extkey_cache_t *
extkey_cache_new(ham_db_t *db)
{
    extkey_cache_t *c;
    int memsize;

    memsize=sizeof(extkey_cache_t)+EXTKEY_CACHE_BUCKETSIZE*sizeof(extkey_t *);
    c=(extkey_cache_t *)allocator_calloc(env_get_allocator(db_get_env(db)), memsize);
    if (!c) {
        // HAM_OUT_OF_MEMORY;
        return (0);
    }

    extkey_cache_set_db(c, db);
    extkey_cache_set_bucketsize(c, EXTKEY_CACHE_BUCKETSIZE);

    return (c);
}
int main(int argc, char* argv[])
{
	int i = 0;
	int n = 100;
	Allocator* allocator = allocator_normal_create();

	for(i = 0; i < n; i++)
	{
		char* ptr = allocator_alloc(allocator, i);
		ptr = allocator_realloc(allocator, ptr, i+4);
		allocator_free(allocator, ptr);
		ptr = allocator_calloc(allocator, i+4, 4);
		allocator_free(allocator, ptr);
	}
	
	allocator_destroy(allocator);

	return 0;
}
ham_cache_t *
cache_new(ham_env_t *env, ham_size_t max_size)
{
    ham_cache_t *cache;
    ham_size_t mem, buckets;

    buckets=CACHE_BUCKET_SIZE;
    ham_assert(buckets, (0));
    ham_assert(max_size, (0));
    mem=sizeof(ham_cache_t)+(buckets-1)*sizeof(void *);

    cache=allocator_calloc(env_get_allocator(env), mem);
    if (!cache)
        return (0);
    cache_set_env(cache, env);
    cache_set_capacity(cache, max_size);
    cache_set_bucketsize(cache, buckets);
    cache->_timeslot = 777; /* a reasonable start value; value is related 
                * to the increments applied to active cache pages */
    return (cache);
}
Exemple #4
0
static ham_status_t
_remote_cursor_create(ham_db_t *db, ham_txn_t *txn, ham_u32_t flags,
        ham_cursor_t **cursor)
{
    ham_env_t *env=db_get_env(db);
    ham_status_t st;
    proto_wrapper_t *request, *reply;
    
    request=proto_init_cursor_create_request(db_get_remote_handle(db), 
                        txn ? txn_get_remote_handle(txn) : 0, flags);

    st=_perform_request(env, env_get_curl(env), request, &reply);
    proto_delete(request);
    if (st) {
        if (reply)
            proto_delete(reply);
        return (st);
    }

    ham_assert(reply!=0, (""));
    ham_assert(proto_has_cursor_create_reply(reply)!=0, (""));

    st=proto_cursor_create_reply_get_status(reply);
    if (st) {
        proto_delete(reply);
        return (st);
    }

    *cursor=(ham_cursor_t *)allocator_calloc(env_get_allocator(env), 
                            sizeof(ham_cursor_t));
    if (!(*cursor))
        return (HAM_OUT_OF_MEMORY);

    cursor_set_remote_handle(*cursor, 
                proto_cursor_create_reply_get_cursor_handle(reply));

    proto_delete(reply);

    return (st);
}
ham_status_t
btree_create(ham_backend_t **backend_ref, ham_db_t *db, ham_u32_t flags)
{
    ham_btree_t *btree;

    *backend_ref = 0;

    btree = (ham_btree_t *)allocator_calloc(env_get_allocator(db_get_env(db)), sizeof(*btree));
    if (!btree)
    {
        return HAM_OUT_OF_MEMORY;
    }

