Exemple #1
0
 void BSONObjBuilder::appendMinForType( const StringData& fieldName , int t ) {
     switch ( t ) {
             
     // Shared canonical types
     case NumberInt:
     case NumberDouble:
     case NumberLong:
         append( fieldName , - std::numeric_limits<double>::max() ); return;
     case Symbol:
     case String:
         append( fieldName , "" ); return;
     case Date: 
         // min varies with V0 and V1 indexes, so we go one type lower.
         appendBool(fieldName, true);
         //appendDate( fieldName , numeric_limits<long long>::min() ); 
         return;
     case Timestamp: // TODO integrate with Date SERVER-3304
         appendTimestamp( fieldName , 0 ); return;
     case Undefined: // shared with EOO
         appendUndefined( fieldName ); return;
             
     // Separate canonical types
     case MinKey:
         appendMinKey( fieldName ); return;
     case MaxKey:
         appendMaxKey( fieldName ); return;
     case jstOID: {
         OID o;
         appendOID( fieldName , &o);
         return;
     }
     case Bool:
         appendBool( fieldName , false); return;
     case jstNULL:
         appendNull( fieldName ); return;
     case Object:
         append( fieldName , BSONObj() ); return;
     case Array:
         appendArray( fieldName , BSONObj() ); return;
     case BinData:
         appendBinData( fieldName , 0 , BinDataGeneral , (const char *) 0 ); return;
     case RegEx:
         appendRegex( fieldName , "" ); return;
     case DBRef: {
         OID o;
         appendDBRef( fieldName , "" , o );
         return;
     }
     case Code:
         appendCode( fieldName , "" ); return;
     case CodeWScope:
         appendCodeWScope( fieldName , "" , BSONObj() ); return;
     };
     log() << "type not supported for appendMinElementForType: " << t;
     uassert( 10061 ,  "type not supported for appendMinElementForType" , false );
 }
void SVGPathStringBuilder::emitSegment(const PathSegmentData& segment)
{
    ASSERT(segment.command > PathSegUnknown && segment.command <= PathSegCurveToQuadraticSmoothRel);
    m_stringBuilder.append(pathSegmentCharacter[segment.command]);

