int main() {

#define ni 5
    slong n, i, f;
    double b[ni][2] = { { 0, 1}, {-1, 1}, {0, 10}, {-20, 3}, {0, 3.14} };
    const slong prec = 40;
#define nf 5
    arb_func_t func[nf] = { (arb_func_t)&f_1x2, (arb_func_t)&f_pol, (arb_func_t)&f_thsh, (arb_func_t)&f_thsh_shift, (arb_func_t)&f_aj };
#if VERBOSE
    char * fn[nf] = { "1/(1+x^2)", "1/p(x)", "th(sh(x))", "th(sh(x+.7I))" , "1/y" };
#endif
    params_t p[nf];
    
    arf_t tmin, tmax;
    mag_t max;

    flint_printf("max_func...");
    fflush(stdout);

    p[1].len = 3;
    p[1].z = _acb_vec_init(3);
    acb_set_d_d(p[1].z + 0, 2, 1);
    acb_set_d_d(p[1].z + 1, 2, .1);
    acb_set_d_d(p[1].z + 2, 1, .1);

    p[4] = p[1];

    arf_init(tmin);
    arf_init(tmax);
    mag_init(max);

    for (i = 0; i < ni; i++)
    {
        arf_set_d(tmin, b[i][0]);
        arf_set_d(tmax, b[i][1]);

        for (f = 0; f < nf; f++)
        { 
            for (n = 5; n < 100; n *= 2)
            {
                slong count;
                count = mag_func_arf(max, func[f], (void *)&p[f], tmin, tmax, n, prec);
#if VERBOSE
                flint_printf("\nmax %s on [%lf, %lf] <= ",fn[f],b[i][0],b[i][1]);
                mag_printd(max,8);
                flint_printf(" [asked %ld, did %ld]", n, count);
#endif
            }
        }

    }

    mag_clear(max);
    arf_clear(tmin);
    arf_clear(tmax);

    printf("PASS\n");
    return 0;
}
Exemple #2
0
void
acb_lambertw_principal_d(acb_t res, const acb_t z)
{
    double za, zb, wa, wb, ewa, ewb, t, u, q, r;
    int k, maxk = 15;

    za = arf_get_d(arb_midref(acb_realref(z)), ARF_RND_DOWN);
    zb = arf_get_d(arb_midref(acb_imagref(z)), ARF_RND_DOWN);

    /* make sure we end up on the right branch */
    if (za < -0.367 && zb > -1e-20 && zb <= 0.0
                  && arf_sgn(arb_midref(acb_imagref(z))) < 0)
        zb = -1e-20;

    wa = za;
    wb = zb;

    if (fabs(wa) > 2.0 || fabs(wb) > 2.0)
    {
        t = atan2(wb, wa);
        wa = 0.5 * log(wa * wa + wb * wb);
        wb = t;
    }
    else if (fabs(wa) > 0.25 || fabs(wb) > 0.25)
    {
        /* We have W(z) ~= -1 + (2(ez+1))^(1/2) near the branch point.
           Changing the exponent to 1/4 gives a much worse local guess
           which however does the job on a larger domain. */
        wa *= 5.43656365691809;
        wb *= 5.43656365691809;
        wa += 2.0;
        t = atan2(wb, wa);
        r = pow(wa * wa + wb * wb, 0.125);
        wa = r * cos(0.25 * t);
        wb = r * sin(0.25 * t);
        wa -= 1.0;
    }

    for (k = 0; k < maxk; k++)
    {
        t = exp(wa);
        ewa = t * cos(wb);
        ewb = t * sin(wb);
        t = (ewa * wa - ewb * wb); q = t + ewa; t -= za;
        u = (ewb * wa + ewa * wb); r = u + ewb; u -= zb;
        ewa = q * t + r * u; ewb = q * u - r * t;
        r = 1.0 / (q * q + r * r);
        ewa *= r; ewb *= r;
        if ((ewa*ewa + ewb*ewb) < (wa*wa + wb*wb) * 1e-12)
            maxk = FLINT_MIN(maxk, k + 2);
        wa -= ewa; wb -= ewb;
    }

    acb_set_d_d(res, wa, wb);
}
Exemple #3
0
int main()
{
    flint_printf("spherical_y....");
    fflush(stdout);