    /* initialize the backend */
    btree->_db=db;
    btree->_fun_create=my_fun_create;
    btree->_fun_open=my_fun_open;
    btree->_fun_close=my_fun_close;
    btree->_fun_flush=my_fun_flush;
    btree->_fun_delete=my_fun_delete;
    btree->_fun_find=btree_find;
    btree->_fun_insert=btree_insert;
    btree->_fun_erase=btree_erase;
    btree->_fun_enumerate=btree_enumerate;
#ifdef HAM_ENABLE_INTERNAL
    btree->_fun_check_integrity=btree_check_integrity;
    btree->_fun_calc_keycount_per_page=my_fun_calc_keycount_per_page;
#else
    btree->_fun_check_integrity=0;
    btree->_fun_calc_keycount_per_page=0;
#endif
    btree->_fun_cursor_create = my_fun_cursor_create;
    btree->_fun_close_cursors = my_fun_close_cursors;
    btree->_fun_uncouple_all_cursors=my_fun_uncouple_all_cursors;
    btree->_fun_free_page_extkeys=my_fun_free_page_extkeys;

    *backend_ref = (ham_backend_t *)btree;
    return HAM_SUCCESS;
}
Exemple #6
0
static ham_status_t
_remote_cursor_clone(ham_cursor_t *src, ham_cursor_t **dest)
{
    ham_env_t *env=db_get_env(cursor_get_db(src));
    ham_status_t st;
    proto_wrapper_t *request, *reply;
    
    request=proto_init_cursor_clone_request(cursor_get_remote_handle(src));

    st=_perform_request(env, env_get_curl(env), request, &reply);
    proto_delete(request);
    if (st) {
        if (reply)
            proto_delete(reply);
        return (st);
    }

    ham_assert(reply!=0, (""));
    ham_assert(proto_has_cursor_clone_reply(reply)!=0, (""));

    st=proto_cursor_clone_reply_get_status(reply);
    if (st) {
        proto_delete(reply);
        return (st);
    }

    *dest=(ham_cursor_t *)allocator_calloc(env_get_allocator(env), 
                            sizeof(ham_cursor_t));
    if (!(*dest))
        return (HAM_OUT_OF_MEMORY);

    cursor_set_remote_handle(*dest, 
                proto_cursor_clone_reply_get_cursor_handle(reply));

    proto_delete(reply);

    return (st);
}
/** @fn DataBuffer_t::DataBuffer_t(size_t allocSize )
  * Constructor.
  * Allocate ION (other allocator) mapped memory.
  *
  * @param size_t allocSize - required size in bytes.
*/
DataBuffer_t::DataBuffer_t(size_t allocSize )
{
#ifndef DVP_USE_ION
    pData = calloc(1, allocSize);
    if ( pData)
        nBuffSize = allocSize;
    bytesWritten = 0;
#else // DVP_USE_ION

    mutex_init(&mBuffLock);

    pAllocator = allocator_init();
    if( pAllocator )
    {
        dims[0].img.bpp = 1;
        dims[0].img.width = allocSize;
        dims[0].img.height = 1;
        dims[0].dim.x = allocSize;
        dims[0].dim.y = 1;
        dims[0].dim.z = 1;

        memset((void*)handles, 0, sizeof(handles));

        if( false_e == allocator_calloc( pAllocator, ALLOCATOR_MEMORY_TYPE_TILED_1D_UNCACHED, 1,
                                         1, dims, &pData, handles, &strides )                           )
        {
            pData = NULL;
        }

        if ( pData )
            nBuffSize = allocSize;
        else
            nBuffSize = 0;

        bytesWritten = 0;
    }
#endif // DVP_USE_ION
}
Exemple #8
0
/**
 * Allocate space in storage for and write the content references by 'data'
 * (and length 'size') to storage.
 * 
 * Conditions will apply whether the data is written through cache or direct
 * to device.
 * 
 * The content is, of course, prefixed by a BLOB header.
 * 
 * Partial writes are handled in this function.
 */
ham_status_t
blob_allocate(ham_env_t *env, ham_db_t *db, ham_record_t *record,
        ham_u32_t flags, ham_offset_t *blobid)
{
    ham_status_t st;
    ham_page_t *page=0;
    ham_offset_t addr;
    blob_t hdr;
    ham_u8_t *chunk_data[2];
    ham_size_t alloc_size;
    ham_size_t chunk_size[2];
    ham_device_t *device=env_get_device(env);
    ham_bool_t freshly_created = HAM_FALSE;
   
