/* assumes no aliasing */ slong acb_lambertw_initial(acb_t res, const acb_t z, const acb_t ez1, const fmpz_t k, slong prec) { /* Handle z very close to 0 on the principal branch. */ if (fmpz_is_zero(k) && (arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), -20) <= 0 && arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), -20) <= 0)) { acb_set(res, z); acb_submul(res, res, res, prec); return 40; /* could be tightened... */ } /* For moderate input not close to the branch point, compute a double approximation as the initial value. */ if (fmpz_is_zero(k) && arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 400) < 0 && arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 400) < 0 && (arf_cmp_d(arb_midref(acb_realref(z)), -0.37) < 0 || arf_cmp_d(arb_midref(acb_realref(z)), -0.36) > 0 || arf_cmpabs_d(arb_midref(acb_imagref(z)), 0.01) > 0)) { acb_lambertw_principal_d(res, z); return 48; } /* Check if we are close to the branch point at -1/e. */ if ((fmpz_is_zero(k) || (fmpz_is_one(k) && arb_is_negative(acb_imagref(z))) || (fmpz_equal_si(k, -1) && arb_is_nonnegative(acb_imagref(z)))) && ((arf_cmpabs_2exp_si(arb_midref(acb_realref(ez1)), -2) <= 0 && arf_cmpabs_2exp_si(arb_midref(acb_imagref(ez1)), -2) <= 0))) { acb_t t; acb_init(t); acb_mul_2exp_si(t, ez1, 1); mag_zero(arb_radref(acb_realref(t))); mag_zero(arb_radref(acb_imagref(t))); acb_mul_ui(t, t, 3, prec); acb_sqrt(t, t, prec); if (!fmpz_is_zero(k)) acb_neg(t, t); acb_lambertw_branchpoint_series(res, t, 0, prec); acb_clear(t); return 1; /* todo: estimate */ } acb_lambertw_initial_asymp(res, z, k, prec); return 1; /* todo: estimate */ }
/* f(z) = sech(10(x-0.2))^2 + sech(100(x-0.4))^4 + sech(1000(x-0.6))^6 */ int f_spike(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_t a, b, c; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_init(a); acb_init(b); acb_init(c); acb_mul_ui(a, z, 10, prec); acb_sub_ui(a, a, 2, prec); acb_sech(a, a, prec); acb_pow_ui(a, a, 2, prec); acb_mul_ui(b, z, 100, prec); acb_sub_ui(b, b, 40, prec); acb_sech(b, b, prec); acb_pow_ui(b, b, 4, prec); acb_mul_ui(c, z, 1000, prec); acb_sub_ui(c, c, 600, prec); acb_sech(c, c, prec); acb_pow_ui(c, c, 6, prec); acb_add(res, a, b, prec); acb_add(res, res, c, prec); acb_clear(a); acb_clear(b); acb_clear(c); return 0; }
void acb_modular_eisenstein(acb_ptr r, const acb_t tau, slong len, slong prec) { psl2z_t g; arf_t one_minus_eps; acb_t tau_prime, t1, t2, t3, t4, q; slong m, n; if (len < 1) return; psl2z_init(g); arf_init(one_minus_eps); acb_init(tau_prime); acb_init(t1); acb_init(t2); acb_init(t3); acb_init(t4); acb_init(q); arf_set_ui_2exp_si(one_minus_eps, 63, -6); acb_modular_fundamental_domain_approx(tau_prime, g, tau, one_minus_eps, prec); acb_exp_pi_i(q, tau_prime, prec); acb_modular_theta_const_sum(t2, t3, t4, q, prec); /* fourth powers of the theta functions (a, b, c) */ acb_mul(t2, t2, t2, prec); acb_mul(t2, t2, t2, prec); acb_mul(t2, t2, q, prec); acb_mul(t3, t3, t3, prec); acb_mul(t3, t3, t3, prec); acb_mul(t4, t4, t4, prec); acb_mul(t4, t4, t4, prec); /* c2 = pi^4 * (a^8 + b^8 + c^8) / 30 */ /* c3 = pi^6 * (b^12 + c^12 - 3a^8 * (b^4+c^4)) / 180 */ /* r = a^8 */ acb_mul(r, t2, t2, prec); if (len > 1) { /* r[1] = -3 a^8 * (b^4 + c^4) */ acb_add(r + 1, t3, t4, prec); acb_mul(r + 1, r + 1, r, prec); acb_mul_si(r + 1, r + 1, -3, prec); } /* b^8 */ acb_mul(t1, t3, t3, prec); acb_add(r, r, t1, prec); /* b^12 */ if (len > 1) acb_addmul(r + 1, t1, t3, prec); /* c^8 */ acb_mul(t1, t4, t4, prec); acb_add(r, r, t1, prec); /* c^12 */ if (len > 1) acb_addmul(r + 1, t1, t4, prec); acb_const_pi(t1, prec); acb_mul(t1, t1, t1, prec); acb_mul(t2, t1, t1, prec); acb_mul(r, r, t2, prec); acb_div_ui(r, r, 30, prec); if (len > 1) { acb_mul(t2, t2, t1, prec); acb_mul(r + 1, r + 1, t2, prec); acb_div_ui(r + 1, r + 1, 189, prec); } /* apply modular transformation */ if (!fmpz_is_zero(&g->c)) { acb_mul_fmpz(t1, tau, &g->c, prec); acb_add_fmpz(t1, t1, &g->d, prec); acb_inv(t1, t1, prec); acb_mul(t1, t1, t1, prec); acb_mul(t2, t1, t1, prec); acb_mul(r, r, t2, prec); if (len > 1) { acb_mul(t2, t1, t2, prec); acb_mul(r + 1, r + 1, t2, prec); } } /* compute more coefficients using recurrence */ for (n = 4; n < len + 2; n++) { acb_zero(r + n - 2); m = 2; for (m = 2; m * 2 < n; m++) acb_addmul(r + n - 2, r + m - 2, r + n - m - 2, prec); acb_mul_2exp_si(r + n - 2, r + n - 2, 1); if (n % 2 == 0) acb_addmul(r + n - 2, r + n / 2 - 2, r + n / 2 - 2, prec); acb_mul_ui(r + n - 2, r + n - 2, 3, prec); acb_div_ui(r + n - 2, r + n - 2, (2 * n + 1) * (n - 3), prec); } /* convert c's to G's */ for (n = 0; n < len; n++) acb_div_ui(r + n, r + n, 2 * n + 3, prec); psl2z_clear(g); arf_clear(one_minus_eps); acb_clear(tau_prime); acb_clear(t1); acb_clear(t2); acb_clear(t3); acb_clear(t4); acb_clear(q); }
int main(int argc, char *argv[]) { acb_t s, t, a, b; mag_t tol; slong prec, goal; slong N; ulong k; int integral, ifrom, ito; int i, twice, havegoal, havetol; acb_calc_integrate_opt_t options; ifrom = ito = -1; for (i = 1; i < argc; i++) { if (!strcmp(argv[i], "-i")) { if (!strcmp(argv[i+1], "all")) { ifrom = 0; ito = NUM_INTEGRALS - 1; } else { ifrom = ito = atol(argv[i+1]); if (ito < 0 || ito >= NUM_INTEGRALS) flint_abort(); } } } if (ifrom == -1) { flint_printf("Compute integrals using acb_calc_integrate.\n"); flint_printf("Usage: integrals -i n [-prec p] [-tol eps] [-twice] [...]\n\n"); flint_printf("-i n - compute integral n (0 <= n <= %d), or \"-i all\"\n", NUM_INTEGRALS - 1); flint_printf("-prec p - precision in bits (default p = 64)\n"); flint_printf("-goal p - approximate relative accuracy goal (default p)\n"); flint_printf("-tol eps - approximate absolute error goal (default 2^-p)\n"); flint_printf("-twice - run twice (to see overhead of computing nodes)\n"); flint_printf("-heap - use heap for subinterval queue\n"); flint_printf("-verbose - show information\n"); flint_printf("-verbose2 - show more information\n"); flint_printf("-deg n - use quadrature degree up to n\n"); flint_printf("-eval n - limit number of function evaluations to n\n"); flint_printf("-depth n - limit subinterval queue size to n\n\n"); flint_printf("Implemented integrals:\n"); for (integral = 0; integral < NUM_INTEGRALS; integral++) flint_printf("I%d = %s\n", integral, descr[integral]); flint_printf("\n"); return 1; } acb_calc_integrate_opt_init(options); prec = 64; twice = 0; goal = 0; havetol = havegoal = 0; acb_init(a); acb_init(b); acb_init(s); acb_init(t); mag_init(tol); for (i = 1; i < argc; i++) { if (!strcmp(argv[i], "-prec")) { prec = atol(argv[i+1]); } else if (!strcmp(argv[i], "-twice")) { twice = 1; } else if (!strcmp(argv[i], "-goal")) { goal = atol(argv[i+1]); if (goal < 0) { flint_printf("expected goal >= 0\n"); return 1; } havegoal = 1; } else if (!strcmp(argv[i], "-tol")) { arb_t x; arb_init(x); arb_set_str(x, argv[i+1], 10); arb_get_mag(tol, x); arb_clear(x); havetol = 1; } else if (!strcmp(argv[i], "-deg")) { options->deg_limit = atol(argv[i+1]); } else if (!strcmp(argv[i], "-eval")) { options->eval_limit = atol(argv[i+1]); } else if (!strcmp(argv[i], "-depth")) { options->depth_limit = atol(argv[i+1]); } else if (!strcmp(argv[i], "-verbose")) { options->verbose = 1; } else if (!strcmp(argv[i], "-verbose2")) { options->verbose = 2; } else if (!strcmp(argv[i], "-heap")) { options->use_heap = 1; } } if (!havegoal) goal = prec; if (!havetol) mag_set_ui_2exp_si(tol, 1, -prec); for (integral = ifrom; integral <= ito; integral++) { flint_printf("I%d = %s ...