void acb_hypgeom_erf(acb_t res, const acb_t z, slong prec) { double x, y, absz2, logz; slong prec2; if (!acb_is_finite(z)) { acb_indeterminate(res); return; } if (acb_is_zero(z)) { acb_zero(res); return; } if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 0) < 0 && arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 0) < 0)) { acb_hypgeom_erf_1f1a(res, z, prec); return; } if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 64) > 0 || arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 64) > 0)) { acb_hypgeom_erf_asymp(res, z, prec, prec); return; } x = arf_get_d(arb_midref(acb_realref(z)), ARF_RND_DOWN); y = arf_get_d(arb_midref(acb_imagref(z)), ARF_RND_DOWN); absz2 = x * x + y * y; logz = 0.5 * log(absz2); if (logz - absz2 < -(prec + 8) * 0.69314718055994530942) { /* If the asymptotic term is small, we can compute with reduced precision */ prec2 = FLINT_MIN(prec + 4 + (y*y - x*x - logz) * 1.4426950408889634074, (double) prec); prec2 = FLINT_MAX(8, prec2); prec2 = FLINT_MIN(prec2, prec); acb_hypgeom_erf_asymp(res, z, prec, prec2); } else if (arf_cmpabs(arb_midref(acb_imagref(z)), arb_midref(acb_realref(z))) > 0) { acb_hypgeom_erf_1f1a(res, z, prec); } else { acb_hypgeom_erf_1f1b(res, z, prec); } }
void acb_lambertw_principal_d(acb_t res, const acb_t z) { double za, zb, wa, wb, ewa, ewb, t, u, q, r; int k, maxk = 15; za = arf_get_d(arb_midref(acb_realref(z)), ARF_RND_DOWN); zb = arf_get_d(arb_midref(acb_imagref(z)), ARF_RND_DOWN); /* make sure we end up on the right branch */ if (za < -0.367 && zb > -1e-20 && zb <= 0.0 && arf_sgn(arb_midref(acb_imagref(z))) < 0) zb = -1e-20; wa = za; wb = zb; if (fabs(wa) > 2.0 || fabs(wb) > 2.0) { t = atan2(wb, wa); wa = 0.5 * log(wa * wa + wb * wb); wb = t; } else if (fabs(wa) > 0.25 || fabs(wb) > 0.25) { /* We have W(z) ~= -1 + (2(ez+1))^(1/2) near the branch point. Changing the exponent to 1/4 gives a much worse local guess which however does the job on a larger domain. */ wa *= 5.43656365691809; wb *= 5.43656365691809; wa += 2.0; t = atan2(wb, wa); r = pow(wa * wa + wb * wb, 0.125); wa = r * cos(0.25 * t); wb = r * sin(0.25 * t); wa -= 1.0; } for (k = 0; k < maxk; k++) { t = exp(wa); ewa = t * cos(wb); ewb = t * sin(wb); t = (ewa * wa - ewb * wb); q = t + ewa; t -= za; u = (ewb * wa + ewa * wb); r = u + ewb; u -= zb; ewa = q * t + r * u; ewb = q * u - r * t; r = 1.0 / (q * q + r * r); ewa *= r; ewb *= r; if ((ewa*ewa + ewb*ewb) < (wa*wa + wb*wb) * 1e-12) maxk = FLINT_MIN(maxk, k + 2); wa -= ewa; wb -= ewb; } acb_set_d_d(res, wa, wb); }