    *blobid=0;

    /*
     * PARTIAL WRITE
     * 
     * if offset+partial_size equals the full record size, then we won't 
     * have any gaps. In this case we just write the full record and ignore
     * the partial parameters.
     */
    if (flags&HAM_PARTIAL) {
        if (record->partial_offset==0 
                && record->partial_offset+record->partial_size==record->size)
            flags&=~HAM_PARTIAL;
    }

    /*
     * in-memory-database: the blobid is actually a pointer to the memory
     * buffer, in which the blob (with the blob-header) is stored
     */
    if (env_get_rt_flags(env)&HAM_IN_MEMORY_DB) {
        blob_t *hdr;
        ham_u8_t *p=(ham_u8_t *)allocator_alloc(env_get_allocator(env), 
                                    record->size+sizeof(blob_t));
        if (!p) {
            return HAM_OUT_OF_MEMORY;
        }

        /* initialize the header */
        hdr=(blob_t *)p;
        memset(hdr, 0, sizeof(*hdr));
        blob_set_self(hdr, (ham_offset_t)PTR_TO_U64(p));
        blob_set_alloc_size(hdr, record->size+sizeof(blob_t));
        blob_set_size(hdr, record->size);

        /* do we have gaps? if yes, fill them with zeroes */
        if (flags&HAM_PARTIAL) {
            ham_u8_t *s=p+sizeof(blob_t);
            if (record->partial_offset)
                memset(s, 0, record->partial_offset);
            memcpy(s+record->partial_offset,
                    record->data, record->partial_size);
            if (record->partial_offset+record->partial_size<record->size)
                memset(s+record->partial_offset+record->partial_size, 0, 
                    record->size-(record->partial_offset+record->partial_size));
        }
        else {
            memcpy(p+sizeof(blob_t), record->data, record->size);
        }

        *blobid=(ham_offset_t)PTR_TO_U64(p);
        return (0);
    }

    memset(&hdr, 0, sizeof(hdr));

    /*
     * blobs are CHUNKSIZE-allocated 
     */
    alloc_size=sizeof(blob_t)+record->size;
    alloc_size += DB_CHUNKSIZE - 1;
    alloc_size -= alloc_size % DB_CHUNKSIZE;

    /* 
     * check if we have space in the freelist 
     */
    st = freel_alloc_area(&addr, env, db, alloc_size);
    if (!addr) 
    {
        if (st)
            return st;

        /*
         * if the blob is small AND if logging is disabled: load the page 
         * through the cache
         */
        if (__blob_from_cache(env, alloc_size)) {
            st = db_alloc_page(&page, db, PAGE_TYPE_BLOB, 
                        PAGE_IGNORE_FREELIST);
			ham_assert(st ? page == NULL : 1, (0));
			ham_assert(!st ? page  != NULL : 1, (0));
            if (st)
                return st;
            /* blob pages don't have a page header */
            page_set_npers_flags(page, 
                    page_get_npers_flags(page)|PAGE_NPERS_NO_HEADER);
            addr=page_get_self(page);
            /* move the remaining space to the freelist */
            (void)freel_mark_free(env, db, addr+alloc_size,
                    env_get_pagesize(env)-alloc_size, HAM_FALSE);
            blob_set_alloc_size(&hdr, alloc_size);
        }
        else {
            /*
             * otherwise use direct IO to allocate the space
             */
            ham_size_t aligned=alloc_size;
            aligned += env_get_pagesize(env) - 1;
            aligned -= aligned % env_get_pagesize(env);

            st=device->alloc(device, aligned, &addr);
            if (st) 
                return (st);