    switch (segment.command) {
    case PathSegMoveToRel:
    case PathSegMoveToAbs:
    case PathSegLineToRel:
    case PathSegLineToAbs:
    case PathSegCurveToQuadraticSmoothRel:
    case PathSegCurveToQuadraticSmoothAbs:
        appendPoint(m_stringBuilder, segment.targetPoint);
        break;
    case PathSegLineToHorizontalRel:
    case PathSegLineToHorizontalAbs:
        appendFloat(m_stringBuilder, segment.targetPoint.x());
        break;
    case PathSegLineToVerticalRel:
    case PathSegLineToVerticalAbs:
        appendFloat(m_stringBuilder, segment.targetPoint.y());
        break;
    case PathSegClosePath:
        break;
    case PathSegCurveToCubicRel:
    case PathSegCurveToCubicAbs:
        appendPoint(m_stringBuilder, segment.point1);
        appendPoint(m_stringBuilder, segment.point2);
        appendPoint(m_stringBuilder, segment.targetPoint);
        break;
    case PathSegCurveToCubicSmoothRel:
    case PathSegCurveToCubicSmoothAbs:
        appendPoint(m_stringBuilder, segment.point2);
        appendPoint(m_stringBuilder, segment.targetPoint);
        break;
    case PathSegCurveToQuadraticRel:
    case PathSegCurveToQuadraticAbs:
        appendPoint(m_stringBuilder, segment.point1);
        appendPoint(m_stringBuilder, segment.targetPoint);
        break;
    case PathSegArcRel:
    case PathSegArcAbs:
        appendPoint(m_stringBuilder, segment.point1);
        appendFloat(m_stringBuilder, segment.point2.x());
        appendBool(m_stringBuilder, segment.arcLarge);
        appendBool(m_stringBuilder, segment.arcSweep);
        appendPoint(m_stringBuilder, segment.targetPoint);
        break;
    default:
        ASSERT_NOT_REACHED();
    }
    m_stringBuilder.append(' ');
}
Exemple #3
0
 void BSONObjBuilder::appendMaxForType( const string& field , int t ){
     switch ( t ){
     case MinKey: appendMaxKey( field.c_str() );  break;
     case MaxKey: appendMaxKey( field.c_str() ); break;
     case NumberInt: 
     case NumberDouble:
     case NumberLong:
         append( field.c_str() , numeric_limits<double>::max() ); 
         break;
     case jstOID: 
         { 
             OID o;
             memset(&o, 0xFF, sizeof(o));
             appendOID( field.c_str() , &o);
             break;
         }
     case Bool: appendBool( field.c_str() , true); break;
     case Date: appendDate( field.c_str() , 0xFFFFFFFFFFFFFFFFLL ); break;
     case String: append( field.c_str() , BSONObj() ); break;
     case Timestamp:
         append( field.c_str() , (long long)0 ); break;
     default: 
         appendMinForType( field , t + 1 );
     }
 }
Exemple #4
0
 void BSONObjBuilder::appendMaxForType( const string& field , int t ){
     switch ( t ){
     case MinKey: appendMaxKey( field.c_str() );  break;
     case MaxKey: appendMaxKey( field.c_str() ); break;
     case NumberInt:
     case NumberDouble:
     case NumberLong:
         append( field.c_str() , numeric_limits<double>::max() );
         break;
     case BinData:
         appendMinForType( field , jstOID );
         break;
     case jstOID:
         {
             OID o;
             memset(&o, 0xFF, sizeof(o));
             appendOID( field.c_str() , &o);
             break;
         }
     case Undefined:
     case jstNULL:
         appendMinForType( field , NumberInt );
     case Bool: appendBool( field.c_str() , true); break;
     case Date: appendDate( field.c_str() , 0xFFFFFFFFFFFFFFFFLL ); break;
     case Symbol:
     case String: append( field.c_str() , BSONObj() ); break;
     case Code:
     case CodeWScope:
         appendCodeWScope( field.c_str() , "ZZZ" , BSONObj() ); break;
     case Timestamp:
         appendTimestamp( field.c_str() , numeric_limits<unsigned long long>::max() ); break;
     default:
         appendMinForType( field , t + 1 );
     }
 }
void SshOutgoingPacket::generateKeyExchangeInitPacket()
{
    const QByteArray &supportedkeyExchangeMethods
        = encodeNameList(SshCapabilities::KeyExchangeMethods);
    const QByteArray &supportedPublicKeyAlgorithms
        = encodeNameList(SshCapabilities::PublicKeyAlgorithms);
    const QByteArray &supportedEncryptionAlgorithms
        = encodeNameList(SshCapabilities::EncryptionAlgorithms);
    const QByteArray &supportedMacAlgorithms
        = encodeNameList(SshCapabilities::MacAlgorithms);
    const QByteArray &supportedCompressionAlgorithms
        = encodeNameList(SshCapabilities::CompressionAlgorithms);
    const QByteArray &supportedLanguages = encodeNameList(QList<QByteArray>());

    init(SSH_MSG_KEXINIT);
    m_data += m_encrypter.getRandomNumbers(16);
    m_data.append(supportedkeyExchangeMethods);
    m_data.append(supportedPublicKeyAlgorithms);
    m_data.append(supportedEncryptionAlgorithms)
        .append(supportedEncryptionAlgorithms);
    m_data.append(supportedMacAlgorithms).append(supportedMacAlgorithms);
    m_data.append(supportedCompressionAlgorithms)
        .append(supportedCompressionAlgorithms);
    m_data.append(supportedLanguages).append(supportedLanguages);
    appendBool(false); // No guessed packet.
    m_data.append(QByteArray(4, 0)); // Reserved.
    finalize();
}
Exemple #6
0
QString JsonPin::toString(){
    QString str;
    str="{\n";
    str+=appendString("Id")+":"+appendNum(Id)+",\n";
    str+=appendString("Name")+":"+appendString(Name)+",\n";
    str+=appendString("Desc")+":"+appendString(Desc)+",\n";
    str+=appendString("DataType")+":"+appendString(DataType)+",\n";
    str+=appendString("InputPin")+":"+appendBool(InputPin);
    str+="\n}";
    return str;
}
Exemple #7
0
    void BSONObjBuilder::appendMaxForType( const StringData& fieldName , int t ) {
        switch ( t ) {
                
        // Shared canonical types
        case NumberInt:
        case NumberDouble:
        case NumberLong:
            append( fieldName , std::numeric_limits<double>::max() ); return;
        case Symbol:
        case String:
            appendMinForType( fieldName, Object ); return;
        case Date:
            appendDate( fieldName , std::numeric_limits<long long>::max() ); return;
        case Timestamp: // TODO integrate with Date SERVER-3304
            append( fieldName , OpTime::max() ); return;
        case Undefined: // shared with EOO
            appendUndefined( fieldName ); return;

