Exemple #1
0
/**
  Function that adds the contribution of a chord with root note 'root' to its minor triad
  A minor triad includes notes from three different classes of pitch: the root, the minor 3rd and perfect 5th.
  @see http://www.songtrellis.com/directory/1146/chordTypes/minorChordTypes/minorTriadMi
  The three notes of the chord have the same weight
*/
void Key::addMinorTriad(int root, Real contribution, vector<Real>& M_chords) const
{
  // Root
  addContributionHarmonics(root, contribution, M_chords);

  // Minor 3rd
  int third = root+3;
  if (third > 11)
    third -= 12;
  addContributionHarmonics(third, contribution, M_chords);

  // Perfect 5th
  int fifth = root+7;
  if (fifth > 11)
    fifth -= 12;
  addContributionHarmonics(fifth, contribution, M_chords);
}
Exemple #2
0
void Key::configure() {
  _slope = parameter("slope").toReal();
  _numHarmonics = parameter("numHarmonics").toInt();
  _profileType = parameter("profileType").toString();
  _useMajMin = parameter("useMajMin").toBool();

  if (_useMajMin) {
    if (_profileType == "diatonic" || _profileType == "krumhansl"  || _profileType == "temperley" ||
        _profileType == "weichai"  || _profileType == "tonictriad" || _profileType == "temperley2005" ||
        _profileType == "thpcp"    || _profileType == "shaath"     || _profileType == "gomez" ||
        _profileType == "noland"   || _profileType == "edmm") {
      E_INFO("Key: the profile '" << _profileType << "' does not support the use of 'majmin' mode.");
      _useMajMin = false;
    }
  }
  const char* keyNames[] = { "A", "Bb", "B", "C", "C#", "D", "Eb", "E", "F", "F#", "G", "Ab" };
  _keys = arrayToVector<string>(keyNames);

  Real profileTypes[][12] = {
    // Diatonic
    { 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1 },
    { 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1 },

    // Krumhansl
    { 6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66, 2.29, 2.88 },
    { 6.33, 2.68, 3.52, 5.38, 2.60, 3.53, 2.54, 4.75, 3.98, 2.69, 3.34, 3.17 },

    // A revised version of the key profiles, by David Temperley, see [2]
    { 5.0, 2.0, 3.5, 2.0, 4.5, 4.0, 2.0, 4.5, 2.0, 3.5, 1.5, 4.0 },
    { 5.0, 2.0, 3.5, 4.5, 2.0, 4.0, 2.0, 4.5, 3.5, 2.0, 1.5, 4.0 },

    // Wei Chai MIT PhD thesis
    { 81302, 320, 65719, 1916, 77469, 40928, 2223, 83997, 1218, 39853, 1579, 28908 },
    { 39853, 1579, 28908, 81302, 320, 65719, 1916, 77469, 40928, 2223, 83997, 1218 },

    // Tonic triad.
    { 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0 },
    { 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0 },

    // Temperley MIREX 2005
    { 0.748, 0.060, 0.488, 0.082, 0.67, 0.46, 0.096, 0.715, 0.104, 0.366, 0.057, 0.4 },
    { 0.712, 0.084, 0.474, 0.618, 0.049, 0.46, 0.105, 0.747, 0.404, 0.067, 0.133, 0.33 },

    // Statistics THPCP over all the evaluation set
    { 0.95162, 0.20742, 0.71758, 0.22007, 0.71341, 0.48841, 0.31431, 1.00000, 0.20957, 0.53657, 0.22585, 0.55363 },
    { 0.94409, 0.21742, 0.64525, 0.63229, 0.27897, 0.57709, 0.26428, 1.0000, 0.26428, 0.30633, 0.45924, 0.35929 },

    // Shaath
    { 6.6, 2.0, 3.5, 2.3, 4.6, 4.0, 2.5, 5.2, 2.4, 3.7, 2.3, 3.4 },
    { 6.5, 2.7, 3.5, 5.4, 2.6, 3.5, 2.5, 5.2, 4.0, 2.7, 4.3, 3.2 },