    {
        slong i, n, m;
        acb_t z, w, x, y;

        acb_init(z);
        acb_init(w);
        acb_init(x);
        acb_init(y);

        i = 0;

        arb_set_str(acb_realref(x), "0.2", 64);
        arb_set_str(acb_imagref(x), "0.3", 64);
        arb_set_str(acb_realref(y), "0.3", 64);
        arb_set_str(acb_imagref(y), "0.4", 64);

        for (n = -4; n <= 4; n++)
        {
            for (m = -4; m <= 4; m++)
            {
                acb_hypgeom_spherical_y(z, n, m, x, y, 64);

                acb_set_d_d(w, testdata[2 * i], testdata[2 * i + 1]);
                mag_set_d(arb_radref(acb_realref(w)), 1e-13);
                mag_set_d(arb_radref(acb_imagref(w)), 1e-13);

                if (!acb_overlaps(z, w))
                {
                    flint_printf("FAIL: value\n\n");
                    flint_printf("n = %wd, m = %wd\n", n, m);
                    flint_printf("z = "); acb_printd(z, 20); flint_printf("\n\n");
                    flint_printf("w = "); acb_printd(w, 20); flint_printf("\n\n");
                    abort();
                }

                i++;
            }
        }

        acb_clear(z);
        acb_clear(w);
        acb_clear(x);
        acb_clear(y);
    }

    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
int main(int argc, char *argv[])
{
    int function, i, numtests;
    slong prec, goal;
    double t, total, logtotal;

    acb_t a, b, c, z, r, s;

    acb_init(a);
    acb_init(b);
    acb_init(c);
    acb_init(z);
    acb_init(r);
    acb_init(s);

    /*    J(0,pi x)   I(0,pi x)   K(0,pi x)          */

    for (function = 0; function < 3; function++)
    {
        total = 0.0;
        logtotal = 0.0;

        if (function < 2)
            numtests = 40;
        else
            numtests = 30;

        for (i = 0; i < numtests; i++)
        {
//            printf("%2d ", i + 1); fflush(stdout);

            TIMEIT_START
            prec = 96;

            for (;;)
            {
                if (function == 0)
                {
                    acb_set_d_d(a, input_1f1[i][0], input_1f1[i][1]);
                    acb_set_d_d(b, input_1f1[i][2], input_1f1[i][3]);
                    acb_set_d_d(z, input_1f1[i][4], input_1f1[i][5]);
                    acb_hypgeom_m(r, a, b, z, 0, prec);
                }
                else if (function == 1)
                {
                    acb_set_d_d(a, input_1f1[i][0], input_1f1[i][1]);
                    acb_set_d_d(b, input_1f1[i][2], input_1f1[i][3]);
                    acb_set_d_d(z, input_1f1[i][4], input_1f1[i][5]);
                    acb_hypgeom_u(r, a, b, z, prec);
                }
                else if (function == 2)
                {
                    acb_set_d_d(a, input_2f1[i][0], input_2f1[i][1]);
                    acb_set_d_d(b, input_2f1[i][2], input_2f1[i][3]);
                    acb_set_d_d(c, input_2f1[i][4], input_2f1[i][5]);
                    acb_set_d_d(z, input_2f1[i][6], input_2f1[i][7]);
                    acb_hypgeom_2f1(r, a, b, c, z, 0, prec);
                }
                else
                {
                    acb_set_d_d(a, input_2f1[i][0], input_2f1[i][1]);
                    acb_set_d_d(b, input_2f1[i][2], input_2f1[i][3]);
                    acb_set_d_d(c, input_2f1[i][4], input_2f1[i][5]);
                    acb_set_d_d(z, input_2f1[i][6], input_2f1[i][7]);
                    acb_mul_2exp_si(z, z, 1);
                    acb_sub_ui(z, z, 1, prec);
                    acb_neg(z, z);
                    acb_hypgeom_legendre_q(r, a, c, z, 0, prec);
                }

                if (function == 3)
                {
                    if (acb_rel_accuracy_bits(r) >= goal)
                        break;
                }
                else
                {
                    if (arb_can_round_arf(acb_realref(r), goal, ARF_RND_NEAR) &&
                        arb_can_round_arf(acb_imagref(r), goal, ARF_RND_NEAR))
                        break;
                }

                prec *= 2;
            }

            TIMEIT_STOP_VAL(t)

            total += t;
            logtotal += log(t);

