void FloatArray::convolve(FloatArray operand2, FloatArray destination){ ASSERT(destination.size >= size + operand2.size -1, "Destination array too small"); /// @note When built for ARM Cortex-M processor series, this method uses the optimized <a href="http://www.keil.com/pack/doc/CMSIS/General/html/index.html">CMSIS library</a> #ifdef ARM_CORTEX arm_conv_f32(data, size, operand2.data, operand2.size, destination); #else int size2=operand2.getSize(); for (int n=0; n<size+size2-1; n++){ int n1=n; destination[n] =0; for(int k=0; k<size2; k++){ if(n1>=0 && n1<size) destination[n]+=data[n1]*operand2[k]; n1--; } } #endif /* ARM_CORTEX */ }
// ARM DSP Function **************************************************************************************** int dsp_arm(float* inputArray, float* outputArray, dsp_t* analysisOut) { // Get diffence Array arm_sub_f32(outputArray, inputArray, analysisOut->diffArr, ARRAY_LENGTH); // Get mean arm_mean_f32(analysisOut->diffArr, (uint32_t) ARRAY_LENGTH, &analysisOut->meanDiff); // Get standard deviation arm_std_f32(analysisOut->diffArr, (uint32_t) ARRAY_LENGTH, &analysisOut->standDevDiff); // Get correlation arm_correlate_f32(inputArray, ARRAY_LENGTH, outputArray, ARRAY_LENGTH, analysisOut->corrArr); // Get convolution arm_conv_f32(inputArray, ARRAY_LENGTH, outputArray, ARRAY_LENGTH, analysisOut->convolArr); return 0; }
int main() { //initialize testing array float testVector[] = {0.1f,0.2f,0.3f,0.4f,0.5f}; /*COMMENTED OUT LENGTH PARAM AS IT IS INCLUDED IN HEADER FILE*/ //get the size of the array //int length = sizeof(testVector)/sizeof(float); //initiate empty output array of size length float outputArrayC[length]; //initialize the struct at p=r=q 0.1 and x=k=0 kalman_state currentState = {0.1f, 0.1f, 0.0f , 0.1f, 0.0f}; //call function Kalmanfilter_C Kalmanfilter_C(measurements, outputArrayC, ¤tState, length); //initiate empty output array of size length float outputArrayASM[length]; //reinitialize the struct at p=r=q 0.1 and x=k=0 currentState.p = DEF_p; currentState.r = DEF_r; currentState.k = DEF_k; currentState.q = DEF_q; currentState.x = DEF_x; //call subroutine Kalmanfilter_asm Kalmanfilter_asm(measurements, outputArrayASM, ¤tState, length ); //Check for correctness with a error tolerance of 0.000001 float errorTolerance = 0.000001f; float errorPercentage = 0.01; //is_valid(outputArrayC, outputArrayASM, length, errorTolerance, "c vs asm"); //is_valid_relative(outputArrayC, outputArrayASM, length, errorTolerance, errorPercentage,"c vs asm"); int p; //print KalmanFilter output for ( p = 0; p < length; p++ ) { printf("OutputASM: %f & OutputC %f\n", outputArrayASM[p], outputArrayC[p]); } float differenceC[length]; float differenceCMSIS[length]; //Difference arm_sub_f32 (measurements, outputArrayC, differenceCMSIS, length); c_sub(measurements, outputArrayC, differenceC, length); //is_valid(differenceC, differenceCMSIS, length, errorTolerance, "Difference"); //is_valid_relative(differenceC, differenceCMSIS, length, errorTolerance, errorPercentage,"Difference"); //Print difference vector for ( p = 0; p < length; p++ ) { printf("DifferenceC: %f & DifferenceCMSIS %f \n", differenceC[p], differenceCMSIS[p]); } //Mean float meanCMSIS; float meanC; arm_mean_f32 (differenceCMSIS, length , &meanCMSIS); c_mean(differenceC,length, &meanC); //is_valid(&meanC, &meanCMSIS, 1, errorTolerance, "mean"); //is_valid_relative(&meanC, &meanCMSIS, 1, errorTolerance, errorPercentage, "mean"); //Print mean values printf("MeanC: %f & MeanCMSIS %f \n", meanC, meanCMSIS); //STD float stdC; float stdCMSIS; arm_std_f32 (differenceCMSIS, length, &stdCMSIS); c_std(differenceC, length, &stdC); //is_valid(&stdC, &stdCMSIS, 1, errorTolerance, "STD"); //is_valid_relative(&stdC, &stdCMSIS, 1, errorTolerance, errorPercentage,"STD"); //Print std values printf("StandardDevC: %f & StandardDevCMSIS %f \n", stdC, stdCMSIS); //correlation float corC[2*length-1]; float corCMSIS[2*length-1]; arm_correlate_f32 (measurements, length, outputArrayC, length, corCMSIS); c_correlate(measurements, outputArrayC, corC, length); //is_valid(corC, corCMSIS, 2*length-1, errorTolerance, "correlation"); //is_valid_relative(corC, corCMSIS, 2*length-1, errorTolerance, errorPercentage, "correlation"); //convolution float convC[2*length-1]; float convCMSIS[2*length-1]; arm_conv_f32 (measurements, length, outputArrayC, length, convCMSIS); c_conv(measurements, outputArrayC, convC, length); //is_valid(convC, convCMSIS, 2*length-1, errorTolerance, "convolution"); //is_valid_relative(convC, convCMSIS, 2*length-1, errorTolerance, errorPercentage, "convolution"); //Print correlation and convolution values for ( p = 0; p < (2*length-1); p++ ) { printf("ConvC: %f & ConvCMSIS: %f \n", convC[p], convCMSIS[p]); } for ( p = 0; p < (2*length-1); p++ ) { printf("CorrelateC: %f & CorrelatCMSIS: %f \n", corC[p], corCMSIS[p]); } return 0; }