\n", integral, descr[integral]); for (i = 0; i < 1 + twice; i++) { TIMEIT_ONCE_START switch (integral) { case 0: acb_set_d(a, 0); acb_set_d(b, 100); acb_calc_integrate(s, f_sin, NULL, a, b, goal, tol, options, prec); break; case 1: acb_set_d(a, 0); acb_set_d(b, 1); acb_calc_integrate(s, f_atanderiv, NULL, a, b, goal, tol, options, prec); acb_mul_2exp_si(s, s, 2); break; case 2: acb_set_d(a, 0); acb_one(b); acb_mul_2exp_si(b, b, goal); acb_calc_integrate(s, f_atanderiv, NULL, a, b, goal, tol, options, prec); arb_add_error_2exp_si(acb_realref(s), -goal); acb_mul_2exp_si(s, s, 1); break; case 3: acb_set_d(a, 0); acb_set_d(b, 1); acb_calc_integrate(s, f_circle, NULL, a, b, goal, tol, options, prec); acb_mul_2exp_si(s, s, 2); break; case 4: acb_set_d(a, 0); acb_set_d(b, 8); acb_calc_integrate(s, f_rump, NULL, a, b, goal, tol, options, prec); break; case 5: acb_set_d(a, 1); acb_set_d(b, 101); acb_calc_integrate(s, f_floor, NULL, a, b, goal, tol, options, prec); break; case 6: acb_set_d(a, 0); acb_set_d(b, 1); acb_calc_integrate(s, f_helfgott, NULL, a, b, goal, tol, options, prec); break; case 7: acb_zero(s); acb_set_d_d(a, -1.0, -1.0); acb_set_d_d(b, 2.0, -1.0); acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, 2.0, -1.0); acb_set_d_d(b, 2.0, 1.0); acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, 2.0, 1.0); acb_set_d_d(b, -1.0, 1.0); acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, -1.0, 1.0); acb_set_d_d(b, -1.0, -1.0); acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_const_pi(t, prec); acb_div(s, s, t, prec); acb_mul_2exp_si(s, s, -1); acb_div_onei(s, s); break; case 8: acb_set_d(a, 0); acb_set_d(b, 1); acb_calc_integrate(s, f_essing, NULL, a, b, goal, tol, options, prec); break; case 9: acb_set_d(a, 0); acb_set_d(b, 1); acb_calc_integrate(s, f_essing2, NULL, a, b, goal, tol, options, prec); break; case 10: acb_set_d(a, 0); acb_set_d(b, 10000); acb_calc_integrate(s, f_factorial1000, NULL, a, b, goal, tol, options, prec); break; case 11: acb_set_d_d(a, 1.0, 0.0); acb_set_d_d(b, 1.0, 1000.0); acb_calc_integrate(s, f_gamma, NULL, a, b, goal, tol, options, prec); break; case 12: acb_set_d(a, -10.0); acb_set_d(b, 10.0); acb_calc_integrate(s, f_sin_plus_small, NULL, a, b, goal, tol, options, prec); break; case 13: acb_set_d(a, -1020.0); acb_set_d(b, -1010.0); acb_calc_integrate(s, f_exp, NULL, a, b, goal, tol, options, prec); break; case 14: acb_set_d(a, 0); acb_set_d(b, ceil(sqrt(goal * 0.693147181) + 1.0)); acb_calc_integrate(s, f_gaussian, NULL, a, b, goal, tol, options, prec); acb_mul(b, b, b, prec); acb_neg(b, b); acb_exp(b, b, prec); arb_add_error(acb_realref(s), acb_realref(b)); break; case 15: acb_set_d(a, 0.0); acb_set_d(b, 1.0); acb_calc_integrate(s, f_spike, NULL, a, b, goal, tol, options, prec); break; case 16: acb_set_d(a, 0.0); acb_set_d(b, 8.0); acb_calc_integrate(s, f_monster, NULL, a, b, goal, tol, options, prec); break; case 17: acb_set_d(a, 0); acb_set_d(b, ceil(goal * 0.693147181 + 1.0)); acb_calc_integrate(s, f_sech, NULL, a, b, goal, tol, options, prec); acb_neg(b, b); acb_exp(b, b, prec); acb_mul_2exp_si(b, b, 