void work(Set* _set, char op, long newTag) { if (op == 'I') return; long i; for (i = 0; i < lineNum; i++) { if (_set->line[i].valid > 0 && _set->line[i].tag == newTag) { addHit(); if (op == 'M') { addHit(); } setValid(_set->line, i); printf("\n"); return; } } addMiss(); if (!updateLast(_set)) { addEvic(); } setValid(_set->line, _set->lastLine); _set->line[_set->lastLine].tag = newTag; if (op == 'M'){ addHit(); } printf("\n"); }
size_t UTF8SuffixStringFieldSearcher::matchTerms(const FieldRef & f, const size_t mintsz) { (void) mintsz; termcount_t words = 0; const byte * srcbuf = reinterpret_cast<const byte *> (f.data()); const byte * srcend = srcbuf + f.size(); if (f.size() >= _buf->size()) { _buf->reserve(f.size() + 1); } cmptype_t * dstbuf = &(*_buf.get())[0]; size_t tokenlen = 0; for( ; srcbuf < srcend; ) { if (*srcbuf == 0) { ++_zeroCount; ++srcbuf; } srcbuf = tokenize(srcbuf, _buf->capacity(), dstbuf, tokenlen); for (QueryTermList::iterator it = _qtl.begin(), mt = _qtl.end(); it != mt; ++it) { QueryTerm & qt = **it; const cmptype_t * term; termsize_t tsz = qt.term(term); if (matchTermSuffix(term, tsz, dstbuf, tokenlen)) { addHit(qt, words); } } words++; } return words; }
void setTrack(GpuTrack *tr, int hit0_offset, int hit1_offset) { // track_ids[hit0_offset] = tr->internalId; tr->trackHitsNum = 1; double z = hit_Zs[hit0_offset]; double x = hit_Xs[hit0_offset]; // double w = hit_Ws[hit0_offset]; double wz = w * z; tr->m_s0 = w; tr->m_sx = w * x; tr->m_sz = wz; tr->m_sxz = wz * x; tr->m_sz2 = wz * z; double y = hit_Ys[hit0_offset]; tr->m_u0 = w; tr->m_uy = w * y; tr->m_uz = wz; tr->m_uyz = wz * y; tr->m_uz2 = wz * z; // TODO: Remove when not needed tr->hits.push_back(hit0_offset); addHit (tr, hit1_offset); }
//============================================================================= // reset and prepare a new track with these two hits //============================================================================= void PatPixelTrack::set( PatPixelHit* h1, PatPixelHit* h2 ) { m_backward = false; m_hits.clear(); m_hits.push_back( h1 ); double z = h1->z(); double w = h1->wx(); double x = h1->x(); m_s0 = w; m_sx = w * x; m_sz = w * z; m_sxz = w * x * z; m_sz2 = w * z * z; w = h1->wy(); double y = h1->y(); m_u0 = w; m_uy = w * y; m_uz = w * z; m_uyz = w * y * z; m_uz2 = w * z * z; addHit( h2 ); }
size_t UTF8StrChrFieldSearcher::matchTerms(const FieldRef & f, const size_t mintsz) { (void) mintsz; termcount_t words(0); const byte * n = reinterpret_cast<const byte *> (f.data()); const byte * e = n + f.size(); if (f.size() >= _buf->size()) { _buf->reserve(f.size() + 1); } cmptype_t * fn = &(*_buf.get())[0]; size_t fl(0); for( ; n < e; ) { if (!*n) { _zeroCount++; n++; } n = tokenize(n, _buf->capacity(), fn, fl); for(QueryTermList::iterator it=_qtl.begin(), mt=_qtl.end(); it != mt; it++) { QueryTerm & qt = **it; const cmptype_t * term; termsize_t tsz = qt.term(term); if ((tsz <= fl) && (prefix() || qt.isPrefix() || (tsz == fl))) { const cmptype_t *tt=term, *et=term+tsz; for (const cmptype_t *fnt=fn; (tt < et) && (*tt == *fnt); tt++, fnt++); if (tt == et) { addHit(qt, words); } } } words++; } NEED_CHAR_STAT(addAnyUtf8Field(f.size())); return words; }
