Exemple #1
0
Fichier : pow.c Projet : isuruf/arb
void
arb_pow(arb_t z, const arb_t x, const arb_t y, slong prec)
{
    if (arb_is_zero(y))
    {
        arb_one(z);
        return;
    }

    if (arb_is_zero(x))
    {
        if (arb_is_positive(y))
            arb_zero(z);
        else
            arb_indeterminate(z);
        return;
    }

    if (arb_is_exact(y) && !arf_is_special(arb_midref(x)))
    {
        const arf_struct * ymid = arb_midref(y);

        /* small half-integer or integer */
        if (arf_cmpabs_2exp_si(ymid, BINEXP_LIMIT) < 0 &&
            arf_is_int_2exp_si(ymid, -1))
        {
            fmpz_t e;
            fmpz_init(e);            

            if (arf_is_int(ymid))
            {
                arf_get_fmpz_fixed_si(e, ymid, 0);
                arb_pow_fmpz_binexp(z, x, e, prec);
            }
            else
            {
                arf_get_fmpz_fixed_si(e, ymid, -1);
                arb_sqrt(z, x, prec + fmpz_bits(e));
                arb_pow_fmpz_binexp(z, z, e, prec);
            }

            fmpz_clear(e);
            return;
        }
        else if (arf_is_int(ymid) && arf_sgn(arb_midref(x)) < 0)
        {
            /* use (-x)^n = (-1)^n * x^n to avoid NaNs
               at least at high enough precision */
            int odd = !arf_is_int_2exp_si(ymid, 1);
            _arb_pow_exp(z, x, 1, y, prec);
            if (odd)
                arb_neg(z, z);
            return;
        }
    }

    _arb_pow_exp(z, x, 0, y, prec);
}
Exemple #2
0
void
acb_pow_arb(acb_t z, const acb_t x, const arb_t y, long prec)
{
    const arf_struct * ymid = arb_midref(y);
    const mag_struct * yrad = arb_radref(y);

    if (arb_is_zero(y))
    {
        acb_one(z);
        return;
    }

    if (mag_is_zero(yrad))
    {
        /* small half-integer or integer */
        if (arf_cmpabs_2exp_si(ymid, BINEXP_LIMIT) < 0 &&
            arf_is_int_2exp_si(ymid, -1))
        {
            fmpz_t e;
            fmpz_init(e);            

            if (arf_is_int(ymid))
            {
                arf_get_fmpz_fixed_si(e, ymid, 0);
                acb_pow_fmpz_binexp(z, x, e, prec);
            }
            else
            {
                /* hack: give something finite here (should fix sqrt/rsqrt etc) */
                if (arb_contains_zero(acb_imagref(x)) && arb_contains_nonpositive(acb_realref(x)))
                {
                    _acb_pow_arb_exp(z, x, y, prec);
                    fmpz_clear(e);
                    return;
                }

                arf_get_fmpz_fixed_si(e, ymid, -1);
                acb_sqrt(z, x, prec + fmpz_bits(e));
                acb_pow_fmpz_binexp(z, z, e, prec);
            }

            fmpz_clear(e);
            return;
        }
    }

    _acb_pow_arb_exp(z, x, y, prec);
}
void
bernoulli_rev_init(bernoulli_rev_t iter, ulong nmax)
{
    long j;
    fmpz_t t;
    arb_t x;
    arf_t u;
    int round1, round2;
    long wp;

    nmax -= (nmax % 2);
    iter->n = nmax;

    iter->alloc = 0;
    if (nmax < BERNOULLI_REV_MIN)
        return;

    iter->prec = wp = bernoulli_global_prec(nmax);

    iter->max_power = bernoulli_zeta_terms(nmax, iter->prec);
    iter->alloc = iter->max_power + 1;
    iter->powers = _fmpz_vec_init(iter->alloc);
    fmpz_init(iter->pow_error);
    arb_init(iter->prefactor);
    arb_init(iter->two_pi_squared);

    arb_init(x);
    fmpz_init(t);
    arf_init(u);

    /* precompute powers */
    for (j = 3; j <= iter->max_power; j += 2)
    {
        arb_ui_pow_ui(x, j, nmax, bernoulli_power_prec(j, nmax, wp));
        arb_inv(x, x, bernoulli_power_prec(j, nmax, wp));
        round1 = arf_get_fmpz_fixed_si(t, arb_midref(x), -wp);
        fmpz_set(iter->powers + j, t);

        /* error: the radius, plus two roundings */
        arf_set_mag(u, arb_radref(x));
        round2 = arf_get_fmpz_fixed_si(t, u, -wp);
        fmpz_add_ui(t, t, (round1 != 0) + (round2 != 0));
        if (fmpz_cmp(iter->pow_error, t) < 0)
            fmpz_set(iter->pow_error, t);
    }

