Exemple #1
0
int parse_frequency(char *arg, struct channel_solve *c)
{
	char *start, *stop, *step;
	/* hacky string parsing */
	start = arg;
	stop = strchr(start, ':') + 1;
	stop[-1] = '\0';
	step = strchr(stop, ':') + 1;
	step[-1] = '\0';
	c->lower = (int)atofs(start);
	c->upper = (int)atofs(stop);
	c->bin_spec = (int)atofs(step);
	stop[-1] = ':';
	step[-1] = ':';
	return 0;
}
Exemple #2
0
void frequency_range(struct fm_state *fm, char *arg)
{
	char *start, *stop, *step;
	int i;
	start = arg;
	stop = strchr(start, ':') + 1;
	stop[-1] = '\0';
	step = strchr(stop, ':') + 1;
	step[-1] = '\0';
	for(i=(int)atofs(start); i<=(int)atofs(stop); i+=(int)atofs(step))
	{
		fm->freqs[fm->freq_len] = (uint32_t)i;
		fm->freq_len++;
	}
	stop[-1] = ':';
	step[-1] = ':';
}
Exemple #3
0
void frequency_range(char *arg, double crop)
/* flesh out the tunes[] for scanning */
// do we want the fewest ranges (easy) or the fewest bins (harder)?
{
	char *start, *stop, *step;
	int i, j, upper, lower, max_size, bw_seen, bw_used, bin_e, buf_len;
	int downsample, downsample_passes;
	double bin_size;
	struct tuning_state *ts;
	/* hacky string parsing */
	start = arg;
	stop = strchr(start, ':') + 1;
	stop[-1] = '\0';
	step = strchr(stop, ':') + 1;
	step[-1] = '\0';
	lower = (int)atofs(start);
	upper = (int)atofs(stop);
	max_size = (int)atofs(step);
	stop[-1] = ':';
	step[-1] = ':';
	downsample = 1;
	downsample_passes = 0;
	/* evenly sized ranges, as close to MAXIMUM_RATE as possible */
	// todo, replace loop with algebra
	for (i=1; i<1500; i++) {
		bw_seen = (upper - lower) / i;
		bw_used = (int)((double)(bw_seen) / (1.0 - crop));
		if (bw_used > MAXIMUM_RATE) {
			continue;}
		tune_count = i;
		break;
	}
	/* unless small bandwidth */
	if (bw_used < MINIMUM_RATE) {
		tune_count = 1;
		downsample = MAXIMUM_RATE / bw_used;
		bw_used = bw_used * downsample;
	}
	if (!boxcar && downsample > 1) {
		downsample_passes = (int)log2(downsample);
		downsample = 1 << downsample_passes;
		bw_used = (int)((double)(bw_seen * downsample) / (1.0 - crop));
	}
	/* number of bins is power-of-two, bin size is under limit */
	// todo, replace loop with log2
	for (i=1; i<=21; i++) {
		bin_e = i;
		bin_size = (double)bw_used / (double)((1<<i) * downsample);
		if (bin_size <= (double)max_size) {
			break;}
	}
	/* unless giant bins */
	if (max_size >= MINIMUM_RATE) {
		bw_seen = max_size;
		bw_used = max_size;
		tune_count = (upper - lower) / bw_seen;
		bin_e = 0;
		crop = 0;
	}
	if (tune_count > MAX_TUNES) {
		fprintf(stderr, "Error: bandwidth too wide.\n");
		exit(1);
	}
	buf_len = 2 * (1<<bin_e) * downsample;
	if (buf_len < DEFAULT_BUF_LENGTH) {
		buf_len = DEFAULT_BUF_LENGTH;
	}
	/* build the array */
	for (i=0; i<tune_count; i++) {
		ts = &tunes[i];
		ts->freq = lower + i*bw_seen + bw_seen/2;
		ts->rate = bw_used;
		ts->bin_e = bin_e;
		ts->samples = 0;
		ts->crop = crop;
		ts->downsample = downsample;
		ts->downsample_passes = downsample_passes;
		ts->avg = (long*)malloc((1<<bin_e) * sizeof(long));
		if (!ts->avg) {
			fprintf(stderr, "Error: malloc.\n");
			exit(1);
		}
		for (j=0; j<(1<<bin_e); j++) {
			ts->avg[j] = 0L;
		}
		ts->buf8 = (uint8_t*)malloc(buf_len * sizeof(uint8_t));
		if (!ts->buf8) {
			fprintf(stderr, "Error: malloc.\n");
			exit(1);
		}
		ts->buf_len = buf_len;
	}
	/* report */
	fprintf(stderr, "Number of frequency hops: %i\n", tune_count);
	fprintf(stderr, "Dongle bandwidth: %iHz\n", bw_used);
	fprintf(stderr, "Downsampling by: %ix\n", downsample);
	fprintf(stderr, "Cropping by: %0.2f%%\n", crop*100);
	fprintf(stderr, "Total FFT bins: %i\n", tune_count * (1<<bin_e));
	fprintf(stderr, "Logged FFT bins: %i\n", \
	  (int)((double)(tune_count * (1<<bin_e)) * (1.0-crop)));
	fprintf(stderr, "FFT bin size: %0.2fHz\n", bin_size);
	fprintf(stderr, "Buffer size: %i bytes (%0.2fms)\n", buf_len, 1000 * 0.5 * (float)buf_len / (float)bw_used);
}
Exemple #4
0
int main(int argc, char **argv)
{
#ifndef _WIN32
	struct sigaction sigact;
#endif
	struct fm_state fm; 
	char *filename = NULL;
	int n_read, r, opt, wb_mode = 0;
	int i, gain = AUTO_GAIN; // tenths of a dB
	uint8_t *buffer;
	uint32_t dev_index = 0;
	int device_count;
	int ppm_error = 0;
	char vendor[256], product[256], serial[256];
	fm_init(&fm);
	pthread_cond_init(&data_ready, NULL);
	pthread_rwlock_init(&data_rw, NULL);
	pthread_mutex_init(&data_mutex, NULL);