bool addHitsOnSensor(SensorInfo *sensor, double xTol, double maxChi2, GpuTrack *tr, int eventId ) { if (sensor->hitsNum == 0) return false; int offset = eventId * hits_num; double xGuess = xAtHit(tr, sensor->z) - xTol; // - 1; int lastHit = sensor->startPosition + sensor->hitsNum - 1; debug << "last hit x: " << hit_Xs[offset + lastHit] << ", xguess: " << xGuess << endl; if(hit_Xs[offset + lastHit] < xGuess) return false; int hitStart = sensor->startPosition; debug << "("; for (int i = hitStart; i <= lastHit; i++) debug << hit_IDs[i] << ", "; debug << ")"; unsigned int step = sensor->hitsNum; while ( step > 2 ) { step = step/2; if (hit_Xs[offset + hitStart + step] < xGuess) hitStart += step; } bool added = false; int tmpOffset = 0; double xPred; for(int iH=hitStart; iH<=lastHit; ++iH) { debug << hit_IDs[iH] << ", "; tmpOffset = offset + iH; if ( hit_IDs[iH] == 172290464 ) { debug << " -- The chi2 of 172290464 is: " << chi2Track(tr, tmpOffset) << std::endl; debug << "x: " << hit_Xs[tmpOffset] << ", y:" << hit_Ys[tmpOffset] << endl; } if ( hit_IDs[iH] == 163710761 ) { debug << " -- The chi2 of 163710761 is: " << chi2Track(tr, tmpOffset) << std::endl; debug << "x: " << hit_Xs[tmpOffset] << ", y:" << hit_Ys[tmpOffset] << endl; debug << "maxChi2: " << maxChi2 << endl; } xPred = xAtHit(tr, hit_Zs[tmpOffset]); if ( hit_Xs[tmpOffset] + xTol < xPred ) continue; if ( hit_Xs[tmpOffset] - xTol > xPred ) break; if ( chi2Track(tr, tmpOffset) < maxChi2 ) { addHit(tr, tmpOffset); // *usedHit = tmpOffset; - Used hits are tagged by the end of the algorithm, not before. added = true; } } debug << endl; return added; }
void StatsSet::calculateStats(const vector<PositionWeightMatrix::MotifMatch> &M1_matches, const vector<PositionWeightMatrix::MotifMatch> &M2_matches) { vector<PositionWeightMatrix::MotifMatch>::const_iterator jrt_head = M2_matches.begin(); vector<PositionWeightMatrix::MotifMatch>::const_iterator jrt_tail = M2_matches.begin(); /* We need to filter jrts. There are two cases: (1) same orientation: looking for jrts satisfying min_offset <= jrt->start - irt->start <= max_offset irt->start + min_offset <= jrt->start <= irt->start + max_offset (2) opposite orientation: looking for jrts satisfying min_offset <= irt->end - jrt->end <= max_offset min_offset <= irt->start + M1->length - jrt->start - M2->length <= max_offset - max_offset <= - irt->start - M1->length + jrt->start + M2->length <= - min_offset irt->start + M1->length - M2->length - max_offset <= jrt->start <= irt->start + M1->length - M2->length - min_offset irt->start + M1->length - M2->length - max_offset <= jrt->start <= irt->start + M1->length - M2->length - min_offset but M1->length - M2->length - max_offset = M1->length - M2->length - M1->length - margin + 1 = min_offset M1->length - M2->length - min_offset = M1->length - M2->length + M2->length + margin - 1 = max_offset so the above inequalities are equivalent to irt->start + min_offset <= jrt->start <= irt->start + max_offset. */ for (vector<PositionWeightMatrix::MotifMatch>::const_iterator irt = M1_matches.begin(); irt != M1_matches.end(); irt++) { while (jrt_head != M2_matches.end() && jrt_head->chrom_id < irt->chrom_id) jrt_head++; while (jrt_head != M2_matches.end() && jrt_head->chrom_id == irt->chrom_id && jrt_head->start < irt->start + min_offset) jrt_head++; while (jrt_tail != M2_matches.end() && jrt_tail->chrom_id < irt->chrom_id) jrt_tail++; while (jrt_tail != M2_matches.end() && jrt_tail->chrom_id == irt->chrom_id && jrt_tail->start <= irt->start + max_offset) jrt_tail++; for (vector<PositionWeightMatrix::MotifMatch>::const_iterator jrt = jrt_head; jrt != jrt_tail; jrt++) { if (irt->strand == '+') addHit(jrt->start - irt->start, jrt->strand == '+'); else addHit(irt->start + M1->length - jrt->start - M2->length, jrt->strand != '+'); } } }