    /* precompute (2pi)^2 and 2*(n!)/(2pi)^n */
    arb_fac_ui(iter->prefactor, nmax, wp);
    arb_mul_2exp_si(iter->prefactor, iter->prefactor, 1);

    arb_const_pi(x, wp);
    arb_mul_2exp_si(x, x, 1);
    arb_mul(iter->two_pi_squared, x, x, wp);

    arb_pow_ui(x, iter->two_pi_squared, nmax / 2, wp);
    arb_div(iter->prefactor, iter->prefactor, x, wp);

    fmpz_clear(t);
    arb_clear(x);
    arf_clear(u);
}
Exemple #4
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("get_fmpz....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
    {
        arf_t x, x2;
        fmpz_t z, z2, e;
        int ret1, ret2;

        arf_init(x);
        arf_init(x2);
        fmpz_init(z);
        fmpz_init(z2);
        fmpz_init(e);

        arf_randtest(x, state, 2 + n_randint(state, 1000), 10);
        fmpz_randtest(z, state, 1 + n_randint(state, 1000));
        fmpz_randtest(z2, state, 1 + n_randint(state, 1000));
        fmpz_randtest(e, state, 1 + n_randint(state, 200));
        arf_mul_2exp_fmpz(x2, x, e);

        ret1 = arf_get_fmpz(z, x, ARF_RND_DOWN);
        ret2 = arf_get_fmpz_fixed_fmpz(z2, x2, e);

        if (!fmpz_equal(z, z2) || (ret1 != ret2))
        {
            flint_printf("FAIL (fixed_fmpz)\n\n");
            flint_printf("x = "); arf_print(x); flint_printf("\n\n");
            flint_printf("x2 = "); arf_print(x2); flint_printf("\n\n");
            flint_printf("z = "); fmpz_print(z); flint_printf("\n\n");
            flint_printf("z2 = "); fmpz_print(z2); flint_printf("\n\n");
            flint_printf("ret1 = %d, ret2 = %d\n\n", ret1, ret2);
            flint_abort();
        }

        arf_clear(x);
        arf_clear(x2);
        fmpz_clear(z);
        fmpz_clear(z2);
        fmpz_clear(e);
    }

    for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
    {
        arf_t x, x2;
        fmpz_t z, z2;
        slong e;
        int ret1, ret2;

        arf_init(x);
        arf_init(x2);
        fmpz_init(z);
        fmpz_init(z2);

        arf_randtest(x, state, 2 + n_randint(state, 1000), 10);
        fmpz_randtest(z, state, 1 + n_randint(state, 1000));
        fmpz_randtest(z2, state, 1 + n_randint(state, 1000));
        e = n_randtest(state);
        arf_mul_2exp_si(x2, x, e);

        ret1 = arf_get_fmpz(z, x, ARF_RND_DOWN);
        ret2 = arf_get_fmpz_fixed_si(z2, x2, e);

        if (!fmpz_equal(z, z2) || (ret1 != ret2))
        {
            flint_printf("FAIL (fixed_si)\n\n");
            flint_printf("x = "); arf_print(x); flint_printf("\n\n");
            flint_printf("x2 = "); arf_print(x2); flint_printf("\n\n");
            flint_printf("z = "); fmpz_print(z); flint_printf("\n\n");
            flint_printf("z2 = "); fmpz_print(z2); flint_printf("\n\n");
            flint_printf("ret1 = %d, ret2 = %d\n\n", ret1, ret2);
            flint_abort();
        }

        arf_clear(x);
        arf_clear(x2);
        fmpz_clear(z);
        fmpz_clear(z2);
    }

    for (iter = 0; iter < 1000000 * arb_test_multiplier(); iter++)
    {
        slong bits;
        arf_t x;
        mpfr_t y;
        fmpz_t z, z2;
        mpz_t w;
        int ret1, ret2;

        bits = 2 + n_randint(state, 1000);

        arf_init(x);
        mpfr_init2(y, bits);
        fmpz_init(z);
        fmpz_init(z2);
        mpz_init(w);

        arf_randtest(x, state, bits, 10);
        fmpz_randtest(z, state, 1 + n_randint(state, 1000));

        arf_get_mpfr(y, x, MPFR_RNDN);

        switch (n_randint(state, 5))
        {
            case 0:
                ret1 = arf_get_fmpz(z, x, ARF_RND_FLOOR);
                ret2 = mpfr_get_z(w, y, MPFR_RNDD);
                break;
            case 1:
                ret1 = arf_get_fmpz(z, x, ARF_RND_CEIL);
                ret2 = mpfr_get_z(w, y, MPFR_RNDU);
                break;
            case 2:
                ret1 = arf_get_fmpz(z, x, ARF_RND_DOWN);
                ret2 = mpfr_get_z(w, y, MPFR_RNDZ);
                break;
            case 3:
                ret1 = arf_get_fmpz(z, x, ARF_RND_UP);
                ret2 = mpfr_get_z(w, y, MPFR_RNDA);
                break;
            default:
                ret1 = arf_get_fmpz(z, x, ARF_RND_NEAR);
                ret2 = mpfr_get_z(w, y, MPFR_RNDN);
                break;
        }