        // Separate canonical types
        case MinKey:
            appendMinKey( fieldName ); return;
        case MaxKey:
            appendMaxKey( fieldName ); return;
        case jstOID: {
            OID o = OID::max();
            appendOID( fieldName , &o);
            return;
        }
        case Bool:
            appendBool( fieldName , true ); return;
        case jstNULL:
            appendNull( fieldName ); return;
        case Object:
            appendMinForType( fieldName, Array ); return;
        case Array:
            appendMinForType( fieldName, BinData ); return;
        case BinData:
            appendMinForType( fieldName, jstOID ); return;
        case RegEx:
            appendMinForType( fieldName, DBRef ); return;
        case DBRef:
            appendMinForType( fieldName, Code ); return;                
        case Code:
            appendMinForType( fieldName, CodeWScope ); return;
        case CodeWScope:
            // This upper bound may change if a new bson type is added.
            appendMinForType( fieldName , MaxKey ); return;
        }
        log() << "type not supported for appendMaxElementForType: " << t;
        uassert( 14853 ,  "type not supported for appendMaxElementForType" , false );
    }
Exemple #8
0
    void BSONObjBuilder::appendMinForType( const string& field , int t ){
        switch ( t ){
        case MinKey: appendMinKey( field.c_str() ); return;
        case MaxKey: appendMinKey( field.c_str() ); return;
        case NumberInt:
        case NumberDouble:
        case NumberLong:
            append( field.c_str() , - numeric_limits<double>::max() ); return;
        case jstOID: 
            { 
                OID o;
                memset(&o, 0, sizeof(o));
                appendOID( field.c_str() , &o);
                return;
            }
        case Bool: appendBool( field.c_str() , false); return;
        case Date: appendDate( field.c_str() , 0); return;
        case jstNULL: appendNull( field.c_str() ); return;
        case String: append( field.c_str() , "" ); return;
        case Object: append( field.c_str() , BSONObj() ); return;
        case Array: 
            appendArray( field.c_str() , BSONObj() ); return;
        case BinData:  
            appendBinData( field.c_str() , 0 , Function , 0 ); return;
        case Undefined:
            appendUndefined( field.c_str() ); return;
        case RegEx: appendRegex( field.c_str() , "" ); return;
        case DBRef:
            {
                OID o;
                memset(&o, 0, sizeof(o));
                appendDBRef( field.c_str() , "" , o );
                return;
            }
        case Code: appendCode( field.c_str() , "" ); return;
        case Symbol: appendSymbol( field.c_str() , "" ); return;
        case CodeWScope: appendCodeWScope( field.c_str() , "" , BSONObj() ); return;
        case Timestamp: appendTimestamp( field.c_str() , 0); return;

        };
        log() << "type not support for appendMinElementForType: " << t << endl;
        uassert( "type not supported for appendMinElementForType" , false );
    }
Exemple #9
0
static SkPDFIndirectReference make_function_shader(SkPDFDocument* doc,
                                                   const SkPDFGradientShader::Key& state) {
    SkPoint transformPoints[2];
    const SkShader::GradientInfo& info = state.fInfo;
    SkMatrix finalMatrix = state.fCanvasTransform;
    finalMatrix.preConcat(state.fShaderTransform);

    bool doStitchFunctions = (state.fType == SkShader::kLinear_GradientType ||
                              state.fType == SkShader::kRadial_GradientType ||
                              state.fType == SkShader::kConical_GradientType) &&
                              (SkTileMode)info.fTileMode == SkTileMode::kClamp &&
                              !finalMatrix.hasPerspective();

    int32_t shadingType = 1;
    auto pdfShader = SkPDFMakeDict();
    // The two point radial gradient further references
    // state.fInfo
    // in translating from x, y coordinates to the t parameter. So, we have
    // to transform the points and radii according to the calculated matrix.
    if (doStitchFunctions) {
        pdfShader->insertObject("Function", gradientStitchCode(info));
        shadingType = (state.fType == SkShader::kLinear_GradientType) ? 2 : 3;

        auto extend = SkPDFMakeArray();
        extend->reserve(2);
        extend->appendBool(true);
        extend->appendBool(true);
        pdfShader->insertObject("Extend", std::move(extend));

        std::unique_ptr<SkPDFArray> coords;
        if (state.fType == SkShader::kConical_GradientType) {
            SkScalar r1 = info.fRadius[0];
            SkScalar r2 = info.fRadius[1];
            SkPoint pt1 = info.fPoint[0];
            SkPoint pt2 = info.fPoint[1];
            FixUpRadius(pt1, r1, pt2, r2);