void Stats::addInfo(const HitInfo& info) { switch (info.type) { case HitInfo::HIT: addHit(); break; case HitInfo::MISS: addMiss(); break; default: break; } }
void Interpret::addEvent() { if (Basis::debugSet()) { std::stringstream tDebug; tDebug << "addEvent() " << _nEvents; debug(tDebug.str()); } if (tTotalHits == 0) { _nEmptyEvents++; if (_createEmptyEventHits) { addEventErrorCode(__NO_HIT); addHit(0, 0, 0, 0, 0, 0); } } if (tTriggerWord == 0) { addEventErrorCode(__NO_TRG_WORD); if (_firstTriggerNrSet) // set the last existing trigger number for events without trigger number if trigger numbers exist tEventTriggerNumber = _lastTriggerNumber; } if (tTriggerWord > 1) { addTriggerErrorCode(__TRG_NUMBER_MORE_ONE); if (Basis::warningSet()) warning(std::string("addEvent: # trigger words > 1 at event " + LongIntToStr(_nEvents))); } if (_useTdcTriggerTimeStamp && tTdcTimeStamp >= 254) addEventErrorCode(__TDC_OVERFLOW); storeEventHits(); if (tTotalHits > _nMaxHitsPerEvent) _nMaxHitsPerEvent = tTotalHits; histogramTriggerErrorCode(); histogramErrorCode(); if (_createMetaDataWordIndex) { if (_actualMetaWordIndex < _metaWordIndexLength) { _metaWordIndex[_actualMetaWordIndex].eventIndex = _nEvents; _metaWordIndex[_actualMetaWordIndex].startWordIdex = _startWordIndex; _metaWordIndex[_actualMetaWordIndex].stopWordIdex = _nDataWords - 1; _startWordIndex = _nDataWords - 1; _actualMetaWordIndex++; } else { std::stringstream tInfo; tInfo << "Interpret::addEvent(): meta word index array is too small " << _actualMetaWordIndex << ">=" << _metaWordIndexLength; throw std::out_of_range(tInfo.str()); } } _nEvents++; resetEventVariables(); }
void Clusterizer::addHits(HitInfo*& rHitInfo, const unsigned int& rNhits) { if(Basis::debugSet()) debug("addHits(...,rNhits="+IntToStr(rNhits)+")"); _hitInfo = rHitInfo; _Nclusters = 0; if(rNhits>0 && _actualEventNumber != 0 && rHitInfo[0].eventNumber == _actualEventNumber) warning("addHits: Hit chunks not aligned at events. Clusterizer will not work properly"); for(unsigned int i = 0; i<rNhits; i++){ if(_actualEventNumber != rHitInfo[i].eventNumber){ clusterize(); addHitClusterInfo(i); clearActualEventVariables(); } _actualEventNumber = rHitInfo[i].eventNumber; addHit(i); } // //manually add remaining hit data clusterize(); addHitClusterInfo(rNhits); }
bool Interpret::interpretRawData(unsigned int* pDataWords, const unsigned int& pNdataWords) { if (Basis::debugSet()) { std::stringstream tDebug; tDebug << "interpretRawData with " << pNdataWords << " words at total word " << _nDataWords; debug(tDebug.str()); } _hitIndex = 0; _actualMetaWordIndex = 0; int tActualCol1 = 0; //column position of the first hit in the actual data record int tActualRow1 = 0; //row position of the first hit in the actual data record int tActualTot1 = -1; //tot value of the first hit in the actual data record int tActualCol2 = 0; //column position of the second hit in the actual data record int tActualRow2 = 0; //row