        fmpz_set_mpz(z2, w);

        if (!fmpz_equal(z, z2) || (ret1 != (ret2 != 0)))
        {
            flint_printf("FAIL\n\n");
            flint_printf("x = "); arf_print(x); flint_printf("\n\n");
            flint_printf("z = "); fmpz_print(z); flint_printf("\n\n");
            flint_printf("z2 = "); fmpz_print(z2); flint_printf("\n\n");
            flint_printf("ret1 = %d, ret2 = %d\n\n", ret1, ret2);
            flint_abort();
        }

        arf_clear(x);
        mpfr_clear(y);
        fmpz_clear(z);
        fmpz_clear(z2);
        mpz_clear(w);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Exemple #5
0
void
arb_exp_arf_bb(arb_t z, const arf_t x, slong prec, int minus_one)
{
    slong k, iter, bits, r, mag, q, wp, N;
    slong argred_bits, start_bits;
    mp_bitcnt_t Qexp[1];
    int inexact;
    fmpz_t t, u, T, Q;
    arb_t w;

    if (arf_is_zero(x))
    {
        if (minus_one)
            arb_zero(z);
        else
            arb_one(z);
        return;
    }

    if (arf_is_special(x))
    {
        abort();
    }

    mag = arf_abs_bound_lt_2exp_si(x);

    /* We assume that this function only gets called with something
       reasonable as input (huge/tiny input will be handled by
       the main exp wrapper). */
    if (mag > 200 || mag < -2 * prec - 100)
    {
        flint_printf("arb_exp_arf_bb: unexpectedly large/small input\n");
        abort();
    }

    if (prec < 100000000)
    {
        argred_bits = 16;
        start_bits = 32;
    }
    else
    {
        argred_bits = 32;
        start_bits = 64;
    }

    /* Argument reduction: exp(x) -> exp(x/2^q). This improves efficiency
       of the first iteration in the bit-burst algorithm. */
    q = FLINT_MAX(0, mag + argred_bits);

    /* Determine working precision. */
    wp = prec + 10 + 2 * q + 2 * FLINT_BIT_COUNT(prec);
    if (minus_one && mag < 0)
        wp += (-mag);

    fmpz_init(t);
    fmpz_init(u);
    fmpz_init(Q);
    fmpz_init(T);
    arb_init(w);

    /* Convert x/2^q to a fixed-point number. */
    inexact = arf_get_fmpz_fixed_si(t, x, -wp + q);

    /* Aliasing of z and x is safe now that only use t. */
    /* Start with z = 1. */
    arb_one(z);

    /* Bit-burst loop. */
    for (iter = 0, bits = start_bits; !fmpz_is_zero(t);
        iter++, bits *= 2)
    {
        /* Extract bits. */
        r = FLINT_MIN(bits, wp);
        fmpz_tdiv_q_2exp(u, t, wp - r);

        /* Binary splitting (+1 fixed-point ulp truncation error). */
        mag = fmpz_bits(u) - r;
        N = bs_num_terms(mag, wp);

       _arb_exp_sum_bs_powtab(T, Q, Qexp, u, r, N);

        /* T = T / Q  (+1 fixed-point ulp error). */
        if (*Qexp >= wp)
        {
            fmpz_tdiv_q_2exp(T, T, *Qexp - wp);
            fmpz_tdiv_q(T, T, Q);
        }
        else
        {
            fmpz_mul_2exp(T, T, wp - *Qexp);
            fmpz_tdiv_q(T, T, Q);
        }

        /* T = 1 + T */
        fmpz_one(Q);
        fmpz_mul_2exp(Q, Q, wp);
        fmpz_add(T, T, Q);

        /* Now T = exp(u) with at most 2 fixed-point ulp error. */
        /* Set z = z * T. */
        arf_set_fmpz(arb_midref(w), T);
        arf_mul_2exp_si(arb_midref(w), arb_midref(w), -wp);
        mag_set_ui_2exp_si(arb_radref(w), 2, -wp);
        arb_mul(z, z, w, wp);

        /* Remove used bits. */
        fmpz_mul_2exp(u, u, wp - r);
        fmpz_sub(t, t, u);
    }

    /* We have exp(x + eps) - exp(x) < 2*eps (by assumption that the argument
       reduction is large enough). */
    if (inexact)
        arb_add_error_2exp_si(z, -wp + 1);

    fmpz_clear(t);
    fmpz_clear(u);
    fmpz_clear(Q);
    fmpz_clear(T);
    arb_clear(w);

    /* exp(x) = exp(x/2^q)^(2^q) */
    for (k = 0; k < q; k++)
        arb_mul(z, z, z, wp);

    if (minus_one)
        arb_sub_ui(z, z, 1, wp);

    arb_set_round(z, z, prec);
}