void _arb_poly_revert_series_lagrange_fast(arb_ptr Qinv, arb_srcptr Q, long Qlen, long n, long prec) { long i, j, k, m; arb_ptr R, S, T, tmp; arb_t t; if (n <= 2) { if (n >= 1) arb_zero(Qinv); if (n == 2) arb_inv(Qinv + 1, Q + 1, prec); return; } m = n_sqrt(n); arb_init(t); R = _arb_vec_init((n - 1) * m); S = _arb_vec_init(n - 1); T = _arb_vec_init(n - 1); arb_zero(Qinv); arb_inv(Qinv + 1, Q + 1, prec); _arb_poly_inv_series(Ri(1), Q + 1, FLINT_MIN(Qlen, n) - 1, n - 1, prec); for (i = 2; i <= m; i++) _arb_poly_mullow(Ri(i), Ri((i + 1) / 2), n - 1, Ri(i / 2), n - 1, n - 1, prec); for (i = 2; i < m; i++) arb_div_ui(Qinv + i, Ri(i) + i - 1, i, prec); _arb_vec_set(S, Ri(m), n - 1); for (i = m; i < n; i += m) { arb_div_ui(Qinv + i, S + i - 1, i, prec); for (j = 1; j < m && i + j < n; j++) { arb_mul(t, S + 0, Ri(j) + i + j - 1, prec); for (k = 1; k <= i + j - 1; k++) arb_addmul(t, S + k, Ri(j) + i + j - 1 - k, prec); arb_div_ui(Qinv + i + j, t, i + j, prec); } if (i + 1 < n) { _arb_poly_mullow(T, S, n - 1, Ri(m), n - 1, n - 1, prec); tmp = S; S = T; T = tmp; } } arb_clear(t); _arb_vec_clear(R, (n - 1) * m); _arb_vec_clear(S, n - 1); _arb_vec_clear(T, n - 1); }
void arb_root_ui_exp(arb_t res, const arb_t x, ulong k, slong prec) { arb_log(res, x, prec + 4); arb_div_ui(res, res, k, prec + 4); arb_exp(res, res, prec); }
void _arb_poly_integral(arb_ptr res, arb_srcptr poly, slong len, slong prec) { slong k = len - 1; for (k = len - 1; k > 0; k--) arb_div_ui(res + k, poly + k - 1, k, prec); arb_zero(res); }
void _arb_poly_sinh_cosh_series_basecase(arb_ptr s, arb_ptr c, arb_srcptr h, slong hlen, slong n, slong prec) { slong j, k, alen = FLINT_MIN(n, hlen); arb_ptr a; arb_t t, u; arb_sinh_cosh(s, c, h, prec); if (hlen == 1) { _arb_vec_zero(s + 1, n - 1); _arb_vec_zero(c + 1, n - 1); return; } arb_init(t); arb_init(u); a = _arb_vec_init(alen); for (k = 1; k < alen; k++) arb_mul_ui(a + k, h + k, k, prec); for (k = 1; k < n; k++) { arb_zero(t); arb_zero(u); for (j = 1; j < FLINT_MIN(k + 1, hlen); j++) { arb_addmul(t, a + j, s + k - j, prec); arb_addmul(u, a + j, c + k - j, prec); } arb_div_ui(c + k, t, k, prec); arb_div_ui(s + k, u, k, prec); } arb_clear(t); arb_clear(u); _arb_vec_clear(a, alen); }
void arb_div_2expm1_ui(arb_t y, const arb_t x, ulong n, long prec) { if (n < FLINT_BITS) { arb_div_ui(y, x, (1UL << n) - 1, prec); } else if (n < 1024 + prec / 32 || n > LONG_MAX / 4) { arb_t t; fmpz_t e; arb_init(t); fmpz_init_set_ui(e, n); arb_one(t); arb_mul_2exp_fmpz(t, t, e); arb_sub_ui(t, t, 1, prec); arb_div(y, x, t, prec); arb_clear(t); fmpz_clear(e); } else { arb_t s, t; long i, b; arb_init(s); arb_init(t); /* x / (2^n - 1) = sum_{k>=1} x * 2^(-k*n)*/ arb_mul_2exp_si(s, x, -n); arb_set(t, s); b = 1; for (i = 2; i <= prec / n + 1; i++) { arb_mul_2exp_si(t, t, -n); arb_add(s, s, t, prec); b = i; } /* error bound: sum_{k>b} x * 2^(-k*n) <= x * 2^(-b*n - (n-1)) */ arb_mul_2exp_si(t, x, -b*n - (n-1)); arb_abs(t, t); arb_add_error(s, t); arb_set(y, s); arb_clear(s); arb_clear(t); } }