position of the second hit in the actual data record int tActualTot2 = -1; //tot value of the second hit in the actual data record for (unsigned int iWord = 0; iWord < pNdataWords; ++iWord) { //loop over the SRAM words if (_debugEvents) { if (_nEvents >= _startDebugEvent && _nEvents <= _stopDebugEvent) setDebugOutput(); else setDebugOutput(false); setInfoOutput(false); setWarningOutput(false); // FIXME: do not unset this always } correlateMetaWordIndex(_nEvents, _dataWordIndex); _nDataWords++; _dataWordIndex++; unsigned int tActualWord = pDataWords[iWord]; //take the actual SRAM word tActualTot1 = -1; //TOT1 value stays negative if it can not be set properly in getHitsfromDataRecord() tActualTot2 = -1; //TOT2 value stays negative if it can not be set properly in getHitsfromDataRecord() if (getTimefromDataHeader(tActualWord, tActualLVL1ID, tActualBCID)) { //data word is data header if true is returned _nDataHeaders++; if (tNdataHeader > _NbCID - 1) { //maximum event window is reached (tNdataHeader > BCIDs, mostly tNdataHeader > 15), so create new event if (_alignAtTriggerNumber) { addEventErrorCode(__TRUNC_EVENT); //too many data header in the event, abort this event, add truncated flac if (Basis::warningSet()) warning(std::string("addHit: Hit buffer overflow prevented by splitting events at event " + LongIntToStr(_nEvents)), __LINE__); } addEvent(); } if (tNdataHeader == 0) { //set the BCID of the first data header tStartBCID = tActualBCID; tStartLVL1ID = tActualLVL1ID; } else { tDbCID++; //increase relative BCID counter [0:15] if (_fEI4B) { if (tStartBCID + tDbCID > __BCIDCOUNTERSIZE_FEI4B - 1) //BCID counter overflow for FEI4B (10 bit BCID counter) tStartBCID = tStartBCID - __BCIDCOUNTERSIZE_FEI4B; } else { if (tStartBCID + tDbCID > __BCIDCOUNTERSIZE_FEI4A - 1) //BCID counter overflow for FEI4A (8 bit BCID counter) tStartBCID = tStartBCID - __BCIDCOUNTERSIZE_FEI4A; } if (tStartBCID + tDbCID != tActualBCID) { //check if BCID is increasing by 1s in the event window, if not close actual event and create new event with actual data header if (tActualLVL1ID == tStartLVL1ID) //happens sometimes, non inc. BCID, FE feature, only abort the LVL1ID is not constant (if no external trigger is used or) addEventErrorCode(__BCID_JUMP); else if (_alignAtTriggerNumber || _alignAtTdcWord) //rely here on the trigger number or TDC word and do not start a new event addEventErrorCode(__BCID_JUMP); else { tBCIDerror = true; //BCID number wrong, abort event and take actual data header for the first hit of the new event addEventErrorCode(__EVENT_INCOMPLETE); } } if (!tBCIDerror && tActualLVL1ID != tStartLVL1ID) { //LVL1ID not constant, is expected for CMOS pulse trigger/hit OR, but not for trigger word triggering addEventErrorCode(__NON_CONST_LVL1ID); if (Basis::infoSet()) info("interpretRawData: LVL1 is not constant: " + IntToStr(tActualLVL1ID) + "!=" + IntToStr(tStartLVL1ID) + " at event " + LongIntToStr(_nEvents)); } } tNdataHeader++; //increase data header counter if (Basis::debugSet()) debug(std::string(" ") + IntToStr(_nDataWords) + " DH LVL1ID/BCID " + IntToStr(tActualLVL1ID) + "/" + IntToStr(tActualBCID) + "\t" + LongIntToStr(_nEvents)); } else if (isTriggerWord(tActualWord)) { //data word is trigger word, is first word of the event data if external trigger is present _nTriggers++; //increase the total trigger number counter if (!