static void ad_spindown(void *priv) { device_t dev = priv; struct ata_device *atadev = device_get_softc(dev); struct ata_request *request; if (!atadev->spindown) return; device_printf(dev, "Idle, spin down\n"); atadev->spindown_state = 1; if (!(request = ata_alloc_request())) { device_printf(dev, "FAILURE - out of memory in ad_spindown\n"); return; } request->dev = dev; request->flags = ATA_R_CONTROL; request->timeout = ATA_REQUEST_TIMEOUT; request->retries = 1; request->callback = ad_power_callback; request->u.ata.command = ATA_STANDBY_IMMEDIATE; ata_queue_request(request); }
static void ata_cam_begin_transaction(device_t dev, union ccb *ccb) { struct ata_channel *ch = device_get_softc(dev); struct ata_request *request; if (!(request = ata_alloc_request())) { device_printf(dev, "FAILURE - out of memory in start\n"); ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); return; } bzero(request, sizeof(*request)); /* setup request */ request->dev = NULL; request->parent = dev; request->unit = ccb->ccb_h.target_id; if (ccb->ccb_h.func_code == XPT_ATA_IO) { request->data = ccb->ataio.data_ptr; request->bytecount = ccb->ataio.dxfer_len; request->u.ata.command = ccb->ataio.cmd.command; request->u.ata.feature = ((uint16_t)ccb->ataio.cmd.features_exp << 8) | (uint16_t)ccb->ataio.cmd.features; request->u.ata.count = ((uint16_t)ccb->ataio.cmd.sector_count_exp << 8) | (uint16_t)ccb->ataio.cmd.sector_count; if (ccb->ataio.cmd.flags & CAM_ATAIO_48BIT) { request->flags |= ATA_R_48BIT; request->u.ata.lba = ((uint64_t)ccb->ataio.cmd.lba_high_exp << 40) | ((uint64_t)ccb->ataio.cmd.lba_mid_exp << 32) | ((uint64_t)ccb->ataio.cmd.lba_low_exp << 24); } else { request->u.ata.lba = ((uint64_t)(ccb->ataio.cmd.device & 0x0f) << 24); } request->u.ata.lba |= ((uint64_t)ccb->ataio.cmd.lba_high << 16) | ((uint64_t)ccb->ataio.cmd.lba_mid << 8) | (uint64_t)ccb->ataio.cmd.lba_low; if (ccb->ataio.cmd.flags & CAM_ATAIO_NEEDRESULT) request->flags |= ATA_R_NEEDRESULT; if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE && ccb->ataio.cmd.flags & CAM_ATAIO_DMA) request->flags |= ATA_R_DMA; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) request->flags |= ATA_R_READ; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) request->flags |= ATA_R_WRITE; if (ccb->ataio.cmd.command == ATA_READ_MUL || ccb->ataio.cmd.command == ATA_READ_MUL48 || ccb->ataio.cmd.command == ATA_WRITE_MUL || ccb->ataio.cmd.command == ATA_WRITE_MUL48) { request->transfersize = min(request->bytecount, ch->curr[ccb->ccb_h.target_id].bytecount); } else request->transfersize = min(request->bytecount, 512); } else { request->data = ccb->csio.data_ptr; request->bytecount = ccb->csio.dxfer_len; bcopy((ccb->ccb_h.flags & CAM_CDB_POINTER) ? ccb->csio.cdb_io.cdb_ptr : ccb->csio.cdb_io.cdb_bytes, request->u.atapi.ccb, ccb->csio.cdb_len); request->flags |= ATA_R_ATAPI; if (ch->curr[ccb->ccb_h.target_id].atapi == 16) request->flags |= ATA_R_ATAPI16; if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE && ch->curr[ccb->ccb_h.target_id].mode >= ATA_DMA) request->flags |= ATA_R_DMA; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) request->flags |= ATA_R_READ; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) request->flags |= ATA_R_WRITE; request->transfersize = min(request->bytecount, ch->curr[ccb->ccb_h.target_id].bytecount); } request->retries = 0; request->timeout = (ccb->ccb_h.timeout + 999) / 1000; callout_init_mtx(&request->callout, &ch->state_mtx, CALLOUT_RETURNUNLOCKED); request->ccb = ccb; request->flags |= ATA_R_DATA_IN_CCB; ch->running = request; ch->state = ATA_ACTIVE; if (ch->hw.begin_transaction(request) == ATA_OP_FINISHED) { ch->running = NULL; ch->state = ATA_IDLE; ata_cam_end_transaction(dev, request); return; } }