/* Bound for scaled Bessel function: 2/(2 pi x)^(1/2) Bound for tail of integral: 2 N (k / (pi N))^(k / 2) / (k - 2). */ void scaled_bessel_tail_bound(arb_t b, ulong k, const arb_t N, slong prec) { arb_const_pi(b, prec); arb_mul(b, b, N, prec); arb_ui_div(b, k, b, prec); arb_sqrt(b, b, prec); arb_pow_ui(b, b, k, prec); arb_mul(b, b, N, prec); arb_mul_ui(b, b, 2, prec); arb_div_ui(b, b, k - 2, prec); }
void acb_zeta_si(acb_t z, slong s, slong prec) { if (s >= 0) { arb_zeta_ui(acb_realref(z), s, prec); } else { arb_bernoulli_ui(acb_realref(z), 1-s, prec); arb_div_ui(acb_realref(z), acb_realref(z), 1-s, prec); arb_neg(acb_realref(z), acb_realref(z)); } arb_zero(acb_imagref(z)); return; }
/* series of c^(d+x) */ static __inline__ void _arb_poly_pow_cpx(arb_ptr res, const arb_t c, const arb_t d, long trunc, long prec) { long i; arb_t logc; arb_init(logc); arb_log(logc, c, prec); arb_mul(res + 0, logc, d, prec); arb_exp(res + 0, res + 0, prec); for (i = 1; i < trunc; i++) { arb_mul(res + i, res + i - 1, logc, prec); arb_div_ui(res + i, res + i, i, prec); } arb_clear(logc); }
int main() { long iter; flint_rand_t state; printf("div_ui...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 10000; iter++) { arb_t a, b, c, d; ulong x; long prec; arb_init(a); arb_init(b); arb_init(c); arb_init(d); arb_randtest_special(a, state, 1 + n_randint(state, 2000), 100); arb_randtest_special(b, state, 1 + n_randint(state, 2000), 100); arb_randtest_special(c, state, 1 + n_randint(state, 2000), 100); x = n_randtest(state); prec = 2 + n_randint(state, 2000); arb_set_ui(b, x); arb_div_ui(c, a, x, prec); arb_div(d, a, b, prec); if (!arb_equal(c, d)) { printf("FAIL\n\n"); printf("a = "); arb_print(a); printf("\n\n"); printf("b = "); arb_print(b); printf("\n\n"); printf("c = "); arb_print(c); printf("\n\n"); printf("d = "); arb_print(d); printf("\n\n"); abort(); } arb_clear(a); arb_clear(b); arb_clear(c); arb_clear(d); } /* aliasing */ for (iter = 0; iter < 10000; iter++) { arb_t a, b, c; ulong x; long prec; arb_init(a); arb_init(b); arb_init(c); arb_randtest_special(a, state, 1 + n_randint(state, 2000), 100); arb_randtest_special(b, state, 1 + n_randint(state, 2000), 100); arb_randtest_special(c, state, 1 + n_randint(state, 2000), 100); x = n_randtest(state); prec = 2 + n_randint(state, 2000); arb_set_ui(b, x); arb_div_ui(c, a, x, prec); arb_div_ui(a, a, x, prec); if (!arb_equal(a, c)) { printf("FAIL (aliasing)\n\n"); printf("a = "); arb_print(a); printf("\n\n"); printf("b = "); arb_print(b); printf("\n\n"); printf("c = "); arb_print(c); printf("\n\n"); abort(); } arb_clear(a); arb_clear(b); arb_clear(c); } flint_randclear(state); flint_cleanup(); printf("PASS\n"); return EXIT_SUCCESS; }