_alignAtTriggerNumber) { // first word is not always the trigger number if (tNdataHeader > _NbCID - 1) addEvent(); } else if (_firstTriggerNrSet) { // use trigger number for event building, first word is trigger word in data stream addEvent(); } tTriggerWord++; //trigger event counter increase if (!_useTriggerTimeStamp) tTriggerNumber = TRIGGER_NUMBER_MACRO_NEW(tActualWord); //actual trigger number else tTriggerNumber = TRIGGER_TIME_STAMP_MACRO(tActualWord); //actual trigger number is a time stamp if (Basis::debugSet()) { if (!_useTriggerTimeStamp) debug(std::string(" ") + IntToStr(_nDataWords) + " TR NUMBER " + IntToStr(tTriggerNumber) + "\t WORD " + IntToStr(tActualWord) + "\t" + LongIntToStr(_nEvents)); else debug(std::string(" ") + IntToStr(_nDataWords) + " TR TIME STAMP " + IntToStr(tTriggerNumber) + "\t WORD " + IntToStr(tActualWord) + "\t" + LongIntToStr(_nEvents)); } //TLU error handling if (!_firstTriggerNrSet) _firstTriggerNrSet = true; else if (!_useTriggerTimeStamp && (_lastTriggerNumber + 1 != tTriggerNumber) && !(_lastTriggerNumber == _maxTriggerNumber && tTriggerNumber == 0)) { addTriggerErrorCode(__TRG_NUMBER_INC_ERROR); if (Basis::warningSet()) warning("interpretRawData: Trigger Number not increasing by 1 (old/new): " + IntToStr(_lastTriggerNumber) + "/" + IntToStr(tTriggerNumber) + " at event " + LongIntToStr(_nEvents)); } if (tTriggerWord == 1) // event trigger number is trigger number of first trigger word within the event tEventTriggerNumber = tTriggerNumber; _lastTriggerNumber = tTriggerNumber; } else if (getInfoFromServiceRecord(tActualWord, tActualSRcode, tActualSRcounter)) { //data word is service record if (Basis::debugSet()) debug(std::string(" ") + IntToStr(_nDataWords) + " SR " + IntToStr(tActualSRcode) + " (" + IntToStr(tActualSRcounter) + ") at event " + LongIntToStr(_nEvents)); addServiceRecord(tActualSRcode, tActualSRcounter); addEventErrorCode(__HAS_SR); _nServiceRecords++; } else if (isTdcWord(tActualWord)) { //data word is a tdc word addTdcValue(TDC_COUNT_MACRO(tActualWord)); _nTDCWords++; if (_useTdcTriggerTimeStamp && (TDC_TRIG_DIST_MACRO(tActualWord) > _maxTdcDelay)){ // of the trigger distance if > _maxTdcDelay the TDC word does not belong to this event, thus ignore it if (Basis::debugSet()) debug(std::string(" ") + IntToStr(_nDataWords) + " TDC COUNT " + IntToStr(TDC_COUNT_MACRO(tActualWord)) + "\t" + LongIntToStr(_nEvents) + "\t TRG DIST TIME STAMP " + IntToStr(TDC_TRIG_DIST_MACRO(tActualWord)) + "\t WORD " + IntToStr(tActualWord)); continue; } //create new event if the option to align at TDC words is active AND the previous event has seen already all needed data headers OR the previous event was not aligned at a TDC word if (_alignAtTdcWord && _firstTdcSet && ( (tNdataHeader > _NbCID - 1) || ((tErrorCode & __TDC_WORD) != __TDC_WORD) )) { addEvent(); } _firstTdcSet = true; if ((tErrorCode & __TDC_WORD) == __TDC_WORD) { //if the event has already a TDC word set __MANY_TDC_WORDS if (!_useTdcTriggerTimeStamp) // the first TDC word defines the event TDC value addEventErrorCode(__MANY_TDC_WORDS); else if (TDC_TRIG_DIST_MACRO(tActualWord) != 255) { // in trigger time measurement mode the valid TDC word (tTdcTimeStamp != 255) defines the event TDC value if (tTdcTimeStamp != 255) // there is already a valid TDC word for this event addEventErrorCode(__MANY_TDC_WORDS); else { tTdcTimeStamp = TDC_TRIG_DIST_MACRO(tActualWord); tTdcCount = TDC_COUNT_MACRO(tActualWord); } } } else { addEventErrorCode(__TDC_WORD); tTdcCount = TDC_COUNT_MACRO(tActualWord); if (!