#if 1
            printf("%8g, ", t);
#else
            printf("%8ld    %8g    ", prec, t);
            _acb_print(r, 25);
            printf("\n");
#endif
        }

        printf("---------------------------------------------------------------\n");
        printf("Mean %g s; geometric mean %g\n", total, exp(logtotal / numtests));
        printf("---------------------------------------------------------------\n");
    }

    acb_clear(a);
    acb_clear(b);
    acb_clear(c);
    acb_clear(z);
    acb_clear(r);
    acb_clear(s);
}
Exemple #5
0
int main(int argc, char *argv[])
{
    acb_t s, t, a, b;
    mag_t tol;
    slong prec, goal;
    slong N;
    ulong k;
    int integral, ifrom, ito;
    int i, twice, havegoal, havetol;
    acb_calc_integrate_opt_t options;

    ifrom = ito = -1;

    for (i = 1; i < argc; i++)
    {
        if (!strcmp(argv[i], "-i"))
        {
            if (!strcmp(argv[i+1], "all"))
            {
                ifrom = 0;
                ito = NUM_INTEGRALS - 1;
            }
            else
            {
                ifrom = ito = atol(argv[i+1]);
                if (ito < 0 || ito >= NUM_INTEGRALS)
                    flint_abort();
            }
        }
    }

    if (ifrom == -1)
    {
        flint_printf("Compute integrals using acb_calc_integrate.\n");
        flint_printf("Usage: integrals -i n [-prec p] [-tol eps] [-twice] [...]\n\n");
        flint_printf("-i n       - compute integral n (0 <= n <= %d), or \"-i all\"\n", NUM_INTEGRALS - 1);
        flint_printf("-prec p    - precision in bits (default p = 64)\n");
        flint_printf("-goal p    - approximate relative accuracy goal (default p)\n");
        flint_printf("-tol eps   - approximate absolute error goal (default 2^-p)\n");
        flint_printf("-twice     - run twice (to see overhead of computing nodes)\n");
        flint_printf("-heap      - use heap for subinterval queue\n");
        flint_printf("-verbose   - show information\n");
        flint_printf("-verbose2  - show more information\n");
        flint_printf("-deg n     - use quadrature degree up to n\n");
        flint_printf("-eval n    - limit number of function evaluations to n\n");
        flint_printf("-depth n   - limit subinterval queue size to n\n\n");
        flint_printf("Implemented integrals:\n");
        for (integral = 0; integral < NUM_INTEGRALS; integral++)
            flint_printf("I%d = %s\n", integral, descr[integral]);
        flint_printf("\n");
        return 1;
    }

    acb_calc_integrate_opt_init(options);

    prec = 64;
    twice = 0;
    goal = 0;
    havetol = havegoal = 0;

    acb_init(a);
    acb_init(b);
    acb_init(s);
    acb_init(t);
    mag_init(tol);

    for (i = 1; i < argc; i++)
    {
        if (!strcmp(argv[i], "-prec"))
        {
            prec = atol(argv[i+1]);
        }
        else if (!strcmp(argv[i], "-twice"))
        {
            twice = 1;
        }
        else if (!strcmp(argv[i], "-goal"))
        {
            goal = atol(argv[i+1]);
            if (goal < 0)
            {
                flint_printf("expected goal >= 0\n");
                return 1;
            }
            havegoal = 1;
        }
        else if (!strcmp(argv[i], "-tol"))
        {
            arb_t x;
            arb_init(x);
            arb_set_str(x, argv[i+1], 10);
            arb_get_mag(tol, x);
            arb_clear(x);
            havetol = 1;
        }
        else if (!strcmp(argv[i], "-deg"))
        {
            options->deg_limit = atol(argv[i+1]);
        }
        else if (!strcmp(argv[i], "-eval"))
        {
            options->eval_limit = atol(argv[i+1]);
        }
        else if (!strcmp(argv[i], "-depth"))
        {
            options->depth_limit = atol(argv[i+1]);
        }
        else if (!strcmp(argv[i], "-verbose"))
        {
            options->verbose = 1;
        }
        else if (!strcmp(argv[i], "-verbose2"))
        {
            options->verbose = 2;
        }
        else if (!strcmp(argv[i], "-heap"))
        {
            options->use_heap = 1;
        }
    }