static int ata_getparam(struct ata_device *atadev, int init) { struct ata_channel *ch = device_get_softc(device_get_parent(atadev->dev)); struct ata_request *request; u_int8_t command = 0; int error = ENOMEM, retries = 2; if (ch->devices & (atadev->unit == ATA_MASTER ? ATA_ATA_MASTER : ATA_ATA_SLAVE)) command = ATA_ATA_IDENTIFY; if (ch->devices & (atadev->unit == ATA_MASTER ? ATA_ATAPI_MASTER : ATA_ATAPI_SLAVE)) command = ATA_ATAPI_IDENTIFY; if (!command) return ENXIO; while (retries-- > 0 && error) { if (!(request = ata_alloc_request())) break; request->dev = atadev->dev; request->timeout = 1; request->retries = 0; request->u.ata.command = command; request->flags = (ATA_R_READ|ATA_R_AT_HEAD|ATA_R_DIRECT|ATA_R_QUIET); request->data = (void *)&atadev->param; request->bytecount = sizeof(struct ata_params); request->donecount = 0; request->transfersize = DEV_BSIZE; ata_queue_request(request); error = request->result; ata_free_request(request); } if (!error && (isprint(atadev->param.model[0]) || isprint(atadev->param.model[1]))) { struct ata_params *atacap = &atadev->param; char buffer[64]; int16_t *ptr; for (ptr = (int16_t *)atacap; ptr < (int16_t *)atacap + sizeof(struct ata_params)/2; ptr++) { *ptr = le16toh(*ptr); } if (!(!strncmp(atacap->model, "FX", 2) || !strncmp(atacap->model, "NEC", 3) || !strncmp(atacap->model, "Pioneer", 7) || !strncmp(atacap->model, "SHARP", 5))) { bswap(atacap->model, sizeof(atacap->model)); bswap(atacap->revision, sizeof(atacap->revision)); bswap(atacap->serial, sizeof(atacap->serial)); } btrim(atacap->model, sizeof(atacap->model)); bpack(atacap->model, atacap->model, sizeof(atacap->model)); btrim(atacap->revision, sizeof(atacap->revision)); bpack(atacap->revision, atacap->revision, sizeof(atacap->revision)); btrim(atacap->serial, sizeof(atacap->serial)); bpack(atacap->serial, atacap->serial, sizeof(atacap->serial)); if (bootverbose) printf("ata%d-%s: pio=%s wdma=%s udma=%s cable=%s wire\n", device_get_unit(ch->dev), atadev->unit == ATA_MASTER ? "master" : "slave", ata_mode2str(ata_pmode(atacap)), ata_mode2str(ata_wmode(atacap)), ata_mode2str(ata_umode(atacap)), (atacap->hwres & ATA_CABLE_ID) ? "80":"40"); if (init) { sprintf(buffer, "%.40s/%.8s", atacap->model, atacap->revision); device_set_desc_copy(atadev->dev, buffer); if ((atadev->param.config & ATA_PROTO_ATAPI) && (atadev->param.config != ATA_CFA_MAGIC1) && (atadev->param.config != ATA_CFA_MAGIC2)) { if (atapi_dma && ch->dma && (atadev->param.config & ATA_DRQ_MASK) != ATA_DRQ_INTR && ata_umode(&atadev->param) >= ATA_UDMA2) atadev->mode = ATA_DMA_MAX; } else { if (ata_dma && ch->dma && (ata_umode(&atadev->param) > 0 || ata_wmode(&atadev->param) > 0)) atadev->mode = ATA_DMA_MAX; } } } else { if (!error) error = ENXIO; } return error; }
int ata_device_ioctl(device_t dev, u_long cmd, caddr_t data) { struct ata_device *atadev = device_get_softc(dev); struct ata_channel *ch = device_get_softc(device_get_parent(dev)); struct ata_ioc_request *ioc_request = (struct ata_ioc_request *)data; struct ata_params *params = (struct ata_params *)data; int *mode = (int *)data; struct ata_request *request; caddr_t buf; int error; switch (cmd) { case IOCATAREQUEST: if (ioc_request->count > (ch->dma->max_iosize ? ch->dma->max_iosize : DFLTPHYS)) { return (EFBIG); } if (!(buf = malloc(ioc_request->count, M_ATA, M_NOWAIT))) { return ENOMEM; } if (!