            /* if aligned!=size, and the remaining chunk is large enough:
             * move it to the freelist */
            {
                ham_size_t diff=aligned-alloc_size;
                if (diff > SMALLEST_CHUNK_SIZE) {
                    (void)freel_mark_free(env, db, addr+alloc_size, 
                            diff, HAM_FALSE);
                    blob_set_alloc_size(&hdr, aligned-diff);
                }
                else {
                    blob_set_alloc_size(&hdr, aligned);
                }
            }
            freshly_created = HAM_TRUE;
        }

        ham_assert(HAM_SUCCESS == freel_check_area_is_allocated(env, db,
                    addr, alloc_size), (0));
    }
    else {
		ham_assert(!st, (0));
        blob_set_alloc_size(&hdr, alloc_size);
    }

    blob_set_size(&hdr, record->size);
    blob_set_self(&hdr, addr);

    /*
     * PARTIAL WRITE
     *
     * are there gaps at the beginning? If yes, then we'll fill with zeros
     */
    if ((flags&HAM_PARTIAL) && (record->partial_offset)) {
        ham_u8_t *ptr;
        ham_size_t gapsize=record->partial_offset;

        ptr=allocator_calloc(env_get_allocator(env), 
                                    gapsize > env_get_pagesize(env)
                                        ? env_get_pagesize(env)
                                        : gapsize);
        if (!ptr)
            return (HAM_OUT_OF_MEMORY);

        /* 
         * first: write the header
         */
        chunk_data[0]=(ham_u8_t *)&hdr;
        chunk_size[0]=sizeof(hdr);
        st=__write_chunks(env, page, addr, HAM_TRUE, freshly_created, 
                        chunk_data, chunk_size, 1);
        if (st)
            return (st);

        addr+=sizeof(hdr);

        /* now fill the gap; if the gap is bigger than a pagesize we'll
         * split the gap into smaller chunks 
         */
        while (gapsize>=env_get_pagesize(env)) {
            chunk_data[0]=ptr;
            chunk_size[0]=env_get_pagesize(env);
            st=__write_chunks(env, page, addr, HAM_TRUE, 
                    freshly_created, chunk_data, chunk_size, 1);
            if (st)
                break;
            gapsize-=env_get_pagesize(env);
            addr+=env_get_pagesize(env);
        }

        /* fill the remaining gap */
        if (gapsize) {
            chunk_data[0]=ptr;
            chunk_size[0]=gapsize;

            st=__write_chunks(env, page, addr, HAM_TRUE, freshly_created, 
                            chunk_data, chunk_size, 1);
            if (st)
                return (st);
            addr+=gapsize;
        }

        allocator_free(env_get_allocator(env), ptr);

        /* now write the "real" data */
        chunk_data[0]=(ham_u8_t *)record->data;
        chunk_size[0]=record->partial_size;

        st=__write_chunks(env, page, addr, HAM_TRUE, freshly_created, 
                        chunk_data, chunk_size, 1);
        if (st)
            return (st);
        addr+=record->partial_size;
    }
    else {
        /* 
         * not writing partially: write header and data, then we're done
         */
        chunk_data[0]=(ham_u8_t *)&hdr;
        chunk_size[0]=sizeof(hdr);
        chunk_data[1]=(ham_u8_t *)record->data;
        chunk_size[1]=(flags&HAM_PARTIAL) 
                        ? record->partial_size 
                        : record->size;

        st=__write_chunks(env, page, addr, HAM_TRUE, freshly_created, 
                        chunk_data, chunk_size, 2);
        if (st)
            return (st);
        addr+=sizeof(hdr)+
            ((flags&HAM_PARTIAL) ? record->partial_size : record->size);
    }

    /*
     * store the blobid; it will be returned to the caller
     */
    *blobid=blob_get_self(&hdr);