    if (!havegoal)
        goal = prec;

    if (!havetol)
        mag_set_ui_2exp_si(tol, 1, -prec);

    for (integral = ifrom; integral <= ito; integral++)
    {
        flint_printf("I%d = %s ...\n", integral, descr[integral]);

        for (i = 0; i < 1 + twice; i++)
        {
            TIMEIT_ONCE_START
            switch (integral)
            {
            case 0:
                acb_set_d(a, 0);
                acb_set_d(b, 100);
                acb_calc_integrate(s, f_sin, NULL, a, b, goal, tol, options, prec);
                break;

            case 1:
                acb_set_d(a, 0);
                acb_set_d(b, 1);
                acb_calc_integrate(s, f_atanderiv, NULL, a, b, goal, tol, options, prec);
                acb_mul_2exp_si(s, s, 2);
                break;

            case 2:
                acb_set_d(a, 0);
                acb_one(b);
                acb_mul_2exp_si(b, b, goal);
                acb_calc_integrate(s, f_atanderiv, NULL, a, b, goal, tol, options, prec);
                arb_add_error_2exp_si(acb_realref(s), -goal);
                acb_mul_2exp_si(s, s, 1);
                break;

            case 3:
                acb_set_d(a, 0);
                acb_set_d(b, 1);
                acb_calc_integrate(s, f_circle, NULL, a, b, goal, tol, options, prec);
                acb_mul_2exp_si(s, s, 2);
                break;

            case 4:
                acb_set_d(a, 0);
                acb_set_d(b, 8);
                acb_calc_integrate(s, f_rump, NULL, a, b, goal, tol, options, prec);
                break;

            case 5:
                acb_set_d(a, 1);
                acb_set_d(b, 101);
                acb_calc_integrate(s, f_floor, NULL, a, b, goal, tol, options, prec);
                break;

            case 6:
                acb_set_d(a, 0);
                acb_set_d(b, 1);
                acb_calc_integrate(s, f_helfgott, NULL, a, b, goal, tol, options, prec);
                break;

            case 7:
                acb_zero(s);

                acb_set_d_d(a, -1.0, -1.0);
                acb_set_d_d(b, 2.0, -1.0);
                acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_set_d_d(a, 2.0, -1.0);
                acb_set_d_d(b, 2.0, 1.0);
                acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_set_d_d(a, 2.0, 1.0);
                acb_set_d_d(b, -1.0, 1.0);
                acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_set_d_d(a, -1.0, 1.0);
                acb_set_d_d(b, -1.0, -1.0);
                acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_const_pi(t, prec);
                acb_div(s, s, t, prec);
                acb_mul_2exp_si(s, s, -1);
                acb_div_onei(s, s);
                break;

            case 8:
                acb_set_d(a, 0);
                acb_set_d(b, 1);
                acb_calc_integrate(s, f_essing, NULL, a, b, goal, tol, options, prec);
                break;

            case 9:
                acb_set_d(a, 0);
                acb_set_d(b, 1);
                acb_calc_integrate(s, f_essing2, NULL, a, b, goal, tol, options, prec);
                break;

            case 10:
                acb_set_d(a, 0);
                acb_set_d(b, 10000);
                acb_calc_integrate(s, f_factorial1000, NULL, a, b, goal, tol, options, prec);
                break;

            case 11:
                acb_set_d_d(a, 1.0, 0.0);
                acb_set_d_d(b, 1.0, 1000.0);
                acb_calc_integrate(s, f_gamma, NULL, a, b, goal, tol, options, prec);
                break;

            case 12:
                acb_set_d(a, -10.0);
                acb_set_d(b, 10.0);
                acb_calc_integrate(s, f_sin_plus_small, NULL, a, b, goal, tol, options, prec);
                break;

            case 13:
                acb_set_d(a, -1020.0);
                acb_set_d(b, -1010.0);
                acb_calc_integrate(s, f_exp, NULL, a, b, goal, tol, options, prec);
                break;