1); arb_add_error(acb_realref(s), acb_realref(b)); break; case 18: acb_set_d(a, 0); acb_set_d(b, ceil(goal * 0.693147181 / 3.0 + 2.0)); acb_calc_integrate(s, f_sech3, NULL, a, b, goal, tol, options, prec); acb_neg(b, b); acb_mul_ui(b, b, 3, prec); acb_exp(b, b, prec); acb_mul_2exp_si(b, b, 3); acb_div_ui(b, b, 3, prec); arb_add_error(acb_realref(s), acb_realref(b)); break; case 19: if (goal < 0) abort(); /* error bound 2^-N (1+N) when truncated at 2^-N */ N = goal + FLINT_BIT_COUNT(goal); acb_one(a); acb_mul_2exp_si(a, a, -N); acb_one(b); acb_calc_integrate(s, f_log_div1p, NULL, a, b, goal, tol, options, prec); acb_set_ui(b, N + 1); acb_mul_2exp_si(b, b, -N); arb_add_error(acb_realref(s), acb_realref(b)); break; case 20: if (goal < 0) abort(); /* error bound (N+1) exp(-N) when truncated at N */ N = goal + FLINT_BIT_COUNT(goal); acb_zero(a); acb_set_ui(b, N); acb_calc_integrate(s, f_log_div1p_transformed, NULL, a, b, goal, tol, options, prec); acb_neg(b, b); acb_exp(b, b, prec); acb_mul_ui(b, b, N + 1, prec); arb_add_error(acb_realref(s), acb_realref(b)); break; case 21: acb_zero(s); N = 10; acb_set_d_d(a, 0.5, -0.5); acb_set_d_d(b, 0.5, 0.5); acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, 0.5, 0.5); acb_set_d_d(b, -0.5, 0.5); acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, -0.5, 0.5); acb_set_d_d(b, -0.5, -0.5); acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, -0.5, -0.5); acb_set_d_d(b, 0.5, -0.5); acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_const_pi(t, prec); acb_div(s, s, t, prec); acb_mul_2exp_si(s, s, -1); acb_div_onei(s, s); break; case 22: acb_zero(s); N = 1000; acb_set_d_d(a, 100.0, 0.0); acb_set_d_d(b, 100.0, N); acb_calc_integrate(t, f_zeta_frac, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, 100, N); acb_set_d_d(b, 0.5, N); acb_calc_integrate(t, f_zeta_frac, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_div_onei(s, s); arb_zero(acb_imagref(s)); acb_set_ui(t, N); acb_dirichlet_hardy_theta(t, t, NULL, NULL, 1, prec); acb_add(s, s, t, prec); acb_const_pi(t, prec); acb_div(s, s, t, prec); acb_add_ui(s, s, 1, prec); break; case 23: acb_set_d(a, 0.0); acb_set_d(b, 1000.0); acb_calc_integrate(s, f_lambertw, NULL, a, b, goal, tol, options, prec); break; case 24: acb_set_d(a, 0.0); acb_const_pi(b, prec); acb_calc_integrate(s, f_max_sin_cos, NULL, a, b, goal, tol, options, prec); break; case 25: acb_set_si(a, -1); acb_set_si(b, 1); acb_calc_integrate(s, f_erf_bent, NULL, a, b, goal, tol, options, prec); break; case 26: acb_set_si(a, -10); acb_set_si(b, 10); acb_calc_integrate(s, f_airy_ai, NULL, a, b, goal, tol, options, prec); break; case 27: acb_set_si(a, 0); acb_set_si(b, 10); acb_calc_integrate(s, f_horror, NULL, a, b, goal, tol, options, prec); break; case 28: acb_set_d_d(a, -1, -1); acb_set_d_d(b, -1, 1); acb_calc_integrate(s, f_sqrt, NULL, a, b, goal, tol, options, prec); break; case 29: acb_set_d(a, 0); acb_set_d(b, ceil(sqrt(goal * 0.693147181) + 1.0)); acb_calc_integrate(s, f_gaussian_twist, NULL, a, b, goal, tol, options, prec); acb_mul(b, b, b, prec); acb_neg(b, b); acb_exp(b, b, prec); arb_add_error(acb_realref(s), acb_realref(b)); arb_add_error(acb_imagref(s), acb_realref(b)); break; case 30: acb_set_d(a, 0); acb_set_d(b, ceil(goal * 0.693147181 + 1.0)); acb_calc_integrate(s, f_exp_airy, NULL, a, b, goal, tol, options, prec); acb_neg(b, b); acb_exp(b, b, prec); acb_mul_2exp_si(b, b, 1); arb_add_error(acb_realref(s), acb_realref(b)); break; case 