oop DefNewGeneration::copy_to_survivor_space(oop old, oop* from) { assert(is_in_reserved(old) && !old->is_forwarded(), "shouldn't be scavenging this oop"); size_t s = old->size(); oop obj = NULL; // Try allocating obj in to-space (unless too old or won't fit or JVMPI // enabled) if (old->age() < tenuring_threshold() && !Universe::jvmpi_slow_allocation()) { obj = (oop) to()->allocate(s); } // Otherwise try allocating obj tenured if (obj == NULL) { obj = _next_gen->promote(old, s, from); if (obj == NULL) { // A failed promotion likely means the MaxLiveObjectEvacuationRatio flag // is incorrectly set. In any case, its seriously wrong to be here! vm_exit_out_of_memory(s*wordSize, "promotion"); } } else { // Prefetch beyond obj const intx interval = PrefetchCopyIntervalInBytes; atomic::prefetch_write(obj, interval); // Copy obj Memory::copy_words_aligned((HeapWord*)old, (HeapWord*)obj, s); // Increment age if obj still in new generation obj->incr_age(); age_table()->add(obj, s); } if (Universe::jvmpi_move_event_enabled()) { Universe::jvmpi_object_move(old, obj); } // Done, insert forward pointer to obj in this header old->forward_to(obj); return obj; }
oop DefNewGeneration::copy_to_survivor_space(oop old) { assert(is_in_reserved(old) && !old->is_forwarded(), "shouldn't be scavenging this oop"); size_t s = old->size(); oop obj = NULL; // Try allocating obj in to-space (unless too old) if (old->age() < tenuring_threshold()) { obj = (oop) to()->allocate(s); } // Otherwise try allocating obj tenured if (obj == NULL) { obj = _next_gen->promote(old, s); if (obj == NULL) { if (!HandlePromotionFailure) { // A failed promotion likely means the MaxLiveObjectEvacuationRatio flag // is incorrectly set. In any case, its seriously wrong to be here! vm_exit_out_of_memory(s*wordSize, "promotion"); } handle_promotion_failure(old); return old; } } else { // Prefetch beyond obj const intx interval = PrefetchCopyIntervalInBytes; Prefetch::write(obj, interval); // Copy obj Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s); // Increment age if obj still in new generation obj->incr_age(); age_table()->add(obj, s); } // Done, insert forward pointer to obj in this header old->forward_to(obj); return obj; }
oop DefNewGeneration::copy_to_survivor_space(oop old) { assert(is_in_reserved(old) && !old->is_forwarded(), "shouldn't be scavenging this oop"); size_t s = old->size(); oop obj = NULL; // Try allocating obj in to-space (unless too old) if (old->age() < tenuring_threshold()) { obj = (oop) to()->allocate(s); } // Otherwise try allocating obj tenured if (obj == NULL) { obj = _next_gen->promote(old, s); if (obj == NULL) { handle_promotion_failure(old); return old; } } else { // Prefetch beyond obj const intx interval = PrefetchCopyIntervalInBytes; Prefetch::write(obj, interval); // Copy obj Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s); // Increment age if obj still in new generation obj->incr_age(); age_table()->add(obj, s); } // Done, insert forward pointer to obj in this header old->forward_to(obj); return obj; }
void DefNewGeneration::collect(bool full, bool clear_all_soft_refs, size_t size, bool is_tlab) { assert(full || size > 0, "otherwise we don't want to collect"); GenCollectedHeap* gch = GenCollectedHeap::heap(); _gc_timer->register_gc_start(); DefNewTracer gc_tracer; gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start()); _next_gen = gch->next_gen(this); // If the next generation is too full to accommodate promotion // from this generation, pass on collection; let the next generation // do it. if (!collection_attempt_is_safe()) { if (Verbose && PrintGCDetails) { gclog_or_tty->print(" :: Collection attempt not safe :: "); } gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one return; } assert(to()->is_empty(), "Else not collection_attempt_is_safe"); init_assuming_no_promotion_failure(); GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL); // Capture heap used before collection (for printing). size_t gch_prev_used = gch->used(); gch->trace_heap_before_gc(&gc_tracer); SpecializationStats::clear(); // These can be shared for all code paths IsAliveClosure is_alive(this); ScanWeakRefClosure scan_weak_ref(this); age_table()->clear(); to()->clear(SpaceDecorator::Mangle); gch->rem_set()->prepare_for_younger_refs_iterate(false); assert(gch->no_allocs_since_save_marks(0), "save marks have not been newly set."); // Not very pretty. CollectorPolicy* cp = gch->collector_policy(); FastScanClosure fsc_with_no_gc_barrier(this, false); FastScanClosure fsc_with_gc_barrier(this, true); KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier, gch->rem_set()->klass_rem_set()); set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier); FastEvacuateFollowersClosure evacuate_followers(gch, _level, this, &fsc_with_no_gc_barrier, &fsc_with_gc_barrier); assert(gch->no_allocs_since_save_marks(0), "save marks have not been newly set."); int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache; gch->gen_process_strong_roots(_level, true, // Process younger gens, if any, // as strong roots. true, // activate StrongRootsScope true, // is scavenging SharedHeap::ScanningOption(so), &fsc_with_no_gc_barrier, true, // walk *all* scavengable nmethods &fsc_with_gc_barrier, &klass_scan_closure); // "evacuate followers". evacuate_followers.do_void(); FastKeepAliveClosure keep_alive(this, &scan_weak_ref); ReferenceProcessor* rp = ref_processor(); rp->setup_policy(clear_all_soft_refs); const ReferenceProcessorStats& stats = rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers, NULL, _gc_timer); gc_tracer.report_gc_reference_stats(stats); if (!