    // Gómez (as specified by Shaath)
    { 0.82, 0.00, 0.55, 0.00, 0.53, 0.30, 0.08, 1.00, 0.00, 0.38, 0.00, 0.47 },
    { 0.81, 0.00, 0.53, 0.54, 0.00, 0.27, 0.07, 1.00, 0.27, 0.07, 0.10, 0.36 },

    // Noland
    { 0.0629, 0.0146, 0.061, 0.0121, 0.0623, 0.0414, 0.0248, 0.0631, 0.015, 0.0521, 0.0142, 0.0478 },
    { 0.0682, 0.0138, 0.0543, 0.0519, 0.0234, 0.0544, 0.0176, 0.067, 0.0349, 0.0297, 0.0401, 0.027 },

    // edmm
    { 0.083, 0.083, 0.083, 0.083, 0.083, 0.083, 0.083, 0.083, 0.083, 0.083, 0.083, 0.083 },
    { 0.17235348, 0.04, 0.0761009,  0.12, 0.05621498, 0.08527853, 0.0497915,  0.13451001, 0.07458916, 0.05003023, 0.09187879, 0.05545106 },

    // edma
    // { 0.16519551, 0.04749026, 0.08293076, 0.06687112, 0.09994645, 0.09274123, 0.05294487, 0.13159476, 0.05218986, 0.07443653, 0.06940723, 0.0642515  },
    // { 0.17235348, 0.05336489, 0.0761009,  0.10043649, 0.05621498, 0.08527853, 0.0497915,  0.13451001, 0.07458916, 0.05003023, 0.09187879, 0.05545106 },
  };

  Real profileTypesWithOther[][12] = {
    // bgate
    { 1.00  , 0.00  , 0.42  , 0.00  , 0.53  , 0.37  , 0.00  , 0.77  , 0.00  , 0.38,   0.21  , 0.30   },
    { 1.00  , 0.00  , 0.36  , 0.39  , 0.00  , 0.38  , 0.00  , 0.74  , 0.27  , 0.00  , 0.42  , 0.23   },
    { 1.00  , 0.26  , 0.35  , 0.29  , 0.44  , 0.36  , 0.21  , 0.78  , 0.26  , 0.25  , 0.32  , 0.26   },

    // braw
    { 1.0000, 0.1573, 0.4200, 0.1570, 0.5296, 0.3669, 0.1632, 0.7711, 0.1676, 0.3827, 0.2113, 0.2965 },
    { 1.0000, 0.2330, 0.3615, 0.3905, 0.2925, 0.3777, 0.1961, 0.7425, 0.2701, 0.2161, 0.4228, 0.2272 },
    { 1.0000, 0.2608, 0.3528, 0.2935, 0.4393, 0.3580, 0.2137, 0.7809, 0.2578, 0.2539, 0.3233, 0.2615 },

    // edma
    { 1.00  , 0.29  , 0.50  , 0.40  , 0.60  , 0.56  , 0.32  , 0.80  , 0.31  , 0.45  , 0.42  , 0.39   },
    { 1.00  , 0.31  , 0.44  , 0.58  , 0.33  , 0.49  , 0.29  , 0.78  , 0.43  , 0.29  , 0.53  , 0.32   },
	  { 1.00  , 0.26  , 0.35  , 0.29  , 0.44  , 0.36  , 0.21  , 0.78  , 0.26  , 0.25  , 0.32  , 0.26   }
  };


#define SET_PROFILE(i) _M = arrayToVector<Real>(profileTypes[2*i]); _m = arrayToVector<Real>(profileTypes[2*i+1])
#define SET_PROFILE_OTHER(i) _M = arrayToVector<Real>(profileTypesWithOther[3*i]); _m = arrayToVector<Real>(profileTypesWithOther[3*i+1]); _O = arrayToVector<Real>(profileTypesWithOther[3*i+2])