int main() { slong iter; flint_rand_t state; flint_printf("cos_pi_fmpq_algebraic...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++) { arb_t c1, c2; ulong p, q, g; slong prec; prec = 2 + n_randint(state, 5000); q = 1 + n_randint(state, 500); p = n_randint(state, q / 2 + 1); g = n_gcd(q, p); q /= g; p /= g; arb_init(c1); arb_init(c2); _arb_cos_pi_fmpq_algebraic(c1, p, q, prec); arb_const_pi(c2, prec); arb_mul_ui(c2, c2, p, prec); arb_div_ui(c2, c2, q, prec); arb_cos(c2, c2, prec); if (!arb_overlaps(c1, c2)) { flint_printf("FAIL: overlap\n\n"); flint_printf("p/q = %wu/%wu", p, q); flint_printf("\n\n"); flint_printf("c1 = "); arb_printd(c1, 15); flint_printf("\n\n"); flint_printf("c2 = "); arb_printd(c2, 15); flint_printf("\n\n"); abort(); } if (arb_rel_accuracy_bits(c1) < prec - 2) { flint_printf("FAIL: accuracy\n\n"); flint_printf("p/q = %wu/%wu", p, q); flint_printf("\n\n"); flint_printf("prec=%wd eff=%wd\n", prec, arb_rel_accuracy_bits(c1)); flint_printf("c1 = "); arb_printd(c1, 15); flint_printf("\n\n"); flint_printf("c2 = "); arb_printd(c2, 15); flint_printf("\n\n"); abort(); } arb_clear(c1); arb_clear(c2); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
void gc_integrals_precomp(acb_ptr res, acb_srcptr u, slong d1, slong d, slong g, const gc_int_t gc, int flag, slong prec) { slong l; arb_t w, x; acb_t y, yxi; void (*sqrt_pol) (acb_t y, acb_srcptr u, slong d1, slong d, const arb_t x, slong prec); arb_init(w); arb_init(x); acb_init(y); acb_init(yxi); #if DEBUG flint_printf("\ngc integral : d1 = %ld, d = %ld, g = %ld, n = %ld, prec = %ld", d1, d, g, gc->n, prec); #endif sqrt_pol = &sqrt_pol_turn; if (flag & AJ_ROOT_DEF) sqrt_pol = &sqrt_pol_def; else if (flag & AJ_ROOT_TURN) sqrt_pol = &sqrt_pol_turn; /* compute integral */ _acb_vec_zero(res, g); for (l = 0; l < gc->len; l++) { /* compute 1/y(x) */ sqrt_pol(y, u, d1, d, gc->x + l, prec); acb_inv(y, y, prec); /* differentials */ acb_vec_add_geom_arb(res, g, y, gc->x + l, prec); /* now on -x */ arb_neg(x, gc->x + l); sqrt_pol(y, u, d1, d, x, prec); acb_inv(y, y, prec); acb_vec_add_geom_arb(res, g, y, x, prec); } if (gc->n % 2) { arb_zero(x); /* FIXME: pb with turn */ sqrt_pol_def(y, u, d1, d, x, prec); #if DEBUG > 1 flint_printf("\nend integration sum"); _acb_vec_printd(res, g, 30, "\n"); flint_printf("\nroots (d1=%ld, d=%ld)\n",d1,d); _acb_vec_printd(u, d, 30, "\n"); flint_printf("\n -> y = "); acb_printd(y, 30); #endif acb_inv(y, y, prec); acb_add(res + 0, res + 0, y, prec); } /* multiply by weight = Pi / n */ arb_const_pi(w, prec); arb_div_ui(w, w, gc->n, prec); _acb_vec_scalar_mul_arb(res, res, g, w, prec); #if DEBUG > 1 flint_printf("\nend integration "); _acb_vec_printd(res, g, 30, "\n"); #endif arb_clear(x); arb_clear(w); acb_clear(y); acb_clear(yxi); }