int acb_hypgeom_2f1_choose(const acb_t z) { double x, y; double mag[7]; int i, pick; x = arf_get_d(arb_midref(acb_realref(z)), ARF_RND_DOWN); y = arf_get_d(arb_midref(acb_imagref(z)), ARF_RND_DOWN); x = FLINT_MAX(FLINT_MIN(x, 1e10), -1e10); y = FLINT_MAX(FLINT_MIN(y, 1e10), -1e10); mag[0] = x*x + y*y; /* |z|^2 */ mag[4] = (1.0-x)*(1.0-x) + y*y; /* |1-z|^2 */ if (mag[0] <= ALWAYS1) return 0; mag[1] = mag[0] / FLINT_MAX(mag[4], 1e-10); /* |z/(z-1)|^2 */ if (mag[1] <= ALWAYS1) return 1; if (mag[0] <= ALWAYS2 || mag[1] <= ALWAYS2) return mag[0] <= mag[1] ? 0 : 1; mag[2] = 1.0 / mag[0]; /* |1/z|^2 */ mag[3] = 1.0 / FLINT_MAX(mag[4], 1e-10); /* 1/|1-z|^2 */ mag[5] = mag[4] / mag[0]; /* |1-1/z|^2 = |(1-z)/z|^2 */ pick = 0; for (i = 1; i < 6; i++) { if (mag[i] < mag[pick]) pick = i; } if (mag[pick] <= LIMIT) return pick; return 6; }
int acb_hypgeom_u_use_asymp(const acb_t z, slong prec) { double x, y; if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 0) < 0 && arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 0) < 0)) { return 0; } if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 64) > 0 || arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 64) > 0)) { return 1; } x = arf_get_d(arb_midref(acb_realref(z)), ARF_RND_DOWN); y = arf_get_d(arb_midref(acb_imagref(z)), ARF_RND_DOWN); return sqrt(x * x + y * y) > prec * 0.69314718055994530942; }
renf_elem_class::operator double() const noexcept { if (nf == nullptr) { arb_t s; arb_init(s); arb_set_fmpq(s, b, 128); double ans = arf_get_d(arb_midref(s), ARF_RND_NEAR); arb_clear(s); return ans; } else return renf_elem_get_d(a, nf->renf_t(), ARF_RND_NEAR); }
/* this can be improved */ static int use_recurrence(const acb_t n, const acb_t a, const acb_t b, slong prec) { if (!acb_is_int(n) || !arb_is_nonnegative(acb_realref(n))) return 0; if (arf_cmpabs_ui(arb_midref(acb_realref(n)), prec) > 0) return 0; if (arb_is_nonnegative(acb_realref(a)) || arf_get_d(arb_midref(acb_realref(a)), ARF_RND_DOWN) > -0.9) return 0; return 1; }
void arb_mat_print_sage_float(const arb_mat_t A) { int nrows = arb_mat_nrows(A); int ncols = arb_mat_ncols(A); printf("["); for(int j = 0; j < nrows; j++) { printf("["); for(int k = 0; k < ncols; k++) { double x = arf_get_d(arb_midref(arb_mat_entry(A, j, k)), ARF_RND_NEAR); printf("%e", x); if(k < nrows - 1) printf(", "); } printf("],\n"); } printf("]\n"); }
void acb_hypgeom_airy(acb_t ai, acb_t aip, acb_t bi, acb_t bip, const acb_t z, slong prec) { arf_srcptr re, im; double x, y, t, zmag, z15, term_est, airy_est, abstol; slong n, wp; if (!acb_is_finite(z)) { if (ai != NULL) acb_indeterminate(ai); if (aip != NULL) acb_indeterminate(aip); if (bi != NULL) acb_indeterminate(bi); if (bip != NULL) acb_indeterminate(bip); return; } re = arb_midref(acb_realref(z)); im = arb_midref(acb_imagref(z)); wp = prec * 1.03 + 15; /* tiny input -- use direct method and pick n without underflowing */ if (arf_cmpabs_2exp_si(re, -64) < 0 && arf_cmpabs_2exp_si(im, -64) < 0) { if (arf_cmpabs_2exp_si(re, -wp) < 0 && arf_cmpabs_2exp_si(im, -wp) < 0) { n = 1; /* very tiny input */ } else { if (arf_cmpabs(re, im) > 0) zmag = fmpz_get_d(ARF_EXPREF(re)); else zmag = fmpz_get_d(ARF_EXPREF(im)); zmag = (zmag + 1) * (1.0 / LOG2); n = wp / (-zmag) + 1; } acb_hypgeom_airy_direct(ai, aip, bi, bip, z, n, wp); } /* huge input -- use asymptotics