  _O.assign(12, 0.);

  if      (_profileType == "diatonic")      { SET_PROFILE(0);  }
  else if (_profileType == "krumhansl")     { SET_PROFILE(1);  }
  else if (_profileType == "temperley")     { SET_PROFILE(2);  }
  else if (_profileType == "weichai")       { SET_PROFILE(3);  }
  else if (_profileType == "tonictriad")    { SET_PROFILE(4);  }
  else if (_profileType == "temperley2005") { SET_PROFILE(5);  }
  else if (_profileType == "thpcp")         { SET_PROFILE(6);  }
  else if (_profileType == "shaath")        { SET_PROFILE(7);  }
  else if (_profileType == "gomez")         { SET_PROFILE(8);  }
  else if (_profileType == "noland")        { SET_PROFILE(9);  }
  else if (_profileType == "edmm")          { SET_PROFILE(10); }
  // else if (_profileType == "edma")          { SET_PROFILE(13); }
  else if (_profileType == "bgate")         { SET_PROFILE_OTHER(0); }
  else if (_profileType == "braw")          { SET_PROFILE_OTHER(1); }
  else if (_profileType == "edma")          { SET_PROFILE_OTHER(2); }
  else {
    throw EssentiaException("Key: Unsupported profile type: ", _profileType);
  }

  // Compute the other vectors getting into account chords:
  vector<Real> M_chords(12, (Real)0.0);
  vector<Real> m_chords(12, (Real)0.0);

  /* Under test: Purwins et al.
  for (int n=0; n<12; n++) {
    TIndex dominant = n+7;
    if ( dominant > 11)
      dominant -= 12;
    M_chords[n]= _M[n] + (1.0/3.0)*_M[dominant];
    m_chords[n]= _m[n] + (1.0/3.0)*_m[dominant];
  }
  */

  /*
  Assumptions:
    - We consider that the tonal hierarchy is kept when dealing with polyphonic sounds.
      That means that Krumhansl profiles are seen as the tonal hierarchy of
      each of the chords of the harmonic scale within a major/minor tonal contest.
    - We compute from these chord profiles the corresponding note (pitch class) profiles,
      which will be compared to HPCP values.

  Rationale:
    - Each note contribute to the different harmonics.
    - All the chords of the major/minor key are considered.

  Procedure:
    - First, profiles are initialized to 0
    - We take _M[i], n[i] as Krumhansl profiles i=1,...12 related to each of the chords
      of the major/minor key.
    - For each chord, we add its contribution to the three notes (pitch classes) of the chord.
      We use the same weight for all the notes of the chord.
    - For each note, we add its contribution to the different harmonics
  */

  /** MAJOR KEY */
  // Tonic (I)
  addMajorTriad(0, _M[0], M_chords);

  if (!parameter("useThreeChords").toBool())
  {
    // II
    addMinorTriad(2, _M[2], M_chords);
    // Only root: AddContributionHarmonics(2, _M[2], M_chords);
    // III
    addMinorTriad(4, _M[4], M_chords);
    // Only root: AddContributionHarmonics(4, _M[4], M_chords);
  }

  // Subdominant (IV)
  addMajorTriad(5, _M[5], M_chords);
  // Dominant (V)
  addMajorTriad(7, _M[7], M_chords);

  if (!parameter("useThreeChords").toBool()) {
    // VI
    addMinorTriad(9, _M[9], M_chords);
    // Only root: AddContributionHarmonics(9, _M[9], M_chords);
    // VII (5th diminished)
    addContributionHarmonics(11, _M[11], M_chords);
    addContributionHarmonics(2 , _M[11], M_chords);
    addContributionHarmonics(5 , _M[11], M_chords);
    // Only root: AddContributionHarmonics(11, _M[11], M_chords);
  }

  /** MINOR KEY */
  // Tonica I
  addMinorTriad(0, _m[0], m_chords);
  if (!parameter("useThreeChords").toBool()){
    // II (5th diminished)
    addContributionHarmonics(2, _m[2], m_chords);
    addContributionHarmonics(5, _m[2], m_chords);
    addContributionHarmonics(8, _m[2], m_chords);
    // Only root: AddContributionHarmonics(2, _m[2], m_chords);

