/* * Look for an ECDT and if we find one, set up default GPE and * space handlers to catch attempts to access EC space before * we have a real driver instance in place. * * TODO: Some old Gateway laptops need us to fake up an ECDT or * otherwise attach early so that _REG methods can run. */ void acpi_ec_ecdt_probe(device_t parent) { ACPI_TABLE_ECDT *ecdt; ACPI_STATUS status; device_t child; ACPI_HANDLE h; struct acpi_ec_params *params; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Find and validate the ECDT. */ status = AcpiGetTable(ACPI_SIG_ECDT, 1, (ACPI_TABLE_HEADER **)&ecdt); if (ACPI_FAILURE(status) || ecdt->Control.BitWidth != 8 || ecdt->Data.BitWidth != 8) { return; } /* Create the child device with the given unit number. */ child = BUS_ADD_CHILD(parent, parent, 0, "acpi_ec", ecdt->Uid); if (child == NULL) { kprintf("%s: can't add child\n", __func__); return; } /* Find and save the ACPI handle for this device. */ status = AcpiGetHandle(NULL, ecdt->Id, &h); if (ACPI_FAILURE(status)) { device_delete_child(parent, child); kprintf("%s: can't get handle\n", __func__); return; } acpi_set_handle(child, h); /* Set the data and CSR register addresses. */ bus_set_resource(child, SYS_RES_IOPORT, 0, ecdt->Data.Address, /*count*/1, -1); bus_set_resource(child, SYS_RES_IOPORT, 1, ecdt->Control.Address, /*count*/1, -1); /* * Store values for the probe/attach routines to use. Store the * ECDT GPE bit and set the global lock flag according to _GLK. * Note that it is not perfectly correct to be evaluating a method * before initializing devices, but in practice this function * should be safe to call at this point. */ params = kmalloc(sizeof(struct acpi_ec_params), M_TEMP, M_WAITOK | M_ZERO); params->gpe_handle = NULL; params->gpe_bit = ecdt->Gpe; params->uid = ecdt->Uid; acpi_GetInteger(h, "_GLK", ¶ms->glk); acpi_set_private(child, params); /* Finish the attach process. */ if (device_probe_and_attach(child) != 0) device_delete_child(parent, child); }
static int acpi_cpu_probe(device_t dev) { int acpi_id, cpu_id; ACPI_BUFFER buf; ACPI_HANDLE handle; ACPI_OBJECT *obj; ACPI_STATUS status; if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR || acpi_cpu_disabled) return (ENXIO); handle = acpi_get_handle(dev); if (cpu_softc == NULL) cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) * (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO); /* Get our Processor object. */ buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObject(handle, NULL, NULL, &buf); if (ACPI_FAILURE(status)) { device_printf(dev, "probe failed to get Processor obj - %s\n", AcpiFormatException(status)); return (ENXIO); } obj = (ACPI_OBJECT *)buf.Pointer; if (obj->Type != ACPI_TYPE_PROCESSOR) { device_printf(dev, "Processor object has bad type %d\n", obj->Type); AcpiOsFree(obj); return (ENXIO); } /* * Find the processor associated with our unit. We could use the * ProcId as a key, however, some boxes do not have the same values * in their Processor object as the ProcId values in the MADT. */ acpi_id = obj->Processor.ProcId; AcpiOsFree(obj); if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0) return (ENXIO); /* * Check if we already probed this processor. We scan the bus twice * so it's possible we've already seen this one. */ if (cpu_softc[cpu_id] != NULL) return (ENXIO); /* Mark this processor as in-use and save our derived id for attach. */ cpu_softc[cpu_id] = (void *)1; acpi_set_private(dev, (void*)(intptr_t)cpu_id); device_set_desc(dev, "ACPI CPU"); return (0); }