_useTdcTriggerTimeStamp) tTdcTimeStamp = TDC_TIME_STAMP_MACRO(tActualWord); else tTdcTimeStamp = TDC_TRIG_DIST_MACRO(tActualWord); } if (tTdcCount == 0) addEventErrorCode(__TDC_OVERFLOW); if (Basis::debugSet()) { if (_useTdcTriggerTimeStamp) debug(std::string(" ") + IntToStr(_nDataWords) + " TDC COUNT " + IntToStr(TDC_COUNT_MACRO(tActualWord)) + "\t" + LongIntToStr(_nEvents) + "\t TRG DIST TIME STAMP " + IntToStr(TDC_TRIG_DIST_MACRO(tActualWord)) + "\t WORD " + IntToStr(tActualWord)); else debug(std::string(" ") + IntToStr(_nDataWords) + " TDC COUNT " + IntToStr(TDC_COUNT_MACRO(tActualWord)) + "\t" + LongIntToStr(_nEvents) + "\t TIME STAMP " + IntToStr(TDC_TIME_STAMP_MACRO(tActualWord)) + "\t WORD " + IntToStr(tActualWord)); } } else if (isDataRecord(tActualWord)) { //data word is data record if true is returned if (getHitsfromDataRecord(tActualWord, tActualCol1, tActualRow1, tActualTot1, tActualCol2, tActualRow2, tActualTot2)) { tNdataRecord++; //increase data record counter for this event _nDataRecords++; //increase total data record counter if (tActualTot1 >= 0) //add hit if hit info is reasonable (TOT1 >= 0) addHit(tDbCID, tActualLVL1ID, tActualCol1, tActualRow1, tActualTot1, tActualBCID); if (tActualTot2 >= 0) //add hit if hit info is reasonable and set (TOT2 >= 0) addHit(tDbCID, tActualLVL1ID, tActualCol2, tActualRow2, tActualTot2, tActualBCID); if (Basis::debugSet()) { std::stringstream tDebug; tDebug << " " << _nDataWords << " DR COL1/ROW1/TOT1 COL2/ROW2/TOT2 " << tActualCol1 << "/" << tActualRow1 << "/" << tActualTot1 << " " << tActualCol2 << "/" << tActualRow2 << "/" << tActualTot2 << " rBCID " << tDbCID << "\t" << _nEvents; debug(tDebug.str()); } } } else { if (isOtherWord(tActualWord)) { //other for hit interpreting uninteressting data, else data word unknown _nOtherWords++; if (Basis::debugSet()) { unsigned int tAddress = 0; bool isShiftRegister = false; unsigned int tValue = 0; if (isAddressRecord(tActualWord, tAddress, isShiftRegister)) { if (isShiftRegister) debug(std::string(" ") + IntToStr(_nDataWords) + " ADDRESS RECORD SHIFT REG. " + IntToStr(tAddress) + " WORD " + IntToStr(tActualWord) + "\t" + LongIntToStr(_nEvents)); else debug(std::string(" ") + IntToStr(_nDataWords) + " ADDRESS RECORD GLOBAL REG. " + IntToStr(tAddress) + " WORD " + IntToStr(tActualWord) + "\t" + LongIntToStr(_nEvents)); } if (isValueRecord(tActualWord, tValue)) { debug(std::string(" ") + IntToStr(_nDataWords) + " VALUE RECORD " + IntToStr(tValue) + "\t" + LongIntToStr(_nEvents)); } } } else { addEventErrorCode(__UNKNOWN_WORD); _nUnknownWords++; if (Basis::warningSet()) warning("interpretRawData: " + IntToStr(_nDataWords) + " UNKNOWN WORD " + IntToStr(tActualWord) + " at event " + LongIntToStr(_nEvents)); if (Basis::debugSet()) debug(std::string(" ") + IntToStr(_nDataWords) + " UNKNOWN WORD " + IntToStr(tActualWord) + " at event " + LongIntToStr(_nEvents)); } } if (tBCIDerror) { //tBCIDerror is raised if BCID is not increasing by 1, most likely due to incomplete data transmission, so start new event, actual word is data header here if (Basis::warningSet()) warning("interpretRawData " + IntToStr(_nDataWords) + " BCID ERROR at event " + LongIntToStr(_nEvents)); addEvent(); _nIncompleteEvents++; getTimefromDataHeader(tActualWord, tActualLVL1ID, tStartBCID); tNdataHeader = 1; //tNdataHeader is already 1, because actual word is first data of new event tStartBCID = tActualBCID; tStartLVL1ID = tActualLVL1ID; } } return true; }