(request = ata_alloc_request())) { free(buf, M_ATA); return ENOMEM; } if (ioc_request->flags & ATA_CMD_WRITE) { error = copyin(ioc_request->data, buf, ioc_request->count); if (error) { free(buf, M_ATA); ata_free_request(request); return error; } } request->dev = dev; if (ioc_request->flags & ATA_CMD_ATAPI) { request->flags = ATA_R_ATAPI; bcopy(ioc_request->u.atapi.ccb, request->u.atapi.ccb, 16); } else { request->u.ata.command = ioc_request->u.ata.command; request->u.ata.feature = ioc_request->u.ata.feature; request->u.ata.lba = ioc_request->u.ata.lba; request->u.ata.count = ioc_request->u.ata.count; } request->timeout = ioc_request->timeout; request->data = buf; request->bytecount = ioc_request->count; request->transfersize = request->bytecount; if (ioc_request->flags & ATA_CMD_CONTROL) request->flags |= ATA_R_CONTROL; if (ioc_request->flags & ATA_CMD_READ) request->flags |= ATA_R_READ; if (ioc_request->flags & ATA_CMD_WRITE) request->flags |= ATA_R_WRITE; ata_queue_request(request); if (request->flags & ATA_R_ATAPI) { bcopy(&request->u.atapi.sense, &ioc_request->u.atapi.sense, sizeof(struct atapi_sense)); } else { ioc_request->u.ata.command = request->u.ata.command; ioc_request->u.ata.feature = request->u.ata.feature; ioc_request->u.ata.lba = request->u.ata.lba; ioc_request->u.ata.count = request->u.ata.count; } ioc_request->error = request->result; if (ioc_request->flags & ATA_CMD_READ) error = copyout(buf, ioc_request->data, ioc_request->count); else error = 0; free(buf, M_ATA); ata_free_request(request); return error; case IOCATAGPARM: ata_getparam(atadev, 0); bcopy(&atadev->param, params, sizeof(struct ata_params)); return 0; case IOCATASMODE: atadev->mode = *mode; ATA_SETMODE(device_get_parent(dev), dev); return 0; case IOCATAGMODE: *mode = atadev->mode; return 0; case IOCATASSPINDOWN: atadev->spindown = *mode; return 0; case IOCATAGSPINDOWN: *mode = atadev->spindown; return 0; default: return ENOTTY; } }
static int ad_strategy(struct dev_strategy_args *ap) { device_t dev = ap->a_head.a_dev->si_drv1; struct bio *bp = ap->a_bio; struct buf *bbp = bp->bio_buf; struct ata_device *atadev = device_get_softc(dev); struct ata_request *request; struct ad_softc *adp = device_get_ivars(dev); if (!(request = ata_alloc_request())) { device_printf(dev, "FAILURE - out of memory in strategy\n"); bbp->b_flags |= B_ERROR; bbp->b_error = ENOMEM; biodone(bp); return(0); } /* setup request */ request->dev = dev; request->bio = bp; request->callback = ad_done; request->timeout = ATA_DEFAULT_TIMEOUT; request->retries = 2; request->data = bbp->b_data; request->bytecount = bbp->b_bcount; /* lba is block granularity, convert byte granularity bio_offset */ request->u.ata.lba = (u_int64_t)(bp->bio_offset >> DEV_BSHIFT); request->u.ata.count = request->bytecount / DEV_BSIZE; request->transfersize = min(bbp->b_bcount, atadev->max_iosize); switch (bbp->b_cmd) { case BUF_CMD_READ: request->flags = ATA_R_READ; if (atadev->mode >= ATA_DMA) { request->u.ata.command = ATA_READ_DMA; request->flags |= ATA_R_DMA; } else if (request->transfersize > DEV_BSIZE) request->u.ata.command = ATA_READ_MUL; else request->u.ata.command = ATA_READ; break; case BUF_CMD_WRITE: request->flags = ATA_R_WRITE; if (atadev->mode >= ATA_DMA) { request->u.ata.command = ATA_WRITE_DMA; request->flags |= ATA_R_DMA; } else if (request->transfersize > DEV_BSIZE) request->u.ata.command = ATA_WRITE_MUL; else request->u.ata.command = ATA_WRITE; break; case BUF_CMD_FLUSH: request->u.ata.lba = 0; request->u.ata.count = 0; request->u.ata.feature = 0; request->bytecount = 0; request->transfersize = 0; request->flags = ATA_R_CONTROL; request->u.ata.command = ATA_FLUSHCACHE; /* ATA FLUSHCACHE requests may take up to 30 sec to timeout */ request->timeout = 30; break; default: device_printf(dev, "FAILURE - unknown BUF operation\n"); ata_free_request(request); bbp->b_flags |= B_ERROR; bbp->b_error = EIO; biodone(bp); return(0); } request->flags |= ATA_R_ORDERED; devstat_start_transaction(&adp->stats); ata_queue_request(request); return(0); }