and pick n without overflowing */ else if ((arf_cmpabs_2exp_si(re, 64) > 0 || arf_cmpabs_2exp_si(im, 64) > 0)) { if (arf_cmpabs_2exp_si(re, prec) > 0 || arf_cmpabs_2exp_si(im, prec) > 0) { n = 1; /* very huge input */ } else { x = fmpz_get_d(ARF_EXPREF(re)); y = fmpz_get_d(ARF_EXPREF(im)); zmag = (FLINT_MAX(x, y) - 2) * (1.0 / LOG2); n = asymp_pick_terms(wp, zmag); n = FLINT_MAX(n, 1); } acb_hypgeom_airy_asymp(ai, aip, bi, bip, z, n, wp); } else /* moderate input */ { x = arf_get_d(re, ARF_RND_DOWN); y = arf_get_d(im, ARF_RND_DOWN); zmag = sqrt(x * x + y * y); z15 = zmag * sqrt(zmag); if (zmag >= 4.0 && (n = asymp_pick_terms(wp, log(zmag))) != -1) { acb_hypgeom_airy_asymp(ai, aip, bi, bip, z, n, wp); } else if (zmag <= 1.5) { t = 3 * (wp * LOG2) / (2 * z15 * EXP1); t = (wp * LOG2) / (2 * d_lambertw(t)); n = FLINT_MAX(t + 1, 2); acb_hypgeom_airy_direct(ai, aip, bi, bip, z, n, wp); } else { /* estimate largest term: log2(exp(2(z^3/9)^(1/2))) */ term_est = 0.96179669392597560491 * z15; /* estimate the smaller of Ai and Bi */ airy_est = estimate_airy(x, y, (ai != NULL || aip != NULL)); /* estimate absolute tolerance and necessary working precision */ abstol = airy_est - wp; wp = wp + term_est - airy_est; wp = FLINT_MAX(wp, 10); t = 3 * (-abstol * LOG2) / (2 * z15 * EXP1); t = (-abstol * LOG2) / (2 * d_lambertw(t)); n = FLINT_MAX(t + 1, 2); if (acb_is_exact(z)) acb_hypgeom_airy_direct(ai, aip, bi, bip, z, n, wp); else acb_hypgeom_airy_direct_prop(ai, aip, bi, bip, z, n, wp); } } if (ai != NULL) acb_set_round(ai, ai, prec); if (aip != NULL) acb_set_round(aip, aip, prec); if (bi != NULL) acb_set_round(bi, bi, prec); if (bip != NULL) acb_set_round(bip, bip, prec); }
void acb_hypgeom_erf(acb_t res, const acb_t z, slong prec) { double x, y, abs_z2, log_z, log_erf_z_asymp; slong prec2, wp; int more_imaginary; if (!acb_is_finite(z)) { acb_indeterminate(res); return; } if (acb_is_zero(z)) { acb_zero(res); return; } if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), -64) < 0 && arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), -64) < 0)) { acb_hypgeom_erf_1f1(res, z, prec, prec, 1); return; } if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 64) > 0 || arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 64) > 0)) { acb_hypgeom_erf_asymp(res, z, 0, prec, prec); return; } x = arf_get_d(arb_midref(acb_realref(z)), ARF_RND_DOWN); y = arf_get_d(arb_midref(acb_imagref(z)), ARF_RND_DOWN); abs_z2 = x * x + y * y; log_z = 0.5 * log(abs_z2); /* estimate of log(erf(z)), disregarding csgn term */ log_erf_z_asymp = y*y - x*x - log_z; if (log_z - abs_z2 < -(prec + 8) * 0.69314718055994530942) { /* If the asymptotic term is small, we can compute with reduced precision. */ prec2 = FLINT_MIN(prec + 4 + log_erf_z_asymp * 1.4426950408889634074, (double) prec); prec2 = FLINT_MAX(8, prec2); prec2 = FLINT_MIN(prec2, prec); acb_hypgeom_erf_asymp(res, z, 0, prec, prec2); } else { more_imaginary = arf_cmpabs(arb_midref(acb_imagref(z)), arb_midref(acb_realref(z))) > 0; /* Worst case: exp(|x|^2), computed: exp(x^2). (x^2+y^2) - (x^2-y^2) = 2y^2, etc. */ if (more_imaginary) wp = prec + FLINT_MAX(2 * x * x, 0.0) * 1.4426950408889634074 + 5; else wp = prec + FLINT_MAX(2 * y * y, 0.0) * 1.4426950408889634074 + 5; acb_hypgeom_erf_1f1(res, z, prec, wp, more_imaginary); } }