void searchByPair(int eventId, vector<GpuTrack>& tracks_vector) { int lastSensor = sens_num - 1; int firstSensor = 2; GpuTrack m_track; bool* hit_isUseds = (bool*) calloc(hits_num, sizeof(bool)); // helper variables int event_sensor_displ = eventId * sens_num; int event_hit_displ = eventId * hits_num; int sens0, sens1, first1, hit0_no, hit1_no; SensorInfo sensor0, sensor1, extra_sensor; double dxMax, dyMax; debug << "-- searchByPair --" << endl << "Number of sensors: " << sens_num << endl << "Number of hits: " << hits_num << endl; debug << "Starting hits processing..." << endl; // Iterate from the last until the first+1 (including it) for ( sens0 = lastSensor; firstSensor <= sens0; sens0 -= 1 ) { // sens1 is next sensor on the same side sens1 = sens0 - 2; sensor0.startPosition = sensor_hitStarts [event_sensor_displ + sens0]; sensor0.hitsNum = sensor_hitNums [event_sensor_displ + sens0]; sensor0.z = sensor_Zs [event_sensor_displ + sens0]; sensor1.startPosition = sensor_hitStarts [event_sensor_displ + sens1]; sensor1.hitsNum = sensor_hitNums [event_sensor_displ + sens1]; sensor1.z = sensor_Zs [event_sensor_displ + sens1]; /* debug << "sensor 0: " << endl << " Z: " << sensor0.z << endl << " sP: " << sensor0.startPosition << endl << " hitsNum: " << sensor0.hitsNum << endl; */ // Indicator of max dx, dy permissible over next hit dxMax = m_maxXSlope * fabs( sensor1.z - sensor0.z ); dyMax = m_maxYSlope * fabs( sensor1.z - sensor0.z ); first1 = 0; for (hit0_no = 0; hit0_no < sensor0.hitsNum; hit0_no++) { int hit0_offset = event_hit_displ + sensor0.startPosition + hit0_no; if ( hit_isUseds[hit0_offset - event_hit_displ] ) { continue; } double x0 = hit_Xs[hit0_offset]; double y0 = hit_Ys[hit0_offset]; // Min and max x permissible over next hit double xMin = x0 - dxMax; double xMax = x0 + dxMax; // Iterate hits in s1 for (hit1_no = first1; hit1_no < sensor1.hitsNum; hit1_no++) { int hit1_offset = event_hit_displ + sensor1.startPosition + hit1_no; double x1 = hit_Xs[hit1_offset]; // debug << " hit " << hit_IDs[hit0_offset] << " against: " << hit_IDs[hit1_offset] << endl; // Require second hit not to be used, and to be within x limits if ( x1 < xMin ) { first1 = hit1_no + 1; // Start on the item (hit1_no+1) for next iteration continue; } if ( x1 > xMax ) { break; // hits are ordered by x (clever) } if ( hit_isUseds[hit1_offset - event_hit_displ] ) { continue; } // Check hit is within y limits double y1 = hit_Ys[hit1_offset]; if ( fabs( y1 - y0 ) > dyMax ) { continue; } // Creates a GpuTrack starting at itH0 (first hit) and containing itH1 (second hit - addHit) m_track.hits.clear(); setTrack(&m_track, hit0_offset, hit1_offset); debug << endl << "hit" << hit_IDs[hit0_offset] << " and hit" << hit_IDs[hit1_offset] << " are compatible, creating GpuTrack" << endl; //== Cut on R2Beam if needed : backward tracks, i.e zBeam > first hit if (sensor0.z < m_maxZForRBeamCut) { double