            case 14:
                acb_set_d(a, 0);
                acb_set_d(b, ceil(sqrt(goal * 0.693147181) + 1.0));
                acb_calc_integrate(s, f_gaussian, NULL, a, b, goal, tol, options, prec);
                acb_mul(b, b, b, prec);
                acb_neg(b, b);
                acb_exp(b, b, prec);
                arb_add_error(acb_realref(s), acb_realref(b));
                break;

            case 15:
                acb_set_d(a, 0.0);
                acb_set_d(b, 1.0);
                acb_calc_integrate(s, f_spike, NULL, a, b, goal, tol, options, prec);
                break;

            case 16:
                acb_set_d(a, 0.0);
                acb_set_d(b, 8.0);
                acb_calc_integrate(s, f_monster, NULL, a, b, goal, tol, options, prec);
                break;

            case 17:
                acb_set_d(a, 0);
                acb_set_d(b, ceil(goal * 0.693147181 + 1.0));
                acb_calc_integrate(s, f_sech, NULL, a, b, goal, tol, options, prec);
                acb_neg(b, b);
                acb_exp(b, b, prec);
                acb_mul_2exp_si(b, b, 1);
                arb_add_error(acb_realref(s), acb_realref(b));
                break;

            case 18:
                acb_set_d(a, 0);
                acb_set_d(b, ceil(goal * 0.693147181 / 3.0 + 2.0));
                acb_calc_integrate(s, f_sech3, NULL, a, b, goal, tol, options, prec);
                acb_neg(b, b);
                acb_mul_ui(b, b, 3, prec);
                acb_exp(b, b, prec);
                acb_mul_2exp_si(b, b, 3);
                acb_div_ui(b, b, 3, prec);
                arb_add_error(acb_realref(s), acb_realref(b));
                break;

            case 19:
                if (goal < 0)
                    abort();
                /* error bound 2^-N (1+N) when truncated at 2^-N */
                N = goal + FLINT_BIT_COUNT(goal);
                acb_one(a);
                acb_mul_2exp_si(a, a, -N);
                acb_one(b);
                acb_calc_integrate(s, f_log_div1p, NULL, a, b, goal, tol, options, prec);
                acb_set_ui(b, N + 1);
                acb_mul_2exp_si(b, b, -N);
                arb_add_error(acb_realref(s), acb_realref(b));
                break;

           case 20:
                if (goal < 0)
                    abort();
                /* error bound (N+1) exp(-N) when truncated at N */
                N = goal + FLINT_BIT_COUNT(goal);
                acb_zero(a);
                acb_set_ui(b, N);
                acb_calc_integrate(s, f_log_div1p_transformed, NULL, a, b, goal, tol, options, prec);
                acb_neg(b, b);
                acb_exp(b, b, prec);
                acb_mul_ui(b, b, N + 1, prec);
                arb_add_error(acb_realref(s), acb_realref(b));
                break;

            case 21:

                acb_zero(s);

                N = 10;

                acb_set_d_d(a, 0.5, -0.5);
                acb_set_d_d(b, 0.5, 0.5);
                acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_set_d_d(a, 0.5, 0.5);
                acb_set_d_d(b, -0.5, 0.5);
                acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_set_d_d(a, -0.5, 0.5);
                acb_set_d_d(b, -0.5, -0.5);
                acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_set_d_d(a, -0.5, -0.5);
                acb_set_d_d(b, 0.5, -0.5);
                acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_const_pi(t, prec);
                acb_div(s, s, t, prec);
                acb_mul_2exp_si(s, s, -1);
                acb_div_onei(s, s);
                break;

            case 22:

                acb_zero(s);