void acb_hypgeom_m_choose(int * asymp, int * kummer, slong * wp, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec) { double x, y, t, cancellation; double input_accuracy, direct_accuracy, asymp_accuracy; slong m = WORD_MAX; slong n = WORD_MAX; if (acb_is_int(a) && arf_cmpabs_2exp_si(arb_midref(acb_realref(a)), 30) < 0) { m = arf_get_si(arb_midref(acb_realref(a)), ARF_RND_DOWN); } if (acb_is_int(b) && arf_cmpabs_2exp_si(arb_midref(acb_realref(b)), 30) < 0) { n = arf_get_si(arb_midref(acb_realref(b)), ARF_RND_DOWN); } *asymp = 0; *kummer = 0; *wp = prec; /* The 1F1 series terminates. */ /* TODO: for large m, estimate extra precision here. */ if (m <= 0 && m < n && m > -10 * prec && (n > 0 || !regularized)) { *asymp = 0; return; } /* The 1F1 series terminates with the Kummer transform. */ /* TODO: for large m, estimate extra precision here. */ if (m >= 1 && n >= 1 && m < 0.1 * prec && n < 0.1 * prec && n <= m) { *asymp = 0; *kummer = 1; return; } input_accuracy = acb_rel_accuracy_bits(z); t = acb_rel_accuracy_bits(a); input_accuracy = FLINT_MIN(input_accuracy, t); t = acb_rel_accuracy_bits(b); input_accuracy = FLINT_MIN(input_accuracy, t); input_accuracy = FLINT_MAX(input_accuracy, 0.0); /* From here we ignore the values of a, b. Taking them into account is a possible future improvement... */ /* Tiny |z|. */ if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 2) < 0 && arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 2) < 0)) { *asymp = 0; *wp = FLINT_MAX(2, FLINT_MIN(input_accuracy + 20, prec)); return; } /* Huge |z|. */ if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 64) > 0 || arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 64) > 0)) { *asymp = 1; *wp = FLINT_MAX(2, FLINT_MIN(input_accuracy + 20, prec)); return; } x = arf_get_d(arb_midref(acb_realref(z)), ARF_RND_DOWN); y = arf_get_d(arb_midref(acb_imagref(z)), ARF_RND_DOWN); asymp_accuracy = sqrt(x * x + y * y) * 1.44269504088896 - 5.0; /* The Kummer transformation gives less cancellation with the 1F1 series. */ if (x < 0.0) { *kummer = 1; x = -x; } if (asymp_accuracy >= prec) { *asymp = 1; *wp = FLINT_MAX(2, FLINT_MIN(input_accuracy + 20, prec)); return; } cancellation = hypotmx(x, y) * 1.44269504088896; direct_accuracy = input_accuracy - cancellation; if (direct_accuracy > asymp_accuracy) { *asymp = 0; *wp = FLINT_MAX(2, FLINT_MIN(input_accuracy + 20, prec + cancellation)); } else { *asymp = 1; *wp = FLINT_MAX(2, FLINT_MIN(input_accuracy + 20, prec)); } }
double Lib_Arb_Get_D(ArbPtr x) { return arf_get_d( arb_midref((arb_ptr) x), ARF_RND_DOWN); }