z_beam = zBeam(&m_track); if ( z_beam > sensor0.z ) { double r2Beam = r2AtZ(z_beam, &m_track); if ( r2Beam > m_maxR2Beam ) { continue; } } } //== Extend downstream, on both sides of the detector as soon as one hit is missed int extraStep = 2; int extraSens = sens1-extraStep; int nbMissed = 0; double lastZ = sensor1.z; while ( extraSens >= 0 ) { extra_sensor.startPosition = sensor_hitStarts[event_sensor_displ + extraSens]; extra_sensor.hitsNum = sensor_hitNums[event_sensor_displ + extraSens]; extra_sensor.z = sensor_Zs[event_sensor_displ + extraSens]; double tol = m_extraTol; double maxChi2 = m_maxChi2ToAdd; if ( extra_sensor.z < lastZ - 100.0 ) { tol = 2 * tol; maxChi2 = 2 * maxChi2; } debug << "s" << extraSens << " "; bool added = addHitsOnSensor(&extra_sensor, tol, maxChi2, &m_track, eventId); if ( added ) { nbMissed = 0; lastZ = extra_sensor.z; } else { nbMissed += extraStep; extraStep = 1; } if ( m_maxMissed < nbMissed ) { break; } extraSens -= extraStep; } debug << endl; //== Try upstream if almost forward tracks if ( sensor0.z > m_maxZForRBeamCut ) { int extraStep = 1; int extraSens = sens0 + 3; // + 2 already tried... nbMissed = 2; while ( extraSens <= lastSensor ) { extra_sensor.startPosition = sensor_hitStarts[event_sensor_displ + extraSens]; extra_sensor.hitsNum = sensor_hitNums[event_sensor_displ + extraSens]; extra_sensor.z = sensor_Zs[event_sensor_displ + extraSens]; bool added = addHitsOnSensor(&extra_sensor, m_extraTol, m_maxChi2ToAdd, &m_track, eventId); if ( added ) { nbMissed = 0; } else { nbMissed += extraStep; } if ( m_maxMissed < nbMissed ) { break; } extraSens += extraStep; } } removeWorstHit(&m_track); if ( m_track.trackHitsNum < 3 ) { debug << "Track only has " << m_track.trackHitsNum << " hits!" << endl; continue; } //== Add compatible hits in sens0 and sens1. int next_hit = hit0_no + 1 + sensor0.startPosition; if ( next_hit != sensor0.startPosition + sensor0.hitsNum ) { if ( chi2Track(&m_track, event_hit_displ + next_hit) < m_maxChi2SameSensor ) { hit0_no++; addHit(&m_track, event_hit_displ + next_hit); } } next_hit = hit1_no + 1 + sensor1.startPosition; if ( next_hit != sensor1.startPosition + sensor1.hitsNum ) { if ( chi2Track(&m_track, event_hit_displ + next_hit) < m_maxChi2SameSensor ) { hit1_no++; addHit(&m_track, event_hit_displ + next_hit); } } //== Final check: if only 3 hits, all should be unused and chi2 good. if ( m_track.trackHitsNum == 3 ) { /*if ( !all3SensorsAreDifferent(&m_track) ) { // debug << "Not all three sensors are different" << endl; continue; } */ if( nbUnused(&m_track, hit_isUseds, event_hit_displ) != 3) { // debug << "There is less than 3 non-used hits" << endl; continue; } if( chi2(&m_track) > m_maxChi2Short) { // debug << "Chi2 test not passed" << endl; continue; } } else { if ( nbUnused(&m_track, hit_isUseds, event_hit_displ) < .6 * m_track.trackHitsNum ) { // debug << "More than 60% of the hits are used already" << endl; continue; } } // debug << endl << "++ Writing GpuTrack" << endl; tracks_vector.push_back(m_track); addHitIDs(m_track.hits); // Tag used hits IF the GpuTrack is bigger than 3!! if (m_track.trackHitsNum > 3) { for (size_t i = 0; i < m_track.hits.size(); i++) { hit_isUseds[m_track.hits[i] - event_hit_displ] = 1; } break; } } // itH1 } // itH0 } // sens0 // return tracks; free(hit_isUseds); }