static int afd_strategy(struct dev_strategy_args *ap) { device_t dev = ap->a_head.a_dev->si_drv1; struct bio *bp = ap->a_bio; struct buf *bbp = bp->bio_buf; struct ata_device *atadev = device_get_softc(dev); struct afd_softc *fdp = device_get_ivars(dev); struct ata_request *request; u_int32_t lba; u_int16_t count; int8_t ccb[16]; /* if it's a null transfer, return immediatly. */ if (bbp->b_bcount == 0) { bbp->b_resid = 0; biodone(bp); return 0; } /* should reject all queued entries if media have changed. */ if (atadev->flags & ATA_D_MEDIA_CHANGED) { bbp->b_flags |= B_ERROR; bbp->b_error = EIO; biodone(bp); return 0; } lba = bp->bio_offset / fdp->sectorsize; count = bbp->b_bcount / fdp->sectorsize; bbp->b_resid = bbp->b_bcount; bzero(ccb, sizeof(ccb)); switch(bbp->b_cmd) { case BUF_CMD_READ: ccb[0] = ATAPI_READ_BIG; break; case BUF_CMD_WRITE: ccb[0] = ATAPI_WRITE_BIG; break; default: device_printf(dev, "unknown BUF operation\n"); bbp->b_flags |= B_ERROR; bbp->b_error = EIO; biodone(bp); return 0; } ccb[2] = lba >> 24; ccb[3] = lba >> 16; ccb[4] = lba >> 8; ccb[5] = lba; ccb[7] = count>>8; ccb[8] = count; if (!(request = ata_alloc_request())) { bbp->b_flags |= B_ERROR; bbp->b_error = ENOMEM; biodone(bp); return 0; } request->dev = dev; request->bio = bp; bcopy(ccb, request->u.atapi.ccb, (atadev->param.config & ATA_PROTO_MASK) == ATA_PROTO_ATAPI_12 ? 16 : 12); request->data = bbp->b_data; request->bytecount = count * fdp->sectorsize; request->transfersize = min(request->bytecount, 65534); request->timeout = (ccb[0] == ATAPI_WRITE_BIG) ? 60 : 30; request->retries = 2; request->callback = afd_done; switch (bbp->b_cmd) { case BUF_CMD_READ: request->flags = (ATA_R_ATAPI | ATA_R_READ); break; case BUF_CMD_WRITE: request->flags = (ATA_R_ATAPI | ATA_R_WRITE); break; default: panic("bbp->b_cmd"); } if (atadev->mode >= ATA_DMA) request->flags |= ATA_R_DMA; request->flags |= ATA_R_ORDERED; devstat_start_transaction(&fdp->stats); ata_queue_request(request); return 0; }
static void ad_strategy(struct bio *bp) { device_t dev = bp->bio_disk->d_drv1; struct ata_device *atadev = device_get_softc(dev); struct ata_request *request; if (atadev->spindown) callout_reset(&atadev->spindown_timer, hz * atadev->spindown, ad_spindown, dev); if (!(request = ata_alloc_request())) { device_printf(dev, "FAILURE - out of memory in start\n"); biofinish(bp, NULL, ENOMEM); return; } /* setup request */ request->dev = dev; request->bio = bp; request->callback = ad_done; if (atadev->spindown_state) { device_printf(dev, "request while spun down, starting.\n"); atadev->spindown_state = 0; request->timeout = MAX(ATA_REQUEST_TIMEOUT, 31); } else { request->timeout = ATA_REQUEST_TIMEOUT; } request->retries = 2; request->data = bp->bio_data; request->bytecount = bp->bio_bcount; request->u.ata.lba = bp->bio_pblkno; request->u.ata.count = request->bytecount / DEV_BSIZE; request->transfersize = min(bp->bio_bcount, atadev->max_iosize); switch (bp->bio_cmd) { case BIO_READ: request->flags = ATA_R_READ; if (atadev->mode >= ATA_DMA) { request->u.ata.command = ATA_READ_DMA; request->flags |= ATA_R_DMA; } else if (request->transfersize > DEV_BSIZE) request->u.ata.command = ATA_READ_MUL; else request->u.ata.command = ATA_READ; break; case BIO_WRITE: request->flags = ATA_R_WRITE; if (atadev->mode >= ATA_DMA) { request->u.ata.command = ATA_WRITE_DMA; request->flags |= ATA_R_DMA; } else if (request->transfersize > DEV_BSIZE) request->u.ata.command = ATA_WRITE_MUL; else request->u.ata.command = ATA_WRITE; break; case BIO_DELETE: request->flags = ATA_R_CONTROL; request->u.ata.command = ATA_CFA_ERASE; request->transfersize = 0; request->donecount = bp->bio_bcount; break; case BIO_FLUSH: request->u.ata.lba = 0; request->u.ata.count = 0; request->u.ata.feature = 0; request->bytecount = 0; request->transfersize = 0; request->flags = ATA_R_CONTROL; request->u.ata.command = ATA_FLUSHCACHE; break; default: device_printf(dev, "FAILURE - unknown BIO operation\n"); ata_free_request(request); biofinish(bp, NULL, EIO); return; } request->flags |= ATA_R_ORDERED; ata_queue_request(request); }