void acb_calc_cauchy_bound(arb_t bound, acb_calc_func_t func, void * param, const acb_t x, const arb_t radius, slong maxdepth, slong prec) { slong i, n, depth, wp; arb_t pi, theta, v, s1, c1, s2, c2, st, ct; acb_t t, u; arb_t b; arb_init(pi); arb_init(theta); arb_init(v); arb_init(s1); arb_init(c1); arb_init(s2); arb_init(c2); arb_init(st); arb_init(ct); acb_init(t); acb_init(u); arb_init(b); wp = prec + 20; arb_const_pi(pi, wp); arb_zero_pm_inf(b); for (depth = 0, n = 16; depth < maxdepth; n *= 2, depth++) { arb_zero(b); /* theta = 2 pi / n */ arb_div_ui(theta, pi, n, wp); arb_mul_2exp_si(theta, theta, 1); /* sine and cosine of i*theta and (i+1)*theta */ arb_zero(s1); arb_one(c1); arb_sin_cos(st, ct, theta, wp); arb_set(s2, st); arb_set(c2, ct); for (i = 0; i < n; i++) { /* sine and cosine of 2 pi ([i,i+1]/n) */ /* since we use power of two subdivision points, the sine and cosine are monotone on each subinterval */ arb_union(acb_realref(t), c1, c2, wp); arb_union(acb_imagref(t), s1, s2, wp); acb_mul_arb(t, t, radius, wp); acb_add(t, t, x, prec); /* next angle */ arb_mul(v, c2, ct, wp); arb_mul(c1, s2, st, wp); arb_sub(c1, v, c1, wp); arb_mul(v, c2, st, wp); arb_mul(s1, s2, ct, wp); arb_add(s1, v, s1, wp); arb_swap(c1, c2); arb_swap(s1, s2); func(u, t, param, 1, prec); acb_abs(v, u, prec); arb_add(b, b, v, prec); } arb_div_ui(b, b, n, prec); if (arb_is_positive(b)) break; } arb_set(bound, b); arb_clear(pi); arb_clear(theta); arb_clear(v); acb_clear(t); acb_clear(u); arb_clear(b); arb_clear(s1); arb_clear(c1); arb_clear(s2); arb_clear(c2); arb_clear(st); arb_clear(ct); }
void _arb_poly_exp_series(arb_ptr f, arb_srcptr h, slong hlen, slong n, slong prec) { hlen = FLINT_MIN(hlen, n); if (hlen == 1) { arb_exp(f, h, prec); _arb_vec_zero(f + 1, n - 1); } else if (n == 2) { arb_exp(f, h, prec); arb_mul(f + 1, f, h + 1, prec); /* safe since hlen >= 2 */ } else if (_arb_vec_is_zero(h + 1, hlen - 2)) /* h = a + bx^d */ { slong i, j, d = hlen - 1; arb_t t; arb_init(t); arb_set(t, h + d); arb_exp(f, h, prec); for (i = 1, j = d; j < n; j += d, i++) { arb_mul(f + j, f + j - d, t, prec); arb_div_ui(f + j, f + j, i, prec); _arb_vec_zero(f + j - d + 1, hlen - 2); } _arb_vec_zero(f + j - d + 1, n - (j - d + 1)); arb_clear(t); } else if (hlen <= arb_poly_newton_exp_cutoff) { _arb_poly_exp_series_basecase(f, h, hlen, n, prec); } else { arb_ptr g, t; arb_t u; int fix; g = _arb_vec_init((n + 1) / 2); fix = (hlen < n || h == f || !arb_is_zero(h)); if (fix) { t = _arb_vec_init(n); _arb_vec_set(t + 1, h + 1, hlen - 1); } else t = (arb_ptr) h; arb_init(u); arb_exp(u, h, prec); _arb_poly_exp_series_newton(f, g, t, n, prec, 0, arb_poly_newton_exp_cutoff); if (!arb_is_one(u)) _arb_vec_scalar_mul(f, f, n, u, prec); _arb_vec_clear(g, (n + 1) / 2); if (fix) _arb_vec_clear(t, n); arb_clear(u); } }