31: acb_zero(a); acb_const_pi(b, prec); acb_calc_integrate(s, f_sin_cos_frac, NULL, a, b, goal, tol, options, prec); break; case 32: acb_zero(a); acb_set_ui(b, 3); acb_calc_integrate(s, f_sin_near_essing, NULL, a, b, goal, tol, options, prec); break; case 33: acb_zero(a); acb_zero(b); k = 3; scaled_bessel_select_N(acb_realref(b), k, prec); acb_calc_integrate(s, f_scaled_bessel, &k, a, b, goal, tol, options, prec); scaled_bessel_tail_bound(acb_realref(a), k, acb_realref(b), prec); arb_add_error(acb_realref(s), acb_realref(a)); break; case 34: acb_zero(a); acb_zero(b); k = 15; scaled_bessel_select_N(acb_realref(b), k, prec); acb_calc_integrate(s, f_scaled_bessel, &k, a, b, goal, tol, options, prec); scaled_bessel_tail_bound(acb_realref(a), k, acb_realref(b), prec); arb_add_error(acb_realref(s), acb_realref(a)); break; case 35: acb_set_d_d(a, -1, -1); acb_set_d_d(b, -1, 1); acb_calc_integrate(s, f_rsqrt, NULL, a, b, goal, tol, options, prec); break; default: abort(); } TIMEIT_ONCE_STOP } flint_printf("I%d = ", integral); acb_printn(s, 3.333 * prec, 0); flint_printf("\n\n"); } acb_clear(a); acb_clear(b); acb_clear(s); acb_clear(t); mag_clear(tol); flint_cleanup(); return 0; }
static void evaluate(acb_poly_t A, acb_srcptr a, slong p, const acb_t z, slong n, slong prec) { acb_poly_fit_length(A, p + 1); if (p == 1) { acb_add_ui(A->coeffs, a, n, prec); if (z != NULL) acb_mul(A->coeffs, A->coeffs, z, prec); } else if (p == 2) { acb_add(A->coeffs, a + 0, a + 1, prec); acb_add_ui(A->coeffs + 1, A->coeffs, 2 * n, prec); acb_add_ui(A->coeffs, A->coeffs, n, prec); acb_mul_ui(A->coeffs, A->coeffs, n, prec); acb_addmul(A->coeffs, a + 0, a + 1, prec); if (z != NULL) { acb_mul(A->coeffs, A->coeffs, z, prec); acb_mul(A->coeffs + 1, A->coeffs + 1, z, prec); } } else if (p == 3) { acb_t t, u; acb_init(t); acb_init(u); acb_add(t, a + 0, a + 1, prec); acb_add(t, t, a + 2, prec); acb_mul(u, a + 0, a + 1, prec); acb_mul(A->coeffs, u, a + 2, prec); acb_addmul(u, a + 0, a + 2, prec); acb_addmul(u, a + 1, a + 2, prec); /* (a0 + n)(a1 + n)(a2 + n) = a0 a1 a2 + (a0 a1 + a0 a2 + a1 a2) n + (a0 + a1 + a2) n^2 + n^3 (a0 a1 + a0 a2 + a1 a2) + 2 (a0 + a1 + a2) n + 3 n^2 (a0 + a1 + a2) + 3n 1 */ acb_addmul_ui(A->coeffs, u, n, prec); acb_addmul_ui(A->coeffs, t, n * n, prec); acb_add_ui(A->coeffs, A->coeffs, n * n * n, prec); acb_set(A->coeffs + 1, u); acb_addmul_ui(A->coeffs + 1, t, 2 * n, prec); acb_add_ui(A->coeffs + 1, A->coeffs + 1, 3 * n * n, prec); acb_add_ui(A->coeffs + 2, t, 3 * n, prec); if (z != NULL) { acb_mul(A->coeffs + 0, A->coeffs + 0, z, prec); acb_mul(A->coeffs + 1, A->coeffs + 1, z, prec); acb_mul(A->coeffs + 2, A->coeffs + 2, z, prec); } acb_clear(t); acb_clear(u); } else if (p != 0) { flint_abort(); } if (z != NULL) acb_set(A->coeffs + p, z); else acb_one(A->coeffs + p); _acb_poly_set_length(A, p + 1); _acb_poly_normalise(A); }
int main() { long iter; flint_rand_t state; printf("elliptic_p_zpx...."); fflush(stdout); flint_randinit(state); /* Test differential equation */ for (iter = 0; iter < 5000; iter++) { acb_t tau, z; acb_ptr g, wp, wp3, wpd, wpd2; long prec, len, i; len = 1 + n_randint(state, 15); prec = 2 + n_randint(state, 1000); acb_init(tau); acb_init(z); g = _acb_vec_init(2); wp = _acb_vec_init(len + 1); wp3 = _acb_vec_init(len); wpd = _acb_vec_init(len); wpd2 = _acb_vec_init(len); acb_randtest(tau, state, prec, 10); acb_randtest(z, state, prec, 10); acb_modular_elliptic_p_zpx(wp, z, tau, len + 1, prec); acb_modular_eisenstein(g, tau, 