                N = 1000;

                acb_set_d_d(a, 100.0, 0.0);
                acb_set_d_d(b, 100.0, N);
                acb_calc_integrate(t, f_zeta_frac, NULL, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_set_d_d(a, 100, N);
                acb_set_d_d(b, 0.5, N);
                acb_calc_integrate(t, f_zeta_frac, NULL, a, b, goal, tol, options, prec);
                acb_add(s, s, t, prec);

                acb_div_onei(s, s);
                arb_zero(acb_imagref(s));

                acb_set_ui(t, N);
                acb_dirichlet_hardy_theta(t, t, NULL, NULL, 1, prec);
                acb_add(s, s, t, prec);

                acb_const_pi(t, prec);
                acb_div(s, s, t, prec);
                acb_add_ui(s, s, 1, prec);
                break;

            case 23:
                acb_set_d(a, 0.0);
                acb_set_d(b, 1000.0);
                acb_calc_integrate(s, f_lambertw, NULL, a, b, goal, tol, options, prec);
                break;

            case 24:
                acb_set_d(a, 0.0);
                acb_const_pi(b, prec);
                acb_calc_integrate(s, f_max_sin_cos, NULL, a, b, goal, tol, options, prec);
                break;

            case 25:
                acb_set_si(a, -1);
                acb_set_si(b, 1);
                acb_calc_integrate(s, f_erf_bent, NULL, a, b, goal, tol, options, prec);
                break;

            case 26:
                acb_set_si(a, -10);
                acb_set_si(b, 10);
                acb_calc_integrate(s, f_airy_ai, NULL, a, b, goal, tol, options, prec);
                break;

            case 27:
                acb_set_si(a, 0);
                acb_set_si(b, 10);
                acb_calc_integrate(s, f_horror, NULL, a, b, goal, tol, options, prec);
                break;

            case 28:
                acb_set_d_d(a, -1, -1);
                acb_set_d_d(b, -1, 1);
                acb_calc_integrate(s, f_sqrt, NULL, a, b, goal, tol, options, prec);
                break;

            case 29:
                acb_set_d(a, 0);
                acb_set_d(b, ceil(sqrt(goal * 0.693147181) + 1.0));
                acb_calc_integrate(s, f_gaussian_twist, NULL, a, b, goal, tol, options, prec);
                acb_mul(b, b, b, prec);
                acb_neg(b, b);
                acb_exp(b, b, prec);
                arb_add_error(acb_realref(s), acb_realref(b));
                arb_add_error(acb_imagref(s), acb_realref(b));
                break;

            case 30:
                acb_set_d(a, 0);
                acb_set_d(b, ceil(goal * 0.693147181 + 1.0));
                acb_calc_integrate(s, f_exp_airy, NULL, a, b, goal, tol, options, prec);
                acb_neg(b, b);
                acb_exp(b, b, prec);
                acb_mul_2exp_si(b, b, 1);
                arb_add_error(acb_realref(s), acb_realref(b));
                break;

            case 31:
                acb_zero(a);
                acb_const_pi(b, prec);
                acb_calc_integrate(s, f_sin_cos_frac, NULL, a, b, goal, tol, options, prec);
                break;

            case 32:
                acb_zero(a);
                acb_set_ui(b, 3);
                acb_calc_integrate(s, f_sin_near_essing, NULL, a, b, goal, tol, options, prec);
                break;

            case 33:
                acb_zero(a);
                acb_zero(b);
                k = 3;
                scaled_bessel_select_N(acb_realref(b), k, prec);
                acb_calc_integrate(s, f_scaled_bessel, &k, a, b, goal, tol, options, prec);
                scaled_bessel_tail_bound(acb_realref(a), k, acb_realref(b), prec);
                arb_add_error(acb_realref(s), acb_realref(a));
                break;

            case 34:
                acb_zero(a);
                acb_zero(b);
                k = 15;
                scaled_bessel_select_N(acb_realref(b), k, prec);
                acb_calc_integrate(s, f_scaled_bessel, &k, a, b, goal, tol, options, prec);
                scaled_bessel_tail_bound(acb_realref(a), k, acb_realref(b), prec);
                arb_add_error(acb_realref(s), acb_realref(a));
                break;

            case 35:
                acb_set_d_d(a, -1, -1);
                acb_set_d_d(b, -1, 1);
                acb_calc_integrate(s, f_rsqrt, NULL, a, b, goal, tol, options, prec);
                break;

            default:
                abort();
            }

            TIMEIT_ONCE_STOP
        }
        flint_printf("I%d = ", integral);
        acb_printn(s, 3.333 * prec, 0);
        flint_printf("\n\n");
    }

    acb_clear(a);
    acb_clear(b);
    acb_clear(s);
    acb_clear(t);
    mag_clear(tol);

    flint_cleanup();
    return 0;
}