int main() { slong iter; flint_rand_t state; flint_printf("bernoulli_poly_ui...."); fflush(stdout); flint_randinit(state); /* test multiplication theorem */ for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++) { arb_t x, t, res1, res2; ulong n, m, k; slong prec; n = n_randint(state, 50); m = 1 + n_randint(state, 5); prec = 2 + n_randint(state, 200); arb_init(x); arb_init(t); arb_init(res1); arb_init(res2); arb_randtest(x, state, 2 + n_randint(state, 200), 20); arb_randtest(res1, state, 2 + n_randint(state, 200), 20); arb_mul_ui(t, x, m, prec); arb_bernoulli_poly_ui(res1, n, t, prec); arb_zero(res2); for (k = 0; k < m; k++) { arb_set_ui(t, k); arb_div_ui(t, t, m, prec); arb_add(t, t, x, prec); arb_bernoulli_poly_ui(t, n, t, prec); arb_add(res2, res2, t, prec); } if (n > 0) { arb_ui_pow_ui(t, m, n - 1, prec); arb_mul(res2, res2, t, prec); } else { arb_div_ui(res2, res2, m, prec); } if (!arb_overlaps(res1, res2)) { flint_printf("FAIL: overlap\n\n"); flint_printf("n = %wu, m = %wu\n\n", n, m); flint_printf("x = "); arb_printd(x, 15); flint_printf("\n\n"); flint_printf("res1 = "); arb_printd(res1, 15); flint_printf("\n\n"); flint_printf("res2 = "); arb_printd(res2, 15); flint_printf("\n\n"); abort(); } arb_clear(x); arb_clear(t); arb_clear(res1); arb_clear(res2); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
void Lib_Arb_Div_Ui(ArbPtr f, ArbPtr g, uint32_t x, int32_t prec) { arb_div_ui( (arb_ptr) f, (arb_ptr) g, x, prec); }
void _acb_poly_zeta_em_bound(arb_ptr bound, const acb_t s, const acb_t a, ulong N, ulong M, slong len, slong wp) { arb_t K, C, AN, S2M; arb_ptr F, R; slong k; arb_srcptr alpha = acb_realref(a); arb_srcptr beta = acb_imagref(a); arb_srcptr sigma = acb_realref(s); arb_srcptr tau = acb_imagref(s); arb_init(AN); arb_init(S2M); /* require alpha + N > 1, sigma + 2M > 1 */ arb_add_ui(AN, alpha, N - 1, wp); arb_add_ui(S2M, sigma, 2*M - 1, wp); if (!arb_is_positive(AN) || !arb_is_positive(S2M) || N < 1 || M < 1) { arb_clear(AN); arb_clear(S2M); for (k = 0; k < len; k++) arb_pos_inf(bound + k); return; } /* alpha + N, sigma + 2M */ arb_add_ui(AN, AN, 1, wp); arb_add_ui(S2M, S2M, 1, wp); R = _arb_vec_init(len); F = _arb_vec_init(len); arb_init(K); arb_init(C); /* bound for power integral */ bound_C(C, AN, beta, wp); bound_K(K, AN, beta, tau, wp); bound_I(R, AN, S2M, C, len, wp); for (k = 0; k < len; k++) { arb_mul(R + k, R + k, K, wp); arb_div_ui(K, K, k + 1, wp); } /* bound for rising factorial */ bound_rfac(F, s, 2*M, len, wp); /* product (TODO: only need upper bound; write a function for this) */ _arb_poly_mullow(bound, F, len, R, len, len, wp); /* bound for bernoulli polynomials, 4 / (2pi)^(2M) */ arb_const_pi(C, wp); arb_mul_2exp_si(C, C, 1); arb_pow_ui(C, C, 2 * M, wp); arb_ui_div(C, 4, C, wp); _arb_vec_scalar_mul(bound, bound, len, C, wp); arb_clear(K); arb_clear(C); arb_clear(AN); arb_clear(S2M); _arb_vec_clear(R, len); _arb_vec_clear(F, len); }