static void gic_v3_acpi_identify(driver_t *driver, device_t parent) { struct madt_table_data madt_data; ACPI_TABLE_MADT *madt; vm_paddr_t physaddr; device_t dev; physaddr = acpi_find_table(ACPI_SIG_MADT); if (physaddr == 0) return; madt = acpi_map_table(physaddr, ACPI_SIG_MADT); if (madt == NULL) { device_printf(parent, "gic: Unable to map the MADT\n"); return; } madt_data.parent = parent; madt_data.dist = NULL; madt_data.count = 0; acpi_walk_subtables(madt + 1, (char *)madt + madt->Header.Length, madt_handler, &madt_data); if (madt_data.dist == NULL) { device_printf(parent, "No gic interrupt or distributor table\n"); goto out; } /* This is for the wrong GIC version */ if (madt_data.dist->Version != ACPI_MADT_GIC_VERSION_V3) goto out; dev = BUS_ADD_CHILD(parent, BUS_PASS_INTERRUPT + BUS_PASS_ORDER_MIDDLE, "gic", -1); if (dev == NULL) { device_printf(parent, "add gic child failed\n"); goto out; } /* Add the MADT data */ BUS_SET_RESOURCE(parent, dev, SYS_RES_MEMORY, 0, madt_data.dist->BaseAddress, 128 * 1024); madt_data.dev = dev; acpi_walk_subtables(madt + 1, (char *)madt + madt->Header.Length, rdist_map, &madt_data); acpi_set_private(dev, (void *)(uintptr_t)madt_data.dist->Version); out: acpi_unmap_table(madt); }
static int acpi_ec_attach(device_t dev) { struct acpi_ec_softc *sc; struct acpi_ec_params *params; ACPI_STATUS Status; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Fetch/initialize softc (assumes softc is pre-zeroed). */ sc = device_get_softc(dev); params = acpi_get_private(dev); sc->ec_dev = dev; sc->ec_handle = acpi_get_handle(dev); ACPI_SERIAL_INIT(ec); /* Retrieve previously probed values via device ivars. */ sc->ec_glk = params->glk; sc->ec_gpebit = params->gpe_bit; sc->ec_gpehandle = params->gpe_handle; sc->ec_uid = params->uid; sc->ec_suspending = FALSE; acpi_set_private(dev, NULL); kfree(params, M_TEMP); /* Attach bus resources for data and command/status ports. */ sc->ec_data_rid = 0; sc->ec_data_res = bus_alloc_resource_any(sc->ec_dev, SYS_RES_IOPORT, &sc->ec_data_rid, RF_ACTIVE); if (sc->ec_data_res == NULL) { device_printf(dev, "can't allocate data port\n"); goto error; } sc->ec_data_tag = rman_get_bustag(sc->ec_data_res); sc->ec_data_handle = rman_get_bushandle(sc->ec_data_res); sc->ec_csr_rid = 1; sc->ec_csr_res = bus_alloc_resource_any(sc->ec_dev, SYS_RES_IOPORT, &sc->ec_csr_rid, RF_ACTIVE); if (sc->ec_csr_res == NULL) { device_printf(dev, "can't allocate command/status port\n"); goto error; } sc->ec_csr_tag = rman_get_bustag(sc->ec_csr_res); sc->ec_csr_handle = rman_get_bushandle(sc->ec_csr_res); /* * Install a handler for this EC's GPE bit. We want edge-triggered * behavior. */ ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "attaching GPE handler\n")); Status = AcpiInstallGpeHandler(sc->ec_gpehandle, sc->ec_gpebit, ACPI_GPE_EDGE_TRIGGERED, &EcGpeHandler, sc); if (ACPI_FAILURE(Status)) { device_printf(dev, "can't install GPE handler for %s - %s\n", acpi_name(sc->ec_handle), AcpiFormatException(Status)); goto error; } /* * Install address space handler */ ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "attaching address space handler\n")); Status = AcpiInstallAddressSpaceHandler(sc->ec_handle, ACPI_ADR_SPACE_EC, &EcSpaceHandler, &EcSpaceSetup, sc); if (ACPI_FAILURE(Status)) { device_printf(dev, "can't install address space handler for %s - %s\n", acpi_name(sc->ec_handle), AcpiFormatException(Status)); goto error; } /* Enable runtime GPEs for the handler */ Status = AcpiEnableGpe(sc->ec_gpehandle, sc->ec_gpebit); if (ACPI_FAILURE(Status)) { device_printf(dev, "AcpiEnableGpe failed: %s\n", AcpiFormatException(Status)); goto error; } ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "acpi_ec_attach complete\n")); return (0); error: AcpiRemoveGpeHandler(sc->ec_gpehandle, sc->ec_gpebit, &EcGpeHandler); AcpiRemoveAddressSpaceHandler(sc->ec_handle, ACPI_ADR_SPACE_EC, EcSpaceHandler); if (sc->ec_csr_res) bus_release_resource(sc->ec_dev, SYS_RES_IOPORT, sc->ec_csr_rid, sc->ec_csr_res); if (sc->ec_data_res) bus_release_resource(sc->ec_dev, SYS_RES_IOPORT, sc->ec_data_rid, sc->ec_data_res); return (ENXIO); }