            coords = SkPDFMakeArray(pt1.x(),
                                    pt1.y(),
                                    r1,
                                    pt2.x(),
                                    pt2.y(),
                                    r2);
        } else if (state.fType == SkShader::kRadial_GradientType) {
            const SkPoint& pt1 = info.fPoint[0];
            coords = SkPDFMakeArray(pt1.x(),
                                    pt1.y(),
                                    0,
                                    pt1.x(),
                                    pt1.y(),
                                    info.fRadius[0]);
        } else {
            const SkPoint& pt1 = info.fPoint[0];
            const SkPoint& pt2 = info.fPoint[1];
            coords = SkPDFMakeArray(pt1.x(),
                                    pt1.y(),
                                    pt2.x(),
                                    pt2.y());
        }

        pdfShader->insertObject("Coords", std::move(coords));
    } else {
        // Depending on the type of the gradient, we want to transform the
        // coordinate space in different ways.
        transformPoints[0] = info.fPoint[0];
        transformPoints[1] = info.fPoint[1];
        switch (state.fType) {
            case SkShader::kLinear_GradientType:
                break;
            case SkShader::kRadial_GradientType:
                transformPoints[1] = transformPoints[0];
                transformPoints[1].fX += info.fRadius[0];
                break;
            case SkShader::kConical_GradientType: {
                transformPoints[1] = transformPoints[0];
                transformPoints[1].fX += SK_Scalar1;
                break;
            }
            case SkShader::kSweep_GradientType:
                transformPoints[1] = transformPoints[0];
                transformPoints[1].fX += SK_Scalar1;
                break;
            case SkShader::kColor_GradientType:
            case SkShader::kNone_GradientType:
            default:
                return SkPDFIndirectReference();
        }

        // Move any scaling (assuming a unit gradient) or translation
        // (and rotation for linear gradient), of the final gradient from
        // info.fPoints to the matrix (updating bbox appropriately).  Now
        // the gradient can be drawn on on the unit segment.
        SkMatrix mapperMatrix;
        unit_to_points_matrix(transformPoints, &mapperMatrix);

        finalMatrix.preConcat(mapperMatrix);

        // Preserves as much as possible in the final matrix, and only removes
        // the perspective. The inverse of the perspective is stored in
        // perspectiveInverseOnly matrix and has 3 useful numbers
        // (p0, p1, p2), while everything else is either 0 or 1.
        // In this way the shader will handle it eficiently, with minimal code.
        SkMatrix perspectiveInverseOnly = SkMatrix::I();
        if (finalMatrix.hasPerspective()) {
            if (!split_perspective(finalMatrix,
                                   &finalMatrix, &perspectiveInverseOnly)) {
                return SkPDFIndirectReference();
            }
        }

        SkRect bbox;
        bbox.set(state.fBBox);
        if (!SkPDFUtils::InverseTransformBBox(finalMatrix, &bbox)) {
            return SkPDFIndirectReference();
        }
        SkDynamicMemoryWStream functionCode;

        SkShader::GradientInfo infoCopy = info;

        if (state.fType == SkShader::kConical_GradientType) {
            SkMatrix inverseMapperMatrix;
            if (!mapperMatrix.invert(&inverseMapperMatrix)) {
                return SkPDFIndirectReference();
            }
            inverseMapperMatrix.mapPoints(infoCopy.fPoint, 2);
            infoCopy.fRadius[0] = inverseMapperMatrix.mapRadius(info.fRadius[0]);
            infoCopy.fRadius[1] = inverseMapperMatrix.mapRadius(info.fRadius[1]);
        }
        switch (state.fType) {
            case SkShader::kLinear_GradientType:
                linearCode(infoCopy, perspectiveInverseOnly, &functionCode);
                break;
            case SkShader::kRadial_GradientType:
                radialCode(infoCopy, perspectiveInverseOnly, &functionCode);
                break;
            case SkShader::kConical_GradientType:
                twoPointConicalCode(infoCopy, perspectiveInverseOnly, &functionCode);
                break;
            case SkShader::kSweep_GradientType:
                sweepCode(infoCopy, perspectiveInverseOnly, &functionCode);
                break;
            default:
                SkASSERT(false);
        }
        pdfShader->insertObject(
                "Domain", SkPDFMakeArray(bbox.left(), bbox.right(), bbox.top(), bbox.bottom()));

        auto domain = SkPDFMakeArray(bbox.left(), bbox.right(), bbox.top(), bbox.bottom());
        std::unique_ptr<SkPDFArray> rangeObject = SkPDFMakeArray(0, 1, 0, 1, 0, 1);
        pdfShader->insertRef("Function",
                             make_ps_function(functionCode.detachAsStream(), std::move(domain),
                                              std::move(rangeObject), doc));
    }

    pdfShader->insertInt("ShadingType", shadingType);
    pdfShader->insertName("ColorSpace", "DeviceRGB");