2, prec); acb_mul_ui(g, g, 60, prec); acb_mul_ui(g + 1, g + 1, 140, prec); _acb_poly_derivative(wpd, wp, len + 1, prec); _acb_poly_mullow(wpd2, wpd, len, wpd, len, len, prec); _acb_poly_pow_ui_trunc_binexp(wp3, wp, len, 3, len, prec); _acb_vec_scalar_mul_ui(wp3, wp3, len, 4, prec); _acb_vec_scalar_submul(wp3, wp, len, g, prec); acb_sub(wp3, wp3, g + 1, prec); for (i = 0; i < len; i++) { if (!acb_overlaps(wpd2 + i, wp3 + i)) { printf("FAIL (overlap)\n"); printf("i = %ld len = %ld prec = %ld\n\n", i, len, prec); printf("z = "); acb_printd(z, 15); printf("\n\n"); printf("tau = "); acb_printd(tau, 15); printf("\n\n"); printf("wp = "); acb_printd(wp + i, 15); printf("\n\n"); printf("wpd = "); acb_printd(wpd + i, 15); printf("\n\n"); printf("wp3 = "); acb_printd(wp3 + i, 15); printf("\n\n"); abort(); } } acb_clear(tau); acb_clear(z); _acb_vec_clear(g, 2); _acb_vec_clear(wp, len + 1); _acb_vec_clear(wp3, len); _acb_vec_clear(wpd, len); _acb_vec_clear(wpd2, len); } /* Consistency test */ for (iter = 0; iter < 5000; iter++) { acb_t tau, z; acb_ptr wp1, wp2; long prec1, prec2, len1, len2, i; len1 = n_randint(state, 15); len2 = n_randint(state, 15); prec1 = 2 + n_randint(state, 1000); prec2 = 2 + n_randint(state, 1000); acb_init(tau); acb_init(z); wp1 = _acb_vec_init(len1); wp2 = _acb_vec_init(len2); acb_randtest(tau, state, prec1, 10); acb_randtest(z, state, prec1, 10); acb_modular_elliptic_p_zpx(wp1, z, tau, len1, prec1); acb_modular_elliptic_p_zpx(wp2, z, tau, len2, prec2); for (i = 0; i < FLINT_MIN(len1, len2); i++) { if (!acb_overlaps(wp1 + i, wp2 + i)) { printf("FAIL (overlap)\n"); printf("i = %ld len1 = %ld len2 = %ld\n\n", i, len1, len2); printf("tau = "); acb_printd(tau, 15); printf("\n\n"); printf("z = "); acb_printd(z, 15); printf("\n\n"); printf("wp1 = "); acb_printd(wp1 + i, 15); printf("\n\n"); printf("wp2 = "); acb_printd(wp2 + i, 15); printf("\n\n"); abort(); } } acb_clear(tau); acb_clear(z); _acb_vec_clear(wp1, len1); _acb_vec_clear(wp2, len2); } flint_randclear(state); flint_cleanup(); printf("PASS\n"); return EXIT_SUCCESS; }
int main() { slong iter; flint_rand_t state; flint_printf("bernoulli_poly_ui...."); fflush(stdout); flint_randinit(state); /* test multiplication theorem */ for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++) { acb_t x, t, res1, res2; ulong n, m, k; slong prec; n = n_randint(state, 50); m = 1 + n_randint(state, 5); prec = 2 + n_randint(state, 200); acb_init(x); acb_init(t); acb_init(res1); acb_init(res2); acb_randtest(x, state, 2 + n_randint(state, 200), 20); acb_randtest(res1, state, 2 + n_randint(state, 200), 20); acb_mul_ui(t, x, m, prec); acb_bernoulli_poly_ui(res1, n, t, prec); acb_zero(res2); for (k = 0; k < m; k++) { acb_set_ui(t, k); acb_div_ui(t, t, m, prec); acb_add(t, t, x, prec); acb_bernoulli_poly_ui(t, n, t, prec); acb_add(res2, res2, t, prec); } if (n > 0) { arb_ui_pow_ui(acb_realref(t), m, n - 1, prec); acb_mul_arb(res2, res2, acb_realref(t), prec); } else { acb_div_ui(res2, res2, m, prec); } if (!acb_overlaps(res1, res2)) { flint_printf("FAIL: overlap\n\n"); flint_printf("n = %wu, m = %wu\n\n", n, m); flint_printf("x = "); acb_printd(x, 15); flint_printf("\n\n"); flint_printf("res1 = "); acb_printd(res1, 15); flint_printf("\n\n"); flint_printf("res2 = "); acb_printd(res2, 15); flint_printf("\n\n"); abort(); } acb_clear(x); acb_clear(t); acb_clear(res1); acb_clear(res2); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