    /*
     * PARTIAL WRITES:
     *
     * if we have gaps at the end of the blob: just append more chunks to
     * fill these gaps. Since they can be pretty large we split them into
     * smaller chunks if necessary.
     */
    if (flags&HAM_PARTIAL) {
        if (record->partial_offset+record->partial_size < record->size) {
            ham_u8_t *ptr;
            ham_size_t gapsize=record->size
                            - (record->partial_offset+record->partial_size);

            /* now fill the gap; if the gap is bigger than a pagesize we'll
             * split the gap into smaller chunks 
             *
             * we split this loop in two - the outer loop will allocate the
             * memory buffer, thus saving some allocations
             */
            while (gapsize>env_get_pagesize(env)) {
                ham_u8_t *ptr=allocator_calloc(env_get_allocator(env), 
                                            env_get_pagesize(env));
                if (!ptr)
                    return (HAM_OUT_OF_MEMORY);
                while (gapsize>env_get_pagesize(env)) {
                    chunk_data[0]=ptr;
                    chunk_size[0]=env_get_pagesize(env);
                    st=__write_chunks(env, page, addr, HAM_TRUE, 
                            freshly_created, chunk_data, chunk_size, 1);
                    if (st)
                        break;
                    gapsize-=env_get_pagesize(env);
                    addr+=env_get_pagesize(env);
                }
                allocator_free(env_get_allocator(env), ptr);
                if (st)
                    return (st);
            }
            
            /* now write the remainder, which is less than a pagesize */
            ham_assert(gapsize<env_get_pagesize(env), (""));

            chunk_size[0]=gapsize;
            ptr=chunk_data[0]=allocator_calloc(env_get_allocator(env), gapsize);
            if (!ptr)
                return (HAM_OUT_OF_MEMORY);

            st=__write_chunks(env, page, addr, HAM_TRUE, freshly_created, 
                        chunk_data, chunk_size, 1);
            allocator_free(env_get_allocator(env), ptr);
            if (st)
                return (st);
        }
    }

    return (0);
}
Exemple #9
0
ham_status_t
blob_duplicate_insert(ham_db_t *db, ham_offset_t table_id, 
        ham_record_t *record, ham_size_t position, ham_u32_t flags, 
        dupe_entry_t *entries, ham_size_t num_entries, 
        ham_offset_t *rid, ham_size_t *new_position)
{
    ham_status_t st=0;
    dupe_table_t *table=0;
    ham_bool_t alloc_table=0;
	ham_bool_t resize=0;
    ham_page_t *page=0;
    ham_env_t *env=db_get_env(db);

    /*
     * create a new duplicate table if none existed, and insert
     * the first entry
     */
    if (!table_id) {
        ham_assert(num_entries==2, (""));
        /* allocates space for 8 (!) entries */
        table=allocator_calloc(env_get_allocator(env), 
                        sizeof(dupe_table_t)+7*sizeof(dupe_entry_t));
        if (!table)
            return HAM_OUT_OF_MEMORY;
        dupe_table_set_capacity(table, 8);
        dupe_table_set_count(table, 1);
        memcpy(dupe_table_get_entry(table, 0), &entries[0], 
                        sizeof(entries[0]));

        /* skip the first entry */
        entries++;
        num_entries--;
        alloc_table=1;
    }
    else {
        /*
         * otherwise load the existing table 
         */
        st=__get_duplicate_table(&table, &page, env, table_id);
		ham_assert(st ? table == NULL : 1, (0));
		ham_assert(st ? page == NULL : 1, (0));
        if (!table)
			return st ? st : HAM_INTERNAL_ERROR;
        if (!page && !(env_get_rt_flags(env)&HAM_IN_MEMORY_DB))
            alloc_table=1;
    }

    if (page)
        if ((st=ham_log_add_page_before(page)))
            return (st);

    ham_assert(num_entries==1, (""));

