->code_entry = cpu->code_start + ENTRY;

	cpu_tag(cpu, cpu->code_entry);

	cpu_translate(cpu); /* force translation now */

	printf("\n*** Executing...\n");

	printf("number of iterations: %u\n", start_no);

	uint32_t *reg_pc, *reg_lr, *reg_param, *reg_result;
	switch (arch) {
		case CPU_ARCH_M88K:
			reg_pc = &((m88k_grf_t*)cpu->rf.grf)->sxip;
			reg_lr = &((m88k_grf_t*)cpu->rf.grf)->r[1];
			reg_param = &((m88k_grf_t*)cpu->rf.grf)->r[2];
			reg_result = &((m88k_grf_t*)cpu->rf.grf)->r[2];
			break;
		case CPU_ARCH_MIPS:
			reg_pc = &((reg_mips32_t*)cpu->rf.grf)->pc;
			reg_lr = &((reg_mips32_t*)cpu->rf.grf)->r[31];
			reg_param = &((reg_mips32_t*)cpu->rf.grf)->r[4];
			reg_result = &((reg_mips32_t*)cpu->rf.grf)->r[4];
			break;
		case CPU_ARCH_ARM:
			reg_pc = &((reg_arm_t*)cpu->rf.grf)->pc;
			reg_lr = &((reg_arm_t*)cpu->rf.grf)->r[14];
			reg_param = &((reg_arm_t*)cpu->rf.grf)->r[0];
			reg_result = &((reg_arm_t*)cpu->rf.grf)->r[0];
			break;
		case CPU_ARCH_FAPRA:
			reg_pc = &((reg_fapra32_t*)cpu->rf.grf)->pc;
			reg_lr = &((reg_fapra32_t*)cpu->rf.grf)->r[0];
			reg_param = &((reg_fapra32_t*)cpu->rf.grf)->r[3];
			reg_result = &((reg_fapra32_t*)cpu->rf.grf)->r[3];
			break;
		default:
			fprintf(stderr, "architecture %u not handled.\n", arch);
			exit(EXIT_FAILURE);
	}

	*reg_pc = cpu->code_entry;
	*reg_lr = RET_MAGIC;
	*reg_param = start_no;

	printf("GUEST run..."); fflush(stdout);

	t1 = abs_time();
	cpu_run(cpu, debug_function);
	t2 = abs_time();
	r1 = *reg_result;

	printf("done!\n");

	printf("HOST  run..."); fflush(stdout);
	t3 = abs_time();
	r2 = fib(start_no);
	t4 = abs_time();
	printf("done!\n");

  cpu_free(cpu);

	printf("Time GUEST: %lld\n", t2-t1);
	printf("Time HOST:  %lld\n", t4-t3);
	printf("Result HOST:  %d\n", r2);
	printf("Result GUEST: %d\n", r1);
	printf("GUEST required \033[1m%.2f%%\033[22m of HOST time.\n",  (float)(t2-t1)/(float)(t4-t3)*100);
	if (r1 == r2)
		printf("\033[1mSUCCESS!\033[22m\n\n");
	else
		printf("\033[1mFAILED!\033[22m\n\n");

	return 0;
}