static void afd_strategy(struct bio *bp) { device_t dev = bp->bio_disk->d_drv1; struct ata_device *atadev = device_get_softc(dev); struct afd_softc *fdp = device_get_ivars(dev); struct ata_request *request; u_int16_t count; int8_t ccb[16]; /* if it's a null transfer, return immediatly. */ if (bp->bio_bcount == 0) { bp->bio_resid = 0; biodone(bp); return; } /* should reject all queued entries if media have changed. */ if (atadev->flags & ATA_D_MEDIA_CHANGED) { biofinish(bp, NULL, EIO); return; } count = bp->bio_bcount / fdp->sectorsize; bp->bio_resid = bp->bio_bcount; bzero(ccb, sizeof(ccb)); if (bp->bio_cmd == BIO_READ) ccb[0] = ATAPI_READ_BIG; else ccb[0] = ATAPI_WRITE_BIG; ccb[2] = bp->bio_pblkno >> 24; ccb[3] = bp->bio_pblkno >> 16; ccb[4] = bp->bio_pblkno >> 8; ccb[5] = bp->bio_pblkno; ccb[7] = count>>8; ccb[8] = count; if (!(request = ata_alloc_request())) { biofinish(bp, NULL, ENOMEM); return; } request->dev = dev; request->bio = bp; bcopy(ccb, request->u.atapi.ccb, 16); request->data = bp->bio_data; request->bytecount = count * fdp->sectorsize; request->transfersize = min(request->bytecount, 65534); request->timeout = (ccb[0] == ATAPI_WRITE_BIG) ? 60 : 30; request->retries = 2; request->callback = afd_done; switch (bp->bio_cmd) { case BIO_READ: request->flags = (ATA_R_ATAPI | ATA_R_READ); break; case BIO_WRITE: request->flags = (ATA_R_ATAPI | ATA_R_WRITE); break; default: device_printf(dev, "unknown BIO operation\n"); ata_free_request(request); biofinish(bp, NULL, EIO); return; } if (atadev->mode >= ATA_DMA) request->flags |= ATA_R_DMA; request->flags |= ATA_R_ORDERED; ata_queue_request(request); }
static void acd_strategy(struct bio *bp) { device_t dev = bp->bio_to->geom->softc; struct ata_device *atadev = device_get_softc(dev); struct acd_softc *cdp = device_get_ivars(dev); struct ata_request *request; u_int32_t lba, lastlba, count; int8_t ccb[16]; int track, blocksize; /* reject all queued entries if media changed */ if (atadev->flags & ATA_D_MEDIA_CHANGED) { g_io_deliver(bp, EIO); return; } bzero(ccb, sizeof(ccb)); track = bp->bio_to->index; if (track) { blocksize = (cdp->toc.tab[track - 1].control & 4) ? 2048 : 2352; lastlba = ntohl(cdp->toc.tab[track].addr.lba); lba = bp->bio_offset / blocksize; lba += ntohl(cdp->toc.tab[track - 1].addr.lba); } else { blocksize = cdp->block_size; lastlba = cdp->disk_size; lba = bp->bio_offset / blocksize; } count = bp->bio_length / blocksize; if (bp->bio_cmd == BIO_READ) { /* if transfer goes beyond range adjust it to be within limits */ if (lba + count > lastlba) { /* if we are entirely beyond EOM return EOF */ if (lastlba <= lba) { g_io_deliver(bp, 0); return; } count = lastlba - lba; } switch (blocksize) { case 2048: ccb[0] = ATAPI_READ_BIG; break; case 2352: ccb[0] = ATAPI_READ_CD; ccb[9] = 0xf8; break; default: ccb[0] = ATAPI_READ_CD; ccb[9] = 0x10; } } else ccb[0] = ATAPI_WRITE_BIG; ccb[1] = 0; ccb[2] = lba>>24; ccb[3] = lba>>16; ccb[4] = lba>>8; ccb[5] = lba; ccb[6] = count>>16; ccb[7] = count>>8; ccb[8] = count; if (!(request = ata_alloc_request())) { g_io_deliver(bp, ENOMEM); return; } request->dev = dev; request->bio = bp; bcopy(ccb, request->u.atapi.ccb, 16); request->data = bp->bio_data; request->bytecount = count * blocksize; request->transfersize = min(request->bytecount, 65534); request->timeout = (ccb[0] == ATAPI_WRITE_BIG) ? 60 : 30; request->retries = 2; request->callback = acd_done; request->flags = ATA_R_ATAPI; if (atadev->mode >= ATA_DMA) request->flags |= ATA_R_DMA; switch (bp->bio_cmd) { case BIO_READ: request->flags |= ATA_R_READ; break; case BIO_WRITE: request->flags |= ATA_R_WRITE; break; default: device_printf(dev, "unknown BIO operation\n"); ata_free_request(request); g_io_deliver(bp, EIO); return; } ata_queue_request(request); }