_promotion_failed) { // Swap the survivor spaces. eden()->clear(SpaceDecorator::Mangle); from()->clear(SpaceDecorator::Mangle); if (ZapUnusedHeapArea) { // This is now done here because of the piece-meal mangling which // can check for valid mangling at intermediate points in the // collection(s). When a minor collection fails to collect // sufficient space resizing of the young generation can occur // an redistribute the spaces in the young generation. Mangle // here so that unzapped regions don't get distributed to // other spaces. to()->mangle_unused_area(); } swap_spaces(); assert(to()->is_empty(), "to space should be empty now"); adjust_desired_tenuring_threshold(); // A successful scavenge should restart the GC time limit count which is // for full GC's. AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy(); size_policy->reset_gc_overhead_limit_count(); if (PrintGC && !PrintGCDetails) { gch->print_heap_change(gch_prev_used); } assert(!gch->incremental_collection_failed(), "Should be clear"); } else { assert(_promo_failure_scan_stack.is_empty(), "post condition"); _promo_failure_scan_stack.clear(true); // Clear cached segments. remove_forwarding_pointers(); if (PrintGCDetails) { gclog_or_tty->print(" (promotion failed) "); } // Add to-space to the list of space to compact // when a promotion failure has occurred. In that // case there can be live objects in to-space // as a result of a partial evacuation of eden // and from-space. swap_spaces(); // For uniformity wrt ParNewGeneration. from()->set_next_compaction_space(to()); gch->set_incremental_collection_failed(); // Inform the next generation that a promotion failure occurred. _next_gen->promotion_failure_occurred(); gc_tracer.report_promotion_failed(_promotion_failed_info); // Reset the PromotionFailureALot counters. NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();) } // set new iteration safe limit for the survivor spaces from()->set_concurrent_iteration_safe_limit(from()->top()); to()->set_concurrent_iteration_safe_limit(to()->top()); SpecializationStats::print(); // We need to use a monotonically non-decreasing time in ms // or we will see time-warp warnings and os::javaTimeMillis() // does not guarantee monotonicity. jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; update_time_of_last_gc(now); gch->trace_heap_after_gc(&gc_tracer); gc_tracer.report_tenuring_threshold(tenuring_threshold()); _gc_timer->register_gc_end(); gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions()); }
void DefNewGeneration::adjust_desired_tenuring_threshold() { // Set the desired survivor size to half the real survivor space _tenuring_threshold = age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize); }
oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state, oop const old, markOop const old_mark) { const size_t word_sz = old->size(); HeapRegion* const from_region = _g1h->heap_region_containing_raw(old); // +1 to make the -1 indexes valid... const int young_index = from_region->young_index_in_cset()+1; assert( (from_region->is_young() && young_index > 0) || (!from_region->is_young() && young_index == 0), "invariant" ); const AllocationContext_t context = from_region->allocation_context(); uint age = 0; InCSetState dest_state = next_state(state, old_mark, age); HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_state, word_sz, context); // PLAB allocations should succeed most of the time, so we'll // normally check against NULL once and that's it. if (obj_ptr == NULL) { obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_state, word_sz, context); if (obj_ptr == NULL) { obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context); if (obj_ptr == NULL) { // This will either forward-to-self, or detect that someone else has // installed a forwarding pointer. return handle_evacuation_failure_par(old, old_mark); } } } assert(obj_ptr != NULL, "when we get here, allocation should have succeeded"); assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap"); #ifndef PRODUCT // Should this evacuation fail? if (_g1h->evacuation_should_fail()) { // Doing this after all the allocation attempts also tests the // undo_allocation() method too. _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context); return handle_evacuation_failure_par(old, old_mark); } #endif // !PRODUCT // We're going to allocate linearly, so might as well prefetch ahead. Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes); const oop obj = oop(obj_ptr); const oop forward_ptr = old->forward_to_atomic(obj); if (forward_ptr == NULL) { Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz); if (dest_state.is_young()) { if (age < markOopDesc::max_age) { age++; } if (old_mark->has_displaced_mark_helper()) { // In this case, we have to install the mark word first, // otherwise obj looks to be forwarded (the old mark word, // which contains the forward pointer, was copied) obj->set_mark(old_mark); markOop new_mark = old_mark->displaced_mark_helper()->set_age(age); old_mark->set_displaced_mark_helper(new_mark); } else { obj->set_mark(old_mark->set_age(age)); } age_table()->add(age, word_sz); } else { obj->set_mark(old_mark); } if (G1StringDedup::is_enabled()) { const bool is_from_young = state.is_young(); const bool is_to_young = dest_state.is_young(); assert(is_from_young == _g1h->heap_region_containing_raw(old)->is_young(), "sanity"); assert(is_to_young == _g1h->heap_region_containing_raw(obj)->is_young(), "sanity"); G1StringDedup::enqueue_from_evacuation(is_from_young, is_to_young, _worker_id, obj); } size_t* const surv_young_words = surviving_young_words(); surv_young_words[young_index] += word_sz; if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) { // We keep track of the next start index in the length field of // the to-space object. The actual length can be found in the // length field of the from-space object. arrayOop(obj)->set_length(0); oop* old_p = set_partial_array_mask(old); push_on_queue(old_p); } else { HeapRegion* const to_region = _g1h->heap_region_containing_raw(obj_ptr); _scanner.set_region(to_region); obj->oop_iterate_backwards(&_scanner); } return obj; } else { _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context); return forward_ptr; } }
void DefNewGeneration::collect(bool full, bool clear_all_soft_refs, size_t size, bool is_tlab) { assert(full || size > 0, "otherwise we don't want to collect"); GenCollectedHeap* gch = GenCollectedHeap::heap(); _next_gen = gch->next_gen(this); assert(_next_gen != NULL, "This must be the youngest gen, and not the only gen"); // If the next generation is too full to accomodate promotion // from this generation, pass on collection; let the next generation // do it. if (!collection_attempt_is_safe()) { gch->set_incremental_collection_will_fail(); return; } assert(to()->is_empty(), "Else not collection_attempt_is_safe"); init_assuming_no_promotion_failure(); TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty); // Capture heap used before collection (for printing). size_t gch_prev_used = gch->used(); SpecializationStats::clear(); // These can be shared for all code paths IsAliveClosure is_alive(this); ScanWeakRefClosure scan_weak_ref(this); age_table()->clear(); to()->clear(SpaceDecorator::Mangle); gch->rem_set()->prepare_for_younger_refs_iterate(false); assert(gch->no_allocs_since_save_marks(0), "save marks have not been newly set."); // Not very pretty. CollectorPolicy* cp = gch->collector_policy(); FastScanClosure fsc_with_no_gc_barrier(this, false); FastScanClosure fsc_with_gc_barrier(this, true); set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier); FastEvacuateFollowersClosure evacuate_followers(gch, _level, this, &fsc_with_no_gc_barrier, &fsc_with_gc_barrier); assert(gch->no_allocs_since_save_marks(0), "save marks have not been newly set."); gch->gen_process_strong_roots(_level, true, // Process younger gens, if any, // as strong roots. true, // activate StrongRootsScope false, // not collecting perm generation. SharedHeap::SO_AllClasses, &fsc_with_no_gc_barrier, true, // walk *all* scavengable nmethods &fsc_with_gc_barrier); // "evacuate followers". evacuate_followers.do_void(); FastKeepAliveClosure keep_alive(this, &scan_weak_ref); ReferenceProcessor* rp = ref_processor(); rp->setup_policy(clear_all_soft_refs); rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers, NULL); if (!promotion_failed()) { // Swap the survivor spaces. eden()->clear(SpaceDecorator::Mangle); from()->clear(SpaceDecorator::Mangle); if (ZapUnusedHeapArea) { // This is now done here because of the piece-meal mangling which // can check for valid mangling at intermediate points in the // collection(s). When a minor collection fails to collect // sufficient space resizing of the young generation can occur // an redistribute the spaces in the young generation. Mangle // here so that unzapped regions don't get distributed to // other spaces. to()->mangle_unused_area(); } swap_spaces(); assert(to()->is_empty(), "to space should be empty now"); // Set the desired survivor size to half the real survivor space _tenuring_threshold = age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize); if (PrintGC && !PrintGCDetails) { gch->print_heap_change(gch_prev_used); } } else { assert(HandlePromotionFailure, "Should