static int acpi_ec_probe(device_t dev) { ACPI_BUFFER buf; ACPI_HANDLE h; ACPI_OBJECT *obj; ACPI_STATUS status; device_t peer; char desc[64]; int ecdt; int ret; struct acpi_ec_params *params; static char *ec_ids[] = { "PNP0C09", NULL }; /* Check that this is a device and that EC is not disabled. */ if (acpi_get_type(dev) != ACPI_TYPE_DEVICE || acpi_disabled("ec")) return (ENXIO); /* * If probed via ECDT, set description and continue. Otherwise, * we can access the namespace and make sure this is not a * duplicate probe. */ ret = ENXIO; ecdt = 0; buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; params = acpi_get_private(dev); if (params != NULL) { ecdt = 1; ret = 0; } else if (ACPI_ID_PROBE(device_get_parent(dev), dev, ec_ids)) { params = kmalloc(sizeof(struct acpi_ec_params), M_TEMP, M_WAITOK | M_ZERO); h = acpi_get_handle(dev); /* * Read the unit ID to check for duplicate attach and the * global lock value to see if we should acquire it when * accessing the EC. */ status = acpi_GetInteger(h, "_UID", ¶ms->uid); if (ACPI_FAILURE(status)) params->uid = 0; status = acpi_GetInteger(h, "_GLK", ¶ms->glk); if (ACPI_FAILURE(status)) params->glk = 0; /* * Evaluate the _GPE method to find the GPE bit used by the EC to * signal status (SCI). If it's a package, it contains a reference * and GPE bit, similar to _PRW. */ status = AcpiEvaluateObject(h, "_GPE", NULL, &buf); if (ACPI_FAILURE(status)) { device_printf(dev, "can't evaluate _GPE - %s\n", AcpiFormatException(status)); goto out; } obj = (ACPI_OBJECT *)buf.Pointer; if (obj == NULL) goto out; switch (obj->Type) { case ACPI_TYPE_INTEGER: params->gpe_handle = NULL; params->gpe_bit = obj->Integer.Value; break; case ACPI_TYPE_PACKAGE: if (!ACPI_PKG_VALID(obj, 2)) goto out; params->gpe_handle = acpi_GetReference(NULL, &obj->Package.Elements[0]); if (params->gpe_handle == NULL || acpi_PkgInt32(obj, 1, ¶ms->gpe_bit) != 0) goto out; break; default: device_printf(dev, "_GPE has invalid type %d\n", obj->Type); goto out; } /* Store the values we got from the namespace for attach. */ acpi_set_private(dev, params); /* * Check for a duplicate probe. This can happen when a probe * via ECDT succeeded already. If this is a duplicate, disable * this device. */ peer = devclass_get_device(acpi_ec_devclass, params->uid); if (peer == NULL || !device_is_alive(peer)) ret = 0; else device_disable(dev); } out: if (ret == 0) { ksnprintf(desc, sizeof(desc), "Embedded Controller: GPE %#x%s%s", params->gpe_bit, (params->glk) ? ", GLK" : "", ecdt ? ", ECDT" : ""); device_set_desc_copy(dev, desc); } if (ret > 0 && params) kfree(params, M_TEMP); if (buf.Pointer) AcpiOsFree(buf.Pointer); return (ret); }
static void gic_acpi_identify(driver_t *driver, device_t parent) { struct madt_table_data madt_data; ACPI_MADT_GENERIC_INTERRUPT *intr; ACPI_TABLE_MADT *madt; vm_paddr_t physaddr; device_t dev; int i; physaddr = acpi_find_table(ACPI_SIG_MADT); if (physaddr == 0) return; madt = acpi_map_table(physaddr, ACPI_SIG_MADT); if (madt == NULL) { device_printf(parent, "gic: Unable to map the MADT\n"); return; } bzero(&madt_data, sizeof(madt_data)); madt_data.parent = parent; madt_data.dist = NULL; acpi_walk_subtables(madt + 1, (char *)madt + madt->Header.Length, madt_handler, &madt_data); /* Check the version of the GIC we have */ switch (madt_data.dist->Version) { case ACPI_MADT_GIC_VERSION_NONE: case ACPI_MADT_GIC_VERSION_V1: case ACPI_MADT_GIC_VERSION_V2: break; default: goto out; } intr = NULL; for (i = 0; i < MAXCPU; i++) { if (madt_data.intr[i] != NULL) { if (intr == NULL) { intr = madt_data.intr[i]; } else if (intr->BaseAddress != madt_data.intr[i]->BaseAddress) { device_printf(parent, "gic: Not all CPU interfaces at the same address, this may fail\n"); } } } if (intr == NULL) { device_printf(parent, "gic: No CPU interfaces found\n"); goto out; } dev = BUS_ADD_CHILD(parent, BUS_PASS_INTERRUPT + BUS_PASS_ORDER_MIDDLE, "gic", -1); if (dev == NULL) { device_printf(parent, "add gic child failed\n"); goto out; } BUS_SET_RESOURCE(parent, dev, SYS_RES_MEMORY, 0, madt_data.dist->BaseAddress, 4 * 1024); BUS_SET_RESOURCE(parent, dev, SYS_RES_MEMORY, 1, intr->BaseAddress, 4 * 1024); acpi_set_private(dev, (void *)(uintptr_t)madt_data.dist->Version); out: acpi_unmap_table(madt); }