    /*
     * resize the table, if necessary
     */ 
    if (!(flags & HAM_OVERWRITE)
            && dupe_table_get_count(table)+1>=dupe_table_get_capacity(table)) {
        dupe_table_t *old=table;
        ham_size_t new_cap=dupe_table_get_capacity(table);

        if (new_cap < 3*8)
            new_cap += 8;
        else
            new_cap += new_cap/3;

        table=allocator_calloc(env_get_allocator(env), sizeof(dupe_table_t)+
                        (new_cap-1)*sizeof(dupe_entry_t));
        if (!table)
            return (HAM_OUT_OF_MEMORY);
        dupe_table_set_capacity(table, new_cap);
        dupe_table_set_count(table, dupe_table_get_count(old));
        memcpy(dupe_table_get_entry(table, 0), dupe_table_get_entry(old, 0),
                       dupe_table_get_count(old)*sizeof(dupe_entry_t));
        if (alloc_table)
            allocator_free(env_get_allocator(env), old);

        alloc_table=1;
        resize=1;
    }

    /*
     * insert sorted, unsorted or overwrite the entry at the requested position
     */
    if (flags&HAM_OVERWRITE) {
        dupe_entry_t *e=dupe_table_get_entry(table, position);

        if (!(dupe_entry_get_flags(e)&(KEY_BLOB_SIZE_SMALL
                                    |KEY_BLOB_SIZE_TINY
                                    |KEY_BLOB_SIZE_EMPTY))) {
            (void)blob_free(env, db, dupe_entry_get_rid(e), 0);
        }

        memcpy(dupe_table_get_entry(table, position), 
                        &entries[0], sizeof(entries[0]));
    }
    else {
        if (db_get_rt_flags(db)&HAM_SORT_DUPLICATES) {
            if (page)
                page_add_ref(page);
            position=__get_sorted_position(db, table, record, flags);
            if (page)
                page_release_ref(page);
            if (position<0)
                return ((ham_status_t)position);
        }
        else if (flags&HAM_DUPLICATE_INSERT_BEFORE) {
            /* do nothing, insert at the current position */
        }
        else if (flags&HAM_DUPLICATE_INSERT_AFTER) {
            position++;
            if (position > dupe_table_get_count(table))
                position=dupe_table_get_count(table);
        }
        else if (flags&HAM_DUPLICATE_INSERT_FIRST) {
            position=0;
        }
        else if (flags&HAM_DUPLICATE_INSERT_LAST) {
            position=dupe_table_get_count(table);
        }
        else {
            position=dupe_table_get_count(table);
        }

        if (position != dupe_table_get_count(table)) {
            memmove(dupe_table_get_entry(table, position+1), 
                dupe_table_get_entry(table, position), 
                sizeof(entries[0])*(dupe_table_get_count(table)-position));
        }

        memcpy(dupe_table_get_entry(table, position), 
                &entries[0], sizeof(entries[0]));

        dupe_table_set_count(table, dupe_table_get_count(table)+1);
    }

    /*
     * write the table back to disk and return the blobid of the table
     */
    if ((table_id && !page) || resize) {
        ham_record_t rec={0};
        rec.data=(ham_u8_t *)table;
        rec.size=sizeof(dupe_table_t)
                    +(dupe_table_get_capacity(table)-1)*sizeof(dupe_entry_t);
        st=blob_overwrite(env, db, table_id, &rec, 0, rid);
    }
    else if (!table_id) {
        ham_record_t rec={0};
        rec.data=(ham_u8_t *)table;
        rec.size=sizeof(dupe_table_t)
                    +(dupe_table_get_capacity(table)-1)*sizeof(dupe_entry_t);
        st=blob_allocate(env, db, &rec, 0, rid);
    }
    else if (table_id && page) {
        page_set_dirty(page, env);
    }
    else {
        ham_assert(!"shouldn't be here", (0));
	}

    if (alloc_table)
        allocator_free(env_get_allocator(env), table);

    if (new_position)
        *new_position=position;

    return (st);
}