    // III (5th augmented)
    addContributionHarmonics(3, _m[3], m_chords);
    addContributionHarmonics(7, _m[3], m_chords);
    addContributionHarmonics(11,_m[3], m_chords); // Harmonic minor scale! antes 10!!!
    // Only root: AddContributionHarmonics(3, _m[3], m_chords);
  }

  // Subdominant (IV)
  addMinorTriad(5, _m[5], m_chords);

  // Dominant (V) (harmonic minor scale)
  addMajorTriad(7, _m[7], m_chords);

  if (!parameter("useThreeChords").toBool()) {
    // VI
    addMajorTriad(8, _m[8], m_chords);
    // Only root: AddContributionHarmonics(8, _m[8], m_chords);
    // VII (diminished 5th)
    addContributionHarmonics(11, _m[8], m_chords);
    addContributionHarmonics(2, _m[8], m_chords);
    addContributionHarmonics(5, _m[8], m_chords);
    // Only root: AddContributionHarmonics(11, _m[8], m_chords);
  }

  if (parameter("usePolyphony").toBool()) {
    _M = M_chords;
    _m = m_chords;
  }

  resize(parameter("pcpSize").toInt());
}
Exemple #3
0
void Key::configure() {
  _slope = parameter("slope").toReal();
  _numHarmonics = parameter("numHarmonics").toInt();
  _profileType = parameter("profileType").toString();

  const char* keyNames[] = { "A", "A#", "B", "C", "C#", "D", "D#", "E", "F", "F#", "G", "G#" };
  _keys = arrayToVector<string>(keyNames);

  Real profileTypes[][12] = {
    // Diatonic
    { 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1 },
    { 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1 },

    // Krumhansl
    { 6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66, 2.29, 2.88 },
    { 6.33, 2.68, 3.52, 5.38, 2.60, 3.53, 2.54, 4.75, 3.98, 2.69, 3.34, 3.17 },

    // A revised version of the key profiles, by David Temperley, see [2]
    { 5.0, 2.0, 3.5, 2.0, 4.5, 4.0, 2.0, 4.5, 2.0, 3.5, 1.5, 4.0 },
    { 5.0, 2.0, 3.5, 4.5, 2.0, 4.0, 2.0, 4.5, 3.5, 2.0, 1.5, 4.0 },

    // Wei Chai MIT PhD thesis
    { 81302, 320, 65719, 1916, 77469, 40928, 2223, 83997, 1218, 39853, 1579, 28908 },
    { 39853, 1579, 28908, 81302, 320, 65719, 1916, 77469, 40928, 2223, 83997, 1218 },

    // Tonic triad
    { 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0 },
    { 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0 },

    // Temperley MIREX 2005
    { 0.748, 0.060, 0.488, 0.082, 0.67, 0.46, 0.096, 0.715, 0.104, 0.366, 0.057, 0.4 },
    { 0.712, 0.084, 0.474, 0.618, 0.049, 0.46, 0.105, 0.747, 0.404, 0.067, 0.133, 0.33 },

    // Statistics THPCP over all the evaluation set
    { 0.95162, 0.20742, 0.71758, 0.22007, 0.71341, 0.48841, 0.31431, 1.00000, 0.20957, 0.53657, 0.22585, 0.55363 },
    { 0.94409, 0.21742, 0.64525, 0.63229, 0.27897, 0.57709, 0.26428, 1.0000, 0.26428, 0.30633, 0.45924, 0.35929 }

  };

#define SET_PROFILE(i) _M = arrayToVector<Real>(profileTypes[2*i]); _m = arrayToVector<Real>(profileTypes[2*i+1])

  if      (_profileType == "diatonic")      { SET_PROFILE(0); }
  else if (_profileType == "krumhansl")     { SET_PROFILE(1); }
  else if (_profileType == "temperley")     { SET_PROFILE(2); }
  else if (_profileType == "weichai")       { SET_PROFILE(3); }
  else if (_profileType == "tonictriad")    { SET_PROFILE(4); }
  else if (_profileType == "temperley2005") { SET_PROFILE(5); }
  else if (_profileType == "thpcp")         { SET_PROFILE(6); }
  else {
    throw EssentiaException("Key: Unsupported profile type: ", _profileType);
  }