static int acd_geom_ioctl(struct g_provider *pp, u_long cmd, void *addr, int fflag, struct thread *td) { device_t dev = pp->geom->softc; struct ata_device *atadev = device_get_softc(dev); struct acd_softc *cdp = device_get_ivars(dev); int error = 0, nocopyout = 0; if (!cdp) return ENXIO; if (atadev->flags & ATA_D_MEDIA_CHANGED) { switch (cmd) { case CDIOCRESET: acd_test_ready(dev); break; default: acd_read_toc(dev); acd_prevent_allow(dev, 1); cdp->flags |= F_LOCKED; break; } } switch (cmd) { case CDIOCRESUME: error = acd_pause_resume(dev, 1); break; case CDIOCPAUSE: error = acd_pause_resume(dev, 0); break; case CDIOCSTART: error = acd_start_stop(dev, 1); break; case CDIOCSTOP: error = acd_start_stop(dev, 0); break; case CDIOCALLOW: error = acd_prevent_allow(dev, 0); cdp->flags &= ~F_LOCKED; break; case CDIOCPREVENT: error = acd_prevent_allow(dev, 1); cdp->flags |= F_LOCKED; break; /* * XXXRW: Why does this require privilege? */ case CDIOCRESET: error = priv_check(td, PRIV_DRIVER); if (error) break; error = acd_test_ready(dev); break; case CDIOCEJECT: if (pp->acr != 1) { error = EBUSY; break; } error = acd_tray(dev, 0); break; case CDIOCCLOSE: if (pp->acr != 1) break; error = acd_tray(dev, 1); break; case CDIOREADTOCHEADER: if (!cdp->toc.hdr.ending_track) { error = EIO; break; } bcopy(&cdp->toc.hdr, addr, sizeof(cdp->toc.hdr)); break; case CDIOREADTOCENTRYS: { struct ioc_read_toc_entry *te = (struct ioc_read_toc_entry *)addr; struct toc *toc = &cdp->toc; int starting_track = te->starting_track; int len; if (!toc->hdr.ending_track) { error = EIO; break; } if (te->data_len < sizeof(toc->tab[0]) || (te->data_len % sizeof(toc->tab[0])) != 0 || (te->address_format != CD_MSF_FORMAT && te->address_format != CD_LBA_FORMAT)) { error = EINVAL; break; } if (!starting_track) starting_track = toc->hdr.starting_track; else if (starting_track == 170) starting_track = toc->hdr.ending_track + 1; else if (starting_track < toc->hdr.starting_track || starting_track > toc->hdr.ending_track + 1) { error = EINVAL; break; } len = ((toc->hdr.ending_track + 1 - starting_track) + 1) * sizeof(toc->tab[0]); if (te->data_len < len) len = te->data_len; if (len > sizeof(toc->tab)) { error = EINVAL; break; } if (te->address_format == CD_MSF_FORMAT) { struct cd_toc_entry *entry; if (!(toc = malloc(sizeof(struct toc), M_ACD, M_NOWAIT))) { error = ENOMEM; break; } bcopy(&cdp->toc, toc, sizeof(struct toc)); entry = toc->tab + (toc->hdr.ending_track + 1 - toc->hdr.starting_track) + 1; while (--entry >= toc->tab) { lba2msf(ntohl(entry->addr.lba), &entry->addr.msf.minute, &entry->addr.msf.second, &entry->addr.msf.frame); entry->addr_type = CD_MSF_FORMAT; } } error = copyout(toc->tab + starting_track - toc->hdr.starting_track, te->data, len); if (te->address_format == CD_MSF_FORMAT) free(toc, M_ACD); } break; case CDIOREADTOCENTRY: { struct ioc_read_toc_single_entry *te = (struct ioc_read_toc_single_entry *)addr; struct toc *toc = &cdp->toc; u_char track = te->track; if (!toc->hdr.ending_track) { error = EIO; break; } if (te->address_format != CD_MSF_FORMAT && te->address_format != CD_LBA_FORMAT) { error = EINVAL; break; } if (!track) track = toc->hdr.starting_track; else if (track == 170) track = toc->hdr.ending_track + 1; else if (track < toc->hdr.starting_track || track > toc->hdr.ending_track + 1) { error = EINVAL; break; } if (te->address_format == CD_MSF_FORMAT) { struct cd_toc_entry *entry; if (!