	while ((opt = getopt(argc, argv, "d:f:g:s:b:l:o:t:r:p:EFA:NWMULRDCh")) != -1) {
		switch (opt) {
		case 'd':
			dev_index = atoi(optarg);
			break;
		case 'f':
			if (fm.freq_len >= FREQUENCIES_LIMIT) {
				break;}
			if (strchr(optarg, ':'))
				{frequency_range(&fm, optarg);}
			else
			{
				fm.freqs[fm.freq_len] = (uint32_t)atofs(optarg);
				fm.freq_len++;
			}
			break;
		case 'g':
			gain = (int)(atof(optarg) * 10);
			break;
		case 'l':
			fm.squelch_level = (int)atof(optarg);
			break;
		case 's':
			fm.sample_rate = (uint32_t)atofs(optarg);
			break;
		case 'r':
			fm.output_rate = (int)atofs(optarg);
			break;
		case 'o':
			fm.post_downsample = (int)atof(optarg);
			if (fm.post_downsample < 1 || fm.post_downsample > MAXIMUM_OVERSAMPLE) {
				fprintf(stderr, "Oversample must be between 1 and %i\n", MAXIMUM_OVERSAMPLE);}
			break;
		case 't':
			fm.conseq_squelch = (int)atof(optarg);
			if (fm.conseq_squelch < 0) {
				fm.conseq_squelch = -fm.conseq_squelch;
				fm.terminate_on_squelch = 1;
			}
			break;
		case 'p':
			ppm_error = atoi(optarg);
			break;
		case 'E':
			fm.edge = 1;
			break;
		case 'F':
			fm.fir_enable = 1;
			break;
		case 'A':
			if (strcmp("std",  optarg) == 0) {
				fm.custom_atan = 0;}
			if (strcmp("fast", optarg) == 0) {
				fm.custom_atan = 1;}
			if (strcmp("lut",  optarg) == 0) {
				atan_lut_init();
				fm.custom_atan = 2;}
			break;
		case 'D':
			fm.deemph = 1;
			break;
		case 'C':
			fm.dc_block = 1;
			break;
		case 'N':
			fm.mode_demod = &fm_demod;
			break;
		case 'W':
			wb_mode = 1;
			fm.mode_demod = &fm_demod;
			fm.sample_rate = 170000;
			fm.output_rate = 32000;
			fm.custom_atan = 1;
			fm.post_downsample = 4;
			fm.deemph = 1;
			fm.squelch_level = 0;
			break;
		case 'M':
			fm.mode_demod = &am_demod;
			break;
		case 'U':
			fm.mode_demod = &usb_demod;
			break;
		case 'L':
			fm.mode_demod = &lsb_demod;
			break;
		case 'R':
			fm.mode_demod = &raw_demod;
			break;
		case 'h':
		default:
			usage();
			break;
		}
	}
	/* quadruple sample_rate to limit to Δθ to ±π/2 */
	fm.sample_rate *= fm.post_downsample;

	if (fm.freq_len == 0) {
		fprintf(stderr, "Please specify a frequency.\n");
		exit(1);
	}

	if (fm.freq_len >= FREQUENCIES_LIMIT) {
		fprintf(stderr, "Too many channels, maximum %i.\n", FREQUENCIES_LIMIT);
		exit(1);
	}

	if (fm.freq_len > 1 && fm.squelch_level == 0) {
		fprintf(stderr, "Please specify a squelch level.  Required for scanning multiple frequencies.\n");
		exit(1);
	}