not be here unless promotion failure handling is on"); assert(_promo_failure_scan_stack != NULL && _promo_failure_scan_stack->length() == 0, "post condition"); // deallocate stack and it's elements delete _promo_failure_scan_stack; _promo_failure_scan_stack = NULL; remove_forwarding_pointers(); if (PrintGCDetails) { gclog_or_tty->print(" (promotion failed) "); } // Add to-space to the list of space to compact // when a promotion failure has occurred. In that // case there can be live objects in to-space // as a result of a partial evacuation of eden // and from-space. swap_spaces(); // For the sake of uniformity wrt ParNewGeneration::collect(). from()->set_next_compaction_space(to()); gch->set_incremental_collection_will_fail(); // Inform the next generation that a promotion failure occurred. _next_gen->promotion_failure_occurred(); // Reset the PromotionFailureALot counters. NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();) } // set new iteration safe limit for the survivor spaces from()->set_concurrent_iteration_safe_limit(from()->top()); to()->set_concurrent_iteration_safe_limit(to()->top()); SpecializationStats::print(); update_time_of_last_gc(os::javaTimeMillis()); }
void DefNewGeneration::adjust_desired_tenuring_threshold() { // Set the desired survivor size to half the real survivor space GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->collector_policy()->counters(); _tenuring_threshold = age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize, gc_counters); }
void DefNewGeneration::collect(bool full, bool clear_all_soft_refs, size_t size, bool is_large_noref, bool is_tlab) { assert(full || size > 0, "otherwise we don't want to collect"); GenCollectedHeap* gch = GenCollectedHeap::heap(); _next_gen = gch->next_gen(this); assert(_next_gen != NULL, "This must be the youngest gen, and not the only gen"); // If the next generation is too full to accomodate worst-case promotion // from this generation, pass on collection; let the next generation // do it. if (!full_promotion_would_succeed()) { gch->set_incremental_collection_will_fail(); if (PrintGC && Verbose) { gclog_or_tty->print_cr("DefNewGeneration::collect" " contiguous_available: " SIZE_FORMAT " < used: " SIZE_FORMAT, _next_gen->max_contiguous_available(), used()); } return; } TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty); // Capture heap used before collection (for printing). size_t gch_prev_used = gch->used(); SpecializationStats::clear(); // These can be shared for all code paths IsAliveClosure is_alive(this); ScanWeakRefClosure scan_weak_ref(this); age_table()->clear(); to()->clear(); gch->rem_set()->prepare_for_younger_refs_iterate(false); assert(gch->no_allocs_since_save_marks(0), "save marks have not been newly set."); // Weak refs. // FIXME: Are these storage leaks, or are they resource objects? NOT_COMPILER2(ReferencePolicy *soft_ref_policy = new LRUCurrentHeapPolicy()); COMPILER2_ONLY(ReferencePolicy *soft_ref_policy = new LRUMaxHeapPolicy()); // Not very pretty. CollectorPolicy* cp = gch->collector_policy(); if (!cp->is_train_policy()) { FastScanClosure fsc_with_no_gc_barrier(this, false); FastScanClosure fsc_with_gc_barrier(this, true); FastEvacuateFollowersClosure evacuate_followers(gch, _level, &fsc_with_no_gc_barrier, &fsc_with_gc_barrier); assert(gch->no_allocs_since_save_marks(0), "save marks have not been newly set."); gch->process_strong_roots(_level, true, // Process younger gens, if any, as // strong roots. false,// not collecting permanent generation. GenCollectedHeap::CSO_AllClasses, &fsc_with_gc_barrier, &fsc_with_no_gc_barrier); // "evacuate followers". evacuate_followers.do_void(); FastKeepAliveClosure keep_alive(this, &scan_weak_ref); ref_processor()->process_discovered_references(soft_ref_policy, &is_alive, &keep_alive, &evacuate_followers); } else { // Train policy ScanClosure sc_with_no_gc_barrier(this, false); ScanClosure sc_with_gc_barrier(this, true); EvacuateFollowersClosure evacuate_followers(gch, _level, &sc_with_no_gc_barrier, &sc_with_gc_barrier); gch->process_strong_roots(_level, true, // Process younger gens, if any, as // strong roots. false,// not collecting perm generation. GenCollectedHeap::CSO_AllClasses, &sc_with_gc_barrier, &sc_with_no_gc_barrier); // "evacuate followers". evacuate_followers.do_void(); TrainPolicyKeepAliveClosure keep_alive((TrainGeneration*)_next_gen, &scan_weak_ref); ref_processor()->process_discovered_references(soft_ref_policy, &is_alive, &keep_alive, &evacuate_followers); } // Swap the survivor spaces. eden()->clear(); from()->clear(); swap_spaces(); assert(to()->is_empty(), "to space should be empty now"); // Set the desired survivor size to half the real survivor space _tenuring_threshold = age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize); if (PrintGC && !PrintGCDetails) { gch->print_heap_change(gch_prev_used); } SpecializationStats::print(); update_time_of_last_gc(os::javaTimeMillis()); }