void acb_gamma_stirling_eval(acb_t s, const acb_t z, long nterms, int digamma, long prec) { acb_t t, logz, zinv, zinv2; arb_t b; mag_t err; long k, term_prec; double z_mag, term_mag; acb_init(t); acb_init(logz); acb_init(zinv); acb_init(zinv2); arb_init(b); acb_log(logz, z, prec); acb_inv(zinv, z, prec); nterms = FLINT_MAX(nterms, 1); acb_zero(s); if (nterms > 1) { acb_mul(zinv2, zinv, zinv, prec); z_mag = arf_get_d(arb_midref(acb_realref(logz)), ARF_RND_UP) * 1.44269504088896; for (k = nterms - 1; k >= 1; k--) { term_mag = bernoulli_bound_2exp_si(2 * k); term_mag -= (2 * k - 1) * z_mag; term_prec = prec + term_mag; term_prec = FLINT_MIN(term_prec, prec); term_prec = FLINT_MAX(term_prec, 10); arb_gamma_stirling_coeff(b, k, digamma, term_prec); if (prec > 2000) { acb_set_round(t, zinv2, term_prec); acb_mul(s, s, t, term_prec); } else acb_mul(s, s, zinv2, term_prec); arb_add(acb_realref(s), acb_realref(s), b, term_prec); } if (digamma) acb_mul(s, s, zinv2, prec); else acb_mul(s, s, zinv, prec); } /* remainder bound */ mag_init(err); acb_gamma_stirling_bound(err, z, digamma ? 1 : 0, 1, nterms); mag_add(arb_radref(acb_realref(s)), arb_radref(acb_realref(s)), err); mag_add(arb_radref(acb_imagref(s)), arb_radref(acb_imagref(s)), err); mag_clear(err); if (digamma) { acb_neg(s, s); acb_mul_2exp_si(zinv, zinv, -1); acb_sub(s, s, zinv, prec); acb_add(s, s, logz, prec); } else { /* (z-0.5)*log(z) - z + log(2*pi)/2 */ arb_one(b); arb_mul_2exp_si(b, b, -1); arb_set(acb_imagref(t), acb_imagref(z)); arb_sub(acb_realref(t), acb_realref(z), b, prec); acb_mul(t, logz, t, prec); acb_add(s, s, t, prec); acb_sub(s, s, z, prec); arb_const_log_sqrt2pi(b, prec); arb_add(acb_realref(s), acb_realref(s), b, prec); } acb_clear(t); acb_clear(logz); acb_clear(zinv); acb_clear(zinv2); arb_clear(b); }
int main() { slong iter; flint_rand_t state; flint_printf("get_d...."); fflush(stdout); flint_randinit(state); /* test exact roundtrip */ for (iter = 0; iter < 100000 * arb_test_multiplier(); iter++) { arf_t x, z; double y; arf_rnd_t rnd; arf_init(x); arf_init(z); switch (n_randint(state, 4)) { case 0: rnd = ARF_RND_DOWN; break; case 1: rnd = ARF_RND_UP; break; case 2: rnd = ARF_RND_FLOOR; break; case 3: rnd = ARF_RND_CEIL; break; default: rnd = ARF_RND_NEAR; break; } arf_randtest_special(x, state, 53, 8); y = arf_get_d(x, rnd); arf_set_d(z, y); if (!arf_equal(x, z)) { flint_printf("FAIL:\n\n"); flint_printf("x = "); arf_print(x); flint_printf("\n\n"); flint_printf("y = %.17g\n\n", y); flint_printf("z = "); arf_print(z); flint_printf("\n\n"); abort(); } arf_clear(x); arf_clear(z); } /* test rounding */ for (iter = 0; iter < 100000 * arb_test_multiplier(); iter++) { arf_t x, z, w; arf_rnd_t rnd; double y; arf_init(x); arf_init(z); arf_init(w); arf_randtest_special(x, state, 300, 8); switch (n_randint(state, 4)) { case 0: rnd = ARF_RND_DOWN; break; case 1: rnd = ARF_RND_UP; break; case 2: rnd = ARF_RND_FLOOR; break; default: rnd = ARF_RND_CEIL; break; } y = arf_get_d(x, rnd); arf_set_d(w, y); arf_set_round(z, x, 53, rnd); if (!arf_equal(w, z)) { flint_printf("FAIL:\n\n"); flint_printf("x = "); arf_print(x); flint_printf("\n\n"); flint_printf("y = %.17g\n\n", y); flint_printf("z = "); arf_print(z); flint_printf("\n\n"); flint_printf("w = "); arf_print(w); flint_printf("\n\n"); abort(); } arf_clear(x); arf_clear(z); arf_clear(w); } /* compare with mpfr */ for (iter = 0; iter < 100000 * arb_test_multiplier(); iter++) { arf_t x, r1, r2; arf_rnd_t rnd; mpfr_t t; double d1, d2; arf_init(x); arf_init(r1); arf_init(r2); mpfr_init2(t, 300); arf_randtest_special(x, state, 300, 20); arf_get_mpfr(t, x, MPFR_RNDD); switch (n_randint(state, 4)) { case 0: rnd = ARF_RND_DOWN; break; case 1: rnd = ARF_RND_UP; break; case 2: rnd = ARF_RND_FLOOR; break; case 3: rnd = ARF_RND_CEIL; break; default: rnd = ARF_RND_NEAR; break; } d1 = arf_get_d(x, rnd); d2 = mpfr_get_d(t, rnd_to_mpfr(rnd)); arf_set_d(r1, d1); arf_set_d(r2, d2); if (!arf_equal(r1, r2)) { flint_printf("FAIL:\n\n"); flint_printf("rnd = %i\n\n", rnd); flint_printf("x = "); arf_print(x); flint_printf("\n\n"); flint_printf("d1 = %.17g\n\n", d1); flint_printf("d2 = %.17g\n\n", d2); flint_printf("r1 = "); arf_print(r1); flint_printf("\n\n"); flint_printf("r2 = "); arf_print(r2); flint_printf("\n\n"); abort(); } arf_clear(x); arf_clear(r1); arf_clear(r2); mpfr_clear(t); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
int acb_calc_integrate_taylor(acb_t res, acb_calc_func_t func, void * param, const acb_t a, const acb_t b, const arf_t inner_radius, const arf_t outer_radius, long accuracy_goal, long prec) { long num_steps, step, N, bp; int result; acb_t delta, m, x, y1, y2, sum; acb_ptr taylor_poly; arf_t err; acb_init(delta); acb_init(m); acb_init(x); acb_init(y1); acb_init(y2); acb_init(sum); arf_init(err); acb_sub(delta, b, a, prec); /* precision used for bounds calculations */ bp = MAG_BITS; /* compute the number of steps */ { arf_t t; arf_init(t); acb_get_abs_ubound_arf(t, delta, bp); arf_div(t, t, inner_radius, bp, ARF_RND_UP); arf_mul_2exp_si(t, t, -1); num_steps = (long) (arf_get_d(t, ARF_RND_UP) + 1.0); /* make sure it's not something absurd */ num_steps = FLINT_MIN(num_steps, 10 * prec); num_steps = FLINT_MAX(num_steps, 1); arf_clear(t); } result = ARB_CALC_SUCCESS; acb_zero(sum); for (step = 0; step < num_steps; step++) { /* midpoint of subinterval */ acb_mul_ui(m, delta, 2 * step + 1, prec); acb_div_ui(m, m, 2 * num_steps, prec); acb_add(m, m, a, prec); if (arb_calc_verbose) { printf("integration point %ld/%ld: ", 2 * step + 1, 2 * num_steps); acb_printd(m, 15); printf("\n"); } /* evaluate at +/- x */ /* TODO: exactify m, and include error in x? */ acb_div_ui(x, delta, 2 * num_steps, prec); /* compute bounds and number of terms to use */ { arb_t cbound, xbound, rbound; arf_t C, D, R, X, T; double