(toc = malloc(sizeof(struct toc), M_ACD, M_NOWAIT))) { error = ENOMEM; break; } bcopy(&cdp->toc, toc, sizeof(struct toc)); entry = toc->tab + (track - toc->hdr.starting_track); lba2msf(ntohl(entry->addr.lba), &entry->addr.msf.minute, &entry->addr.msf.second, &entry->addr.msf.frame); } bcopy(toc->tab + track - toc->hdr.starting_track, &te->entry, sizeof(struct cd_toc_entry)); if (te->address_format == CD_MSF_FORMAT) free(toc, M_ACD); } break; #if __FreeBSD_version > 600008 case CDIOCREADSUBCHANNEL_SYSSPACE: nocopyout = 1; /* FALLTHROUGH */ #endif case CDIOCREADSUBCHANNEL: { struct ioc_read_subchannel *args = (struct ioc_read_subchannel *)addr; u_int8_t format; int8_t ccb[16] = { ATAPI_READ_SUBCHANNEL, 0, 0x40, 1, 0, 0, 0, sizeof(cdp->subchan)>>8, sizeof(cdp->subchan), 0, 0, 0, 0, 0, 0, 0 }; if (args->data_len > sizeof(struct cd_sub_channel_info) || args->data_len < sizeof(struct cd_sub_channel_header)) { error = EINVAL; break; } format = args->data_format; if ((format != CD_CURRENT_POSITION) && (format != CD_MEDIA_CATALOG) && (format != CD_TRACK_INFO)) { error = EINVAL; break; } ccb[1] = args->address_format & CD_MSF_FORMAT; if ((error = ata_atapicmd(dev, ccb, (caddr_t)&cdp->subchan, sizeof(cdp->subchan), ATA_R_READ, 10))) break; if ((format == CD_MEDIA_CATALOG) || (format == CD_TRACK_INFO)) { if (cdp->subchan.header.audio_status == 0x11) { error = EINVAL; break; } ccb[3] = format; if (format == CD_TRACK_INFO) ccb[6] = args->track; if ((error = ata_atapicmd(dev, ccb, (caddr_t)&cdp->subchan, sizeof(cdp->subchan),ATA_R_READ,10))){ break; } } if (nocopyout == 0) { error = copyout(&cdp->subchan, args->data, args->data_len); } else { error = 0; bcopy(&cdp->subchan, args->data, args->data_len); } } break; case CDIOCPLAYMSF: { struct ioc_play_msf *args = (struct ioc_play_msf *)addr; error = acd_play(dev, msf2lba(args->start_m, args->start_s, args->start_f), msf2lba(args->end_m, args->end_s, args->end_f)); } break; case CDIOCPLAYBLOCKS: { struct ioc_play_blocks *args = (struct ioc_play_blocks *)addr; error = acd_play(dev, args->blk, args->blk + args->len); } break; case CDIOCPLAYTRACKS: { struct ioc_play_track *args = (struct ioc_play_track *)addr; int t1, t2; if (!cdp->toc.hdr.ending_track) { error = EIO; break; } if (args->end_track < cdp->toc.hdr.ending_track + 1) ++args->end_track; if (args->end_track > cdp->toc.hdr.ending_track + 1) args->end_track = cdp->toc.hdr.ending_track + 1; t1 = args->start_track - cdp->toc.hdr.starting_track; t2 = args->end_track - cdp->toc.hdr.starting_track; if (t1 < 0 || t2 < 0 || t1 > (cdp->toc.hdr.ending_track-cdp->toc.hdr.starting_track)) { error = EINVAL; break; } error = acd_play(dev, ntohl(cdp->toc.tab[t1].addr.lba), ntohl(cdp->toc.tab[t2].addr.lba)); } break; case CDIOCGETVOL: { struct ioc_vol *arg = (struct ioc_vol *)addr; if ((error = acd_mode_sense(dev, ATAPI_CDROM_AUDIO_PAGE, (caddr_t)&cdp->au, sizeof(cdp->au)))) break; if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE) { error = EIO; break; } arg->vol[0] = cdp->au.port[0].volume; arg->vol[1] = cdp->au.port[1].volume; arg->vol[2] = cdp->au.port[2].volume; arg->vol[3] = cdp->au.port[3].volume; } break; case CDIOCSETVOL: { struct ioc_vol *arg = (struct ioc_vol *)addr; if ((error = acd_mode_sense(dev, ATAPI_CDROM_AUDIO_PAGE, (caddr_t)&cdp->au, sizeof(cdp->au)))) break; if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE) { error = EIO; break; } if ((error = acd_mode_sense(dev, ATAPI_CDROM_AUDIO_PAGE_MASK, (caddr_t)&cdp->aumask, sizeof(cdp->aumask)))) break; cdp->au.data_length = 0; cdp->au.port[0].channels = CHANNEL_0; cdp->au.port[1].channels = CHANNEL_1; cdp->au.port[0].volume = arg->vol[0] & cdp->aumask.port[0].volume; cdp->au.port[1].volume = arg->vol[1] & cdp->aumask.port[1].volume; cdp->au.port[2].volume = arg->vol[2] & cdp->aumask.port[2].volume; cdp->au.port[3].volume = arg->vol[3] & cdp->aumask.port[3].volume; error = acd_mode_select(dev, (caddr_t)&cdp->au, sizeof(cdp->au)); } break; case CDIOCSETPATCH: { struct ioc_patch *arg = (struct ioc_patch *)addr; error = acd_setchan(dev, arg->patch[0], arg->patch[1], arg->patch[2], arg->patch[3]); } break; case CDIOCSETMONO: error = acd_setchan(dev, CHANNEL_0|CHANNEL_1, CHANNEL_0|CHANNEL_1, 0,0); break; case CDIOCSETSTEREO: error = acd_setchan(dev, CHANNEL_0, CHANNEL_1, 0, 0); break; case CDIOCSETMUTE: error = acd_setchan(dev, 0, 0, 0, 0); break; case CDIOCSETLEFT: error = acd_setchan(dev, CHANNEL_0, CHANNEL_0, 0, 0); break; case CDIOCSETRIGHT: error = acd_setchan(dev, CHANNEL_1, CHANNEL_1, 0, 0); break; case CDRIOCBLANK: error = acd_blank(dev, (*(int *)addr)); break; case CDRIOCNEXTWRITEABLEADDR: { struct acd_track_info track_info; if ((error = acd_read_track_info(dev, 0xff, &track_info))) break; if (!track_info.nwa_valid) { error = EINVAL; break; } *(int*)addr = track_info.next_writeable_addr; } break; case CDRIOCINITWRITER: error = acd_init_writer(dev, (*(int *)addr)); break; case CDRIOCINITTRACK: error = acd_init_track(dev, (struct cdr_track *)addr); break; case CDRIOCFLUSH: error = acd_flush(dev); break; case CDRIOCFIXATE: error = acd_fixate(dev, (*(int *)addr)); break; case CDRIOCREADSPEED: { int speed = *(int *)addr; /* Preserve old behavior: units in multiples of CDROM speed */ if (speed < 177) speed *= 177; error = acd_set_speed(dev, speed, CDR_MAX_SPEED); } break; case CDRIOCWRITESPEED: { int speed = *(int *)addr; if (speed < 177) speed *= 177; error = acd_set_speed(dev, CDR_MAX_SPEED, speed); } break; case CDRIOCGETBLOCKSIZE: *(int *)addr = cdp->block_size; break; case CDRIOCSETBLOCKSIZE: cdp->block_size = *(int *)addr; pp->sectorsize = cdp->block_size; /* hack for GEOM SOS */ acd_set_ioparm(dev); break; case CDRIOCGETPROGRESS: error = acd_get_progress(dev, (int *)addr); break; case CDRIOCSENDCUE: error = acd_send_cue(dev, (struct cdr_cuesheet *)addr); break; case CDRIOCREADFORMATCAPS: error = acd_read_format_caps(dev, (struct cdr_format_capacities *)addr); break; case CDRIOCFORMAT: error = acd_format(dev, (struct cdr_format_params *)addr); break; case DVDIOCREPORTKEY: if (cdp->cap.media & MST_READ_DVDROM) error = acd_report_key(dev, (struct dvd_authinfo *)addr); else error = EINVAL; break; case DVDIOCSENDKEY: if (cdp->cap.media & MST_READ_DVDROM) error = acd_send_key(dev, (struct dvd_authinfo *)addr); else error = EINVAL; break; case DVDIOCREADSTRUCTURE: if (cdp->cap.media & MST_READ_DVDROM) error = acd_read_structure(dev, (struct dvd_struct *)addr); else error = EINVAL; break; default: error = ata_device_ioctl(dev, cmd, addr); } return error; } static int acd_geom_access(struct g_provider *pp, int dr, int dw, int de) { device_t dev = pp->geom->softc; struct acd_softc *cdp = device_get_ivars(dev); struct ata_request *request; int8_t ccb[16] = { ATAPI_TEST_UNIT_READY, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int timeout = 60, track; if (!(request = ata_alloc_request())) return ENOMEM; /* wait if drive is not finished loading the medium */ while (timeout--) { request->dev = dev; bcopy(ccb, request->u.atapi.ccb, 16); request->flags = ATA_R_ATAPI; request->timeout = ATA_REQUEST_TIMEOUT; ata_queue_request(request); if (!request->error && (request->u.atapi.sense.key == 2 || request->u.atapi.sense.key == 7) && request->u.atapi.sense.asc == 4 && request->u.atapi.sense.ascq == 1) pause("acdld", hz / 2); else break; } ata_free_request(request); if (pp->acr == 0) { acd_prevent_allow(dev, 1); cdp->flags |= F_LOCKED; acd_read_toc(dev); } if (dr + pp->acr == 0) { acd_prevent_allow(dev, 0); cdp->flags &= ~F_LOCKED; } if ((track = pp->index)) { pp->sectorsize = (cdp->toc.tab[track - 1].control & 4) ? 2048 : 2352; pp->mediasize = ntohl(cdp->toc.tab[track].addr.lba) - ntohl(cdp->toc.tab[track - 1].addr.lba); } else { pp->sectorsize = cdp->block_size; pp->mediasize = cdp->disk_size; } pp->mediasize *= pp->sectorsize; return 0; }