    SkPDFDict pdfFunctionShader("Pattern");
    pdfFunctionShader.insertInt("PatternType", 2);
    pdfFunctionShader.insertObject("Matrix", SkPDFUtils::MatrixToArray(finalMatrix));
    pdfFunctionShader.insertObject("Shading", std::move(pdfShader));
    return doc->emit(pdfFunctionShader);
}
Exemple #10
0
void deviceTimerHandleRawData(char commandHeader, InputStream* inputStream, OutputStream* outputStream) {
    if (commandHeader == COMMAND_TIMER_LIST) {
        printTimerList(getInfoOutputStreamLogger(), getTimerList());
        ackCommand(outputStream, TIMER_DEVICE_HEADER, COMMAND_TIMER_LIST);
    }    
    else if (commandHeader == COMMAND_TIMER_COUNT) {
        ackCommand(outputStream, TIMER_DEVICE_HEADER, COMMAND_TIMER_COUNT);
        unsigned timerCount = getTimerCount();
        appendHex2(outputStream, timerCount);
    }
    else if (commandHeader == COMMAND_TIMER_READ) {
        ackCommand(outputStream, TIMER_DEVICE_HEADER, COMMAND_TIMER_READ);
        unsigned char timerIndex = readHex2(inputStream);
        Timer* timer = getTimerByIndex(timerIndex);
        appendHex2(outputStream, timerIndex);
        appendSeparator(outputStream);
        appendHex2(outputStream, timer->timerCode);
        appendSeparator(outputStream);
        appendHex4(outputStream, timer->timeDiviser);
        appendSeparator(outputStream);
        appendHex4(outputStream, timer->timeInternalCounter);
        appendSeparator(outputStream);
        appendHex6(outputStream, timer->time);
        appendSeparator(outputStream);
        appendHex6(outputStream, timer->markTime);
        appendSeparator(outputStream);
        appendBool(outputStream, timer->enabled);
    }
    // Enable / Tisable
    else if (commandHeader == COMMAND_TIMER_ENABLE_DISABLE) {
        unsigned char timerIndex = readHex2(inputStream);
        Timer* timer = getTimerByIndex(timerIndex);
        
        checkIsSeparator(inputStream);
        
        unsigned enableAsChar = readHex(inputStream);
        bool enabled = enableAsChar != 0;
        timer->enabled = enabled;
        ackCommand(outputStream, TIMER_DEVICE_HEADER, COMMAND_TIMER_ENABLE_DISABLE);
    }
    // Mark
    else if (commandHeader == COMMAND_TIMER_MARK) {
        unsigned char timerIndex = readHex2(inputStream);
        Timer* timer = getTimerByIndex(timerIndex);
        unsigned long time = markTimer(timer);
        ackCommand(outputStream, TIMER_DEVICE_HEADER, COMMAND_TIMER_MARK);
        appendHex6(outputStream, time);
    }
    else if (commandHeader == COMMAND_TIMER_TIME_SINCE_LAST_MARK) {
        unsigned char timerIndex = readHex2(inputStream);
        Timer* timer = getTimerByIndex(timerIndex);
        unsigned long value = getTimeSinceLastMark(timer);
        ackCommand(outputStream, TIMER_DEVICE_HEADER, COMMAND_TIMER_TIME_SINCE_LAST_MARK);
        appendHex6(outputStream, value);
    }
    else if (commandHeader == COMMAND_TIMER_TIMEOUT) {
        unsigned char timerIndex = readHex2(inputStream);
        checkIsSeparator(inputStream);
        unsigned long timeToCheck = (unsigned long) readHex6(inputStream);
        Timer* timer = getTimerByIndex(timerIndex);
        bool value = timeout(timer, timeToCheck);
        ackCommand(outputStream, TIMER_DEVICE_HEADER, COMMAND_TIMER_TIMEOUT);
        appendHex2(outputStream, timerIndex);
        appendSeparator(outputStream);
        appendBool(outputStream, value);
    }
    // Demo
    else if (commandHeader == COMMAND_TIMER_DEMO) {
        Timer* timer = getTimerByCode(DEMO_TIMER_INDEX);
        if (timer == NULL) {
            timer = addTimerDemo();
        }
		// Timer could be null when adding the timerDemo because of limit, we don't want any crash !
		if (timer != NULL) {
			unsigned enableAsChar = readHex(inputStream);
			bool enabled = enableAsChar != 0;
			timer->enabled = enabled;
		}
        ackCommand(outputStream, TIMER_DEVICE_HEADER, COMMAND_TIMER_DEMO);
    }
}