  // Compute the other vectors getting into account chords:
  vector<Real> M_chords(12, (Real)0.0);
  vector<Real> m_chords(12, (Real)0.0);

  /* Under test: Purwins et al.
  for (int n=0; n<12; n++) {
    TIndex dominant = n+7;
    if ( dominant > 11)
      dominant -= 12;
    M_chords[n]= _M[n] + (1.0/3.0)*_M[dominant];
    m_chords[n]= _m[n] + (1.0/3.0)*_m[dominant];
  }
  */

  /*
  Assumptions:
    - We consider that the tonal hierarchy is kept when dealing with polyphonic sounds.
      That means that Krumhansl profiles are seen as the tonal hierarchy of
      each of the chords of the harmonic scale within a major/minor tonal contest.
    - We compute from these chord profiles the corresponding note (pitch class) profiles,
      which will be compared to HPCP values.

  Rationale:
    - Each note contribute to the different harmonics.
    - All the chords of the major/minor key are considered.

  Procedure:
    - First, profiles are initialized to 0
    - We take _M[i], n[i] as Krumhansl profiles i=1,...12 related to each of the chords
      of the major/minor key.
    - For each chord, we add its contribution to the three notes (pitch classes) of the chord.
      We use the same weight for all the notes of the chord.
    - For each note, we add its contribution to the different harmonics
  */

  /** MAJOR KEY */
  // Tonic (I)
  addMajorTriad(0, _M[0], M_chords);

  if (!parameter("useThreeChords").toBool())
  {
    // II
    addMinorTriad(2, _M[2], M_chords);
    // Only root: AddContributionHarmonics(2, _M[2], M_chords);
    // III
    addMinorTriad(4, _M[4], M_chords);
    // Only root: AddContributionHarmonics(4, _M[4], M_chords);
  }

  // Subdominant (IV)
  addMajorTriad(5, _M[5], M_chords);
  // Dominant (V)
  addMajorTriad(7, _M[7], M_chords);

  if (!parameter("useThreeChords").toBool()) {
    // VI
    addMinorTriad(9, _M[9], M_chords);
    // Only root: AddContributionHarmonics(9, _M[9], M_chords);
    // VII (5th diminished)
    addContributionHarmonics(11, _M[11], M_chords);
    addContributionHarmonics(2 , _M[11], M_chords);
    addContributionHarmonics(5 , _M[11], M_chords);
    // Only root: AddContributionHarmonics(11, _M[11], M_chords);
  }

  /** MINOR KEY */
  // Tonica I
  addMinorTriad(0, _m[0], m_chords);
  if (!parameter("useThreeChords").toBool()){
    // II (5th diminished)
    addContributionHarmonics(2, _m[2], m_chords);
    addContributionHarmonics(5, _m[2], m_chords);
    addContributionHarmonics(8, _m[2], m_chords);
    // Only root: AddContributionHarmonics(2, _m[2], m_chords);

    // III (5th augmented)
    addContributionHarmonics(3, _m[3], m_chords);
    addContributionHarmonics(7, _m[3], m_chords);
    addContributionHarmonics(11,_m[3], m_chords); // Harmonic minor scale! antes 10!!!
    // Only root: AddContributionHarmonics(3, _m[3], m_chords);
  }

  // Subdominant (IV)
  addMinorTriad(5, _m[5], m_chords);

  // Dominant (V) (harmonic minor scale)
  addMajorTriad(7, _m[7], m_chords);

  if (!parameter("useThreeChords").toBool()) {
    // VI
    addMajorTriad(8, _m[8], m_chords);
    // Only root: AddContributionHarmonics(8, _m[8], m_chords);
    // VII (diminished 5th)
    addContributionHarmonics(11, _m[8], m_chords);
    addContributionHarmonics(2, _m[8], m_chords);
    addContributionHarmonics(5, _m[8], m_chords);
    // Only root: AddContributionHarmonics(11, _m[8], m_chords);
  }

  if (parameter("usePolyphony").toBool()) {
    _M = M_chords;
    _m = m_chords;
  }

  resize(parameter("pcpSize").toInt());
}