DD, TT, NN; arb_init(cbound); arb_init(xbound); arb_init(rbound); arf_init(C); arf_init(D); arf_init(R); arf_init(X); arf_init(T); /* R is the outer radius */ arf_set(R, outer_radius); /* X = upper bound for |x| */ acb_get_abs_ubound_arf(X, x, bp); arb_set_arf(xbound, X); /* Compute C(m,R). Important subtlety: due to rounding when computing m, we will in general be farther than R away from the integration path. But since acb_calc_cauchy_bound actually integrates over the area traced by a complex interval, it will catch any extra singularities (giving an infinite bound). */ arb_set_arf(rbound, outer_radius); acb_calc_cauchy_bound(cbound, func, param, m, rbound, 8, bp); arf_set_mag(C, arb_radref(cbound)); arf_add(C, arb_midref(cbound), C, bp, ARF_RND_UP); /* Sanity check: we need C < inf and R > X */ if (arf_is_finite(C) && arf_cmp(R, X) > 0) { /* Compute upper bound for D = C * R * X / (R - X) */ arf_mul(D, C, R, bp, ARF_RND_UP); arf_mul(D, D, X, bp, ARF_RND_UP); arf_sub(T, R, X, bp, ARF_RND_DOWN); arf_div(D, D, T, bp, ARF_RND_UP); /* Compute upper bound for T = (X / R) */ arf_div(T, X, R, bp, ARF_RND_UP); /* Choose N */ /* TODO: use arf arithmetic to avoid overflow */ /* TODO: use relative accuracy (look at |f(m)|?) */ DD = arf_get_d(D, ARF_RND_UP); TT = arf_get_d(T, ARF_RND_UP); NN = -(accuracy_goal * 0.69314718055994530942 + log(DD)) / log(TT); N = NN + 0.5; N = FLINT_MIN(N, 100 * prec); N = FLINT_MAX(N, 1); /* Tail bound: D / (N + 1) * T^N */ { mag_t TT; mag_init(TT); arf_get_mag(TT, T); mag_pow_ui(TT, TT, N); arf_set_mag(T, TT); mag_clear(TT); } arf_mul(D, D, T, bp, ARF_RND_UP); arf_div_ui(err, D, N + 1, bp, ARF_RND_UP); } else { N = 1; arf_pos_inf(err); result = ARB_CALC_NO_CONVERGENCE; } if (arb_calc_verbose) { printf("N = %ld; bound: ", N); arf_printd(err, 15); printf("\n"); printf("R: "); arf_printd(R, 15); printf("\n"); printf("C: "); arf_printd(C, 15); printf("\n"); printf("X: "); arf_printd(X, 15); printf("\n"); } arb_clear(cbound); arb_clear(xbound); arb_clear(rbound); arf_clear(C); arf_clear(D); arf_clear(R); arf_clear(X); arf_clear(T); } /* evaluate Taylor polynomial */ taylor_poly = _acb_vec_init(N + 1); func(taylor_poly, m, param, N, prec); _acb_poly_integral(taylor_poly, taylor_poly, N + 1, prec); _acb_poly_evaluate(y2, taylor_poly, N + 1, x, prec); acb_neg(x, x); _acb_poly_evaluate(y1, taylor_poly, N + 1, x, prec); acb_neg(x, x); /* add truncation error */ arb_add_error_arf(acb_realref(y1), err); arb_add_error_arf(acb_imagref(y1), err); arb_add_error_arf(acb_realref(y2), err); arb_add_error_arf(acb_imagref(y2), err); acb_add(sum, sum, y2, prec); acb_sub(sum, sum, y1, prec); if (arb_calc_verbose) { printf("values: "); acb_printd(y1, 15); printf(" "); acb_printd(y2, 15); printf("\n"); } _acb_vec_clear(taylor_poly, N + 1); if (result == ARB_CALC_NO_CONVERGENCE) break; } acb_set(res, sum); acb_clear(delta); acb_clear(m); acb_clear(x); acb_clear(y1); acb_clear(y2); acb_clear(sum); arf_clear(err); return result; }