int ares_set_servers_ports(ares_channel channel, struct ares_addr_port_node *servers) { struct ares_addr_port_node *srvr; int num_srvrs = 0; int i; if (ares_library_initialized() != ARES_SUCCESS) return ARES_ENOTINITIALIZED; /* LCOV_EXCL_LINE: n/a on non-WinSock */ if (!channel) return ARES_ENODATA; if (!ares__is_list_empty(&channel->all_queries)) return ARES_ENOTIMP; ares__destroy_servers_state(channel); for (srvr = servers; srvr; srvr = srvr->next) { num_srvrs++; } if (num_srvrs > 0) { /* Allocate storage for servers state */ channel->servers = ares_malloc(num_srvrs * sizeof(struct server_state)); if (!channel->servers) { return ARES_ENOMEM; } channel->nservers = num_srvrs; /* Fill servers state address data */ for (i = 0, srvr = servers; srvr; i++, srvr = srvr->next) { channel->servers[i].addr.family = srvr->family; channel->servers[i].addr.udp_port = htons((unsigned short)srvr->udp_port); channel->servers[i].addr.tcp_port = htons((unsigned short)srvr->tcp_port); if (srvr->family == AF_INET) memcpy(&channel->servers[i].addr.addrV4, &srvr->addrV4, sizeof(srvr->addrV4)); else memcpy(&channel->servers[i].addr.addrV6, &srvr->addrV6, sizeof(srvr->addrV6)); } /* Initialize servers state remaining data */ ares__init_servers_state(channel); } return ARES_SUCCESS; }
int ares_getsock(ares_channel channel, int *s, int numsocks) /* size of the 'socks' array */ { struct server_state *server; int i; int sockindex=0; int bitmap = 0; unsigned int setbits = 0xffffffff; ares_socket_t *socks = (ares_socket_t *)s; /* Are there any active queries? */ int active_queries = !ares__is_list_empty(&(channel->all_queries)); for (i = 0; (i < channel->nservers) && (sockindex < ARES_GETSOCK_MAXNUM); i++) { server = &channel->servers[i]; /* We only need to register interest in UDP sockets if we have * outstanding queries. */ if (active_queries && server->udp_socket != ARES_SOCKET_BAD) { if(sockindex >= numsocks) break; socks[sockindex] = server->udp_socket; bitmap |= ARES_GETSOCK_READABLE(setbits, sockindex); sockindex++; } /* We always register for TCP events, because we want to know * when the other side closes the connection, so we don't waste * time trying to use a broken connection. */ if (server->tcp_socket != ARES_SOCKET_BAD) { if(sockindex >= numsocks) break; socks[sockindex] = server->tcp_socket; bitmap |= ARES_GETSOCK_READABLE(setbits, sockindex); if (server->qhead && active_queries) /* then the tcp socket is also writable! */ bitmap |= ARES_GETSOCK_WRITABLE(setbits, sockindex); sockindex++; } } return bitmap; }
/* WARNING: Beware that this is linear in the number of outstanding * requests! You are probably far better off just calling ares_process() * once per second, rather than calling ares_timeout() to figure out * when to next call ares_process(). */ struct timeval *ares_timeout(ares_channel channel, struct timeval *maxtv, struct timeval *tvbuf) { struct query *query; struct list_node* list_head; struct list_node* list_node; struct timeval now; struct timeval nextstop; long offset, min_offset; /* No queries, no timeout (and no fetch of the current time). */ if (ares__is_list_empty(&(channel->all_queries))) return maxtv; /* Find the minimum timeout for the current set of queries. */ now = ares__tvnow(); min_offset = -1; list_head = &(channel->all_queries); for (list_node = list_head->next; list_node != list_head; list_node = list_node->next) { query = list_node->data; if (query->timeout.tv_sec == 0) continue; offset = timeoffset(&now, &query->timeout); if (offset < 0) offset = 0; if (min_offset == -1 || offset < min_offset) min_offset = offset; } /* If we found a minimum timeout and it's sooner than the one specified in * maxtv (if any), return it. Otherwise go with maxtv. */ if (min_offset != -1) { int ioffset = (min_offset > (long)INT_MAX) ? INT_MAX : (int)min_offset; nextstop.tv_sec = ioffset/1000; nextstop.tv_usec = (ioffset%1000)*1000; if (!maxtv || ares__timedout(maxtv, &nextstop)) { *tvbuf = nextstop; return tvbuf; } } return maxtv; }
/* * ares_cancel() cancels all ongoing requests/resolves that might be going on * on the given channel. It does NOT kill the channel, use ares_destroy() for * that. */ void ares_cancel(ares_channel channel) { struct query *query; struct list_node* list_head; struct list_node* list_node; int i; list_head = &(channel->all_queries); for (list_node = list_head->next; list_node != list_head; ) { query = list_node->data; list_node = list_node->next; /* since we're deleting the query */ query->callback(query->arg, ARES_ETIMEOUT, 0, NULL, 0); ares__free_query(query); } #ifndef NDEBUG /* Freeing the query should remove it from all the lists in which it sits, * so all query lists should be empty now. */ assert(ares__is_list_empty(&(channel->all_queries))); for (i = 0; i < ARES_QID_TABLE_SIZE; i++) { assert(ares__is_list_empty(&(channel->queries_by_qid[i]))); } for (i = 0; i < ARES_TIMEOUT_TABLE_SIZE; i++) { assert(ares__is_list_empty(&(channel->queries_by_timeout[i]))); } #endif if (!(channel->flags & ARES_FLAG_STAYOPEN)) { if (channel->servers) { for (i = 0; i < channel->nservers; i++) ares__close_sockets(channel, &channel->servers[i]); } } }
int ares_fds(ares_channel channel, fd_set *read_fds, fd_set *write_fds) { struct server_state *server; ares_socket_t nfds; int i; /* Are there any active queries? */ int active_queries = !ares__is_list_empty(&(channel->all_queries)); nfds = 0; for (i = 0; i < channel->nservers; i++) { server = &channel->servers[i]; /* We only need to register interest in UDP sockets if we have * outstanding queries. */ if (active_queries && server->udp_socket != ARES_SOCKET_BAD) { FD_SET(server->udp_socket, read_fds); if (server->udp_socket >= nfds) nfds = server->udp_socket + 1; } /* We always register for TCP events, because we want to know * when the other side closes the connection, so we don't waste * time trying to use a broken connection. */ if (server->tcp_socket != ARES_SOCKET_BAD) { FD_SET(server->tcp_socket, read_fds); if (server->qhead) FD_SET(server->tcp_socket, write_fds); if (server->tcp_socket >= nfds) nfds = server->tcp_socket + 1; } } return (int)nfds; }