void acb_modular_elliptic_k_cpx(acb_ptr w, const acb_t m, slong len, slong prec) { acb_t t, u, msub1m, m2sub1; slong k, n; if (len < 1) return; if (len == 1) { acb_modular_elliptic_k(w, m, prec); return; } if (acb_is_zero(m)) { acb_const_pi(w, prec); acb_mul_2exp_si(w, w, -1); for (k = 1; k < len; k++) { acb_mul_ui(w + k, w + k - 1, (2 * k - 1) * (2 * k - 1), prec); acb_div_ui(w + k, w + k, 4 * k * k, prec); } return; } acb_init(t); acb_init(u); acb_init(msub1m); acb_init(m2sub1); acb_sub_ui(msub1m, m, 1, prec); acb_neg(t, msub1m); acb_sqrt(t, t, prec); acb_mul(msub1m, msub1m, m, prec); acb_mul_2exp_si(m2sub1, m, 1); acb_sub_ui(m2sub1, m2sub1, 1, prec); acb_agm1_cpx(w, t, 2, prec); /* pi M'(t) / (4 t M(t)^2) */ acb_mul(u, w, w, prec); acb_mul(t, t, u, prec); acb_div(w + 1, w + 1, t, prec); acb_const_pi(u, prec); acb_mul(w + 1, w + 1, u, prec); acb_mul_2exp_si(w + 1, w + 1, -2); /* pi / (2 M(t)) */ acb_const_pi(u, prec); acb_div(w, u, w, prec); acb_mul_2exp_si(w, w, -1); acb_inv(t, msub1m, prec); for (k = 2; k < len; k++) { n = k - 2; acb_mul_ui(w + k, w + n, (2 * n + 1) * (2 * n + 1), prec); acb_mul(u, w + n + 1, m2sub1, prec); acb_addmul_ui(w + k, u, (n + 1) * (n + 1) * 4, prec); acb_mul(w + k, w + k, t, prec); acb_div_ui(w + k, w + k, 4 * (n + 1) * (n + 2), prec); acb_neg(w + k, w + k); } acb_clear(t); acb_clear(u); acb_clear(msub1m); acb_clear(m2sub1); }
/* F(x) = c0 + c1 x + c2 x^2 + c3 x^3 + [...] F'(x) = c1 + 2 c2 x + 3 c3 x^2 + 4 c4 x^3 + [...] */ static void evaluate_sum(acb_t res, acb_t res1, const acb_t a, const acb_t b, const acb_t c, const acb_t y, const acb_t x, const acb_t f0, const acb_t f1, long num, long prec) { acb_t s, s2, w, d, e, xpow, ck, cknext; long k; acb_init(s); acb_init(s2); acb_init(w); acb_init(d); acb_init(e); acb_init(xpow); acb_init(ck); acb_init(cknext); /* d = (y-1)*y */ acb_sub_ui(d, y, 1, prec); acb_mul(d, d, y, prec); acb_one(xpow); for (k = 0; k < num; k++) { if (k == 0) { acb_set(ck, f0); acb_set(cknext, f1); } else { acb_add_ui(w, b, k-1, prec); acb_mul(w, w, ck, prec); acb_add_ui(e, a, k-1, prec); acb_mul(w, w, e, prec); acb_add(e, a, b, prec); acb_add_ui(e, e, 2*(k+1)-3, prec); acb_mul(e, e, y, prec); acb_sub(e, e, c, prec); acb_sub_ui(e, e, k-1, prec); acb_mul_ui(e, e, k, prec); acb_addmul(w, e, cknext, prec); acb_mul_ui(e, d, k+1, prec); acb_mul_ui(e, e, k, prec); acb_div(w, w, e, prec); acb_neg(w, w); acb_set(ck, cknext); acb_set(cknext, w); } acb_addmul(s, ck, xpow, prec); acb_mul_ui(w, cknext, k+1, prec); acb_addmul(s2, w, xpow, prec); acb_mul(xpow, xpow, x, prec); } acb_set(res, s); acb_set(res1, s2); acb_clear(s); acb_clear(s2); acb_clear(w); acb_clear(d); acb_clear(e); acb_clear(xpow); acb_clear(ck); acb_clear(cknext); }
int acb_calc_integrate_taylor(acb_t res, acb_calc_func_t func, void * param, const acb_t a, const acb_t b, const arf_t inner_radius, const arf_t outer_radius, long accuracy_goal, long prec) { long num_steps, step, N, bp; int result; acb_t delta, m, x, y1, y2, sum; acb_ptr taylor_poly; arf_t err; acb_init(delta); acb_init(m); acb_init(x); acb_init(y1); acb_init(y2); acb_init(sum); arf_init(err); acb_sub(delta, b, a, prec); /* precision used for bounds calculations */ bp = MAG_BITS; /* compute the number of steps */ { arf_t t; arf_init(t); acb_get_abs_ubound_arf(t, delta, bp); arf_div(t, t, inner_radius, bp, ARF_RND_UP); arf_mul_2exp_si(t, t, -1); num_steps = (long) (arf_get_d(t, ARF_RND_UP) + 1.0); /* make sure it's not something absurd */ num_steps = FLINT_MIN(num_steps, 10 * prec); num_steps = FLINT_MAX(num_steps, 1); arf_clear(t); } result = ARB_CALC_SUCCESS; acb_zero(sum); for (step = 0; step < num_steps; step++) { /* midpoint of subinterval */ acb_mul_ui(m, delta, 2 * step + 1, prec); acb_div_ui(m, m, 2 * num_steps, prec); acb_add(m, m, a, prec); if (arb_calc_verbose) { printf("integration point %ld/%ld: ", 2 * step + 1, 2 * num_steps); acb_printd(m, 15); printf("\n"); } /* evaluate at +/- x */ /* TODO: exactify m, and include error in x? */ acb_div_ui(x, delta, 2 * num_steps, prec); /* compute bounds and number of terms to use */ { arb_t cbound, xbound, rbound; arf_t C, D, R, X, T; double DD, TT, NN; arb_init(cbound); arb_init(xbound); arb_init(rbound); arf_init(C); arf_init(D); arf_init(R); arf_init(X); arf_init(T); /* R is the outer radius */ arf_set(R, outer_radius); /* X = upper bound for |x| */ acb_get_abs_ubound_arf(X, x, bp); arb_set_arf(xbound, X); /* Compute C(m,R). Important subtlety: due to rounding when computing m, we will in general be farther than R away from the integration path. But since acb_calc_cauchy_bound actually integrates over the area traced by a complex interval, it will catch any extra singularities (giving an infinite bound). */ arb_set_arf(rbound, outer_radius); acb_calc_cauchy_bound(cbound, func, param, m, rbound, 8, bp); arf_set_mag(C, arb_radref(cbound)); arf_add(C, arb_midref(cbound), C, bp, ARF_RND_UP); /* Sanity check: we need C < inf and R > X */ if (arf_is_finite(C) && arf_cmp(R, X) > 0) { /* Compute upper bound for D = C * R * X / (R - X) */ arf_mul(D, C, R, bp, ARF_RND_UP); arf_mul(D, D, X, bp, ARF_RND_UP); arf_sub(T, R, X, bp, ARF_RND_DOWN); arf_div(D, D, T, bp, ARF_RND_UP); /* Compute upper bound for T = (X / R) */ arf_div(T, X, R, bp, ARF_RND_UP); /* Choose N */ /* TODO: use arf arithmetic to avoid overflow */ /* TODO: use relative accuracy (look at |f(m)|?) */ DD = arf_get_d(D, ARF_RND_UP); TT = arf_get_d(T, ARF_RND_UP); NN = -(accuracy_goal * 0.69314718055994530942 + log(DD)) / log(TT); N = NN + 0.5; N = FLINT_MIN(N, 100 * prec); N = FLINT_MAX(N, 1); /* Tail bound: D / (N + 1) * T^N */ { mag_t TT; mag_init(TT); arf_get_mag(TT, T); mag_pow_ui(TT, TT, N); arf_set_mag(T, TT); mag_clear(TT); } arf_mul(D, D, T, bp, ARF_RND_UP); arf_div_ui(err, D, N + 1, bp, ARF_RND_UP); } else { N = 1; arf_pos_inf(err); result = ARB_CALC_NO_CONVERGENCE; } if (arb_calc_verbose) { printf("N = %ld; bound: ", N); arf_printd(err, 15); printf("\n"); printf("R: "); arf_printd(R, 15); printf("\n"); printf("C: "); arf_printd(C, 15); printf("\n"); printf("X: "); arf_printd(X, 15); printf("\n"); } arb_clear(cbound); arb_clear(xbound); arb_clear(rbound); arf_clear(C); arf_clear(D); arf_clear(R); arf_clear(X); arf_clear(T); } /* evaluate Taylor polynomial */ taylor_poly = _acb_vec_init(N + 1); func(taylor_poly, m, param, N, prec); _acb_poly_integral(taylor_poly, taylor_poly, N + 1, prec); _acb_poly_evaluate(y2, taylor_poly, N + 1, x, prec); acb_neg(x, x); _acb_poly_evaluate(y1, taylor_poly, N + 1, x, prec); acb_neg(x, x); /* add truncation error */ arb_add_error_arf(acb_realref(y1), err); arb_add_error_arf(acb_imagref(y1), err); arb_add_error_arf(acb_realref(y2), err); arb_add_error_arf(acb_imagref(y2), err); acb_add(sum, sum, y2, prec); acb_sub(sum, sum, y1, prec); if (arb_calc_verbose) { printf("values: "); acb_printd(y1, 15); printf(" "); acb_printd(y2, 15); printf("\n"); } _acb_vec_clear(taylor_poly, N + 1); if (result == ARB_CALC_NO_CONVERGENCE) break; } acb_set(res, sum); acb_clear(delta); acb_clear(m); acb_clear(x); acb_clear(y1); acb_clear(y2); acb_clear(sum); arf_clear(err); return result; }