	if (fm.freq_len > 1) {
		fm.terminate_on_squelch = 0;
	}

	if (argc <= optind) {
		filename = "-";
	} else {
		filename = argv[optind];
	}

	ACTUAL_BUF_LENGTH = lcm_post[fm.post_downsample] * DEFAULT_BUF_LENGTH;
	buffer = malloc(ACTUAL_BUF_LENGTH * sizeof(uint8_t));

	device_count = rtlsdr_get_device_count();
	if (!device_count) {
		fprintf(stderr, "No supported devices found.\n");
		exit(1);
	}

	fprintf(stderr, "Found %d device(s):\n", device_count);
	for (i = 0; i < device_count; i++) {
		rtlsdr_get_device_usb_strings(i, vendor, product, serial);
		fprintf(stderr, "  %d:  %s, %s, SN: %s\n", i, vendor, product, serial);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "Using device %d: %s\n",
		dev_index, rtlsdr_get_device_name(dev_index));

	r = rtlsdr_open(&dev, dev_index);
	if (r < 0) {
		fprintf(stderr, "Failed to open rtlsdr device #%d.\n", dev_index);
		exit(1);
	}
#ifndef _WIN32
	sigact.sa_handler = sighandler;
	sigemptyset(&sigact.sa_mask);
	sigact.sa_flags = 0;
	sigaction(SIGINT, &sigact, NULL);
	sigaction(SIGTERM, &sigact, NULL);
	sigaction(SIGQUIT, &sigact, NULL);
	sigaction(SIGPIPE, &sigact, NULL);
#else
	SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE );
#endif

	/* WBFM is special */
	// I really should loop over everything
	// but you are more wrong for scanning broadcast FM
	if (wb_mode) {
		fm.freqs[0] += 16000;
	}

	if (fm.deemph) {
		fm.deemph_a = (int)round(1.0/((1.0-exp(-1.0/(fm.output_rate * 75e-6)))));
	}

	optimal_settings(&fm, 0, 0);
	build_fir(&fm);

	/* Set the tuner gain */
	if (gain == AUTO_GAIN) {
		r = rtlsdr_set_tuner_gain_mode(dev, 0);
	} else {
		r = rtlsdr_set_tuner_gain_mode(dev, 1);
		gain = nearest_gain(gain);
		r = rtlsdr_set_tuner_gain(dev, gain);
	}
	if (r != 0) {
		fprintf(stderr, "WARNING: Failed to set tuner gain.\n");
	} else if (gain == AUTO_GAIN) {
		fprintf(stderr, "Tuner gain set to automatic.\n");
	} else {
		fprintf(stderr, "Tuner gain set to %0.2f dB.\n", gain/10.0);
	}
	r = rtlsdr_set_freq_correction(dev, ppm_error);

	if (strcmp(filename, "-") == 0) { /* Write samples to stdout */
		fm.file = stdout;
#ifdef _WIN32
		_setmode(_fileno(fm.file), _O_BINARY);
#endif
	} else {
		fm.file = fopen(filename, "wb");
		if (!fm.file) {
			fprintf(stderr, "Failed to open %s\n", filename);
			exit(1);
		}
	}

	/* Reset endpoint before we start reading from it (mandatory) */
	r = rtlsdr_reset_buffer(dev);
	if (r < 0) {
		fprintf(stderr, "WARNING: Failed to reset buffers.\n");}

	pthread_create(&demod_thread, NULL, demod_thread_fn, (void *)(&fm));
	/*rtlsdr_read_async(dev, rtlsdr_callback, (void *)(&fm),
			      DEFAULT_ASYNC_BUF_NUMBER,
			      ACTUAL_BUF_LENGTH);*/

	while (!do_exit) {
		sync_read(buffer, ACTUAL_BUF_LENGTH, &fm);
	}

	while (!do_exit) {
		sync_read(buffer, ACTUAL_BUF_LENGTH, &fm);
	}
	
	if (do_exit) {
		fprintf(stderr, "\nUser cancel, exiting...\n");}
	else {
		fprintf(stderr, "\nLibrary error %d, exiting...\n", r);}

	//rtlsdr_cancel_async(dev);
	safe_cond_signal(&data_ready, &data_mutex);
	pthread_join(demod_thread, NULL);

	pthread_cond_destroy(&data_ready);
	pthread_rwlock_destroy(&data_rw);
	pthread_mutex_destroy(&data_mutex);

	if (fm.file != stdout) {
		fclose(fm.file);}

	rtlsdr_close(dev);
	free (buffer);
	return r >= 0 ? r : -r;
}
Exemple #5
0
int main(int argc, char **argv)
{
#ifndef WIN32
	struct sigaction sigact;

	sigact.sa_handler = sighandler;
	sigemptyset(&sigact.sa_mask);
	sigact.sa_flags = 0;
	sigaction(SIGINT, &sigact, NULL);
	sigaction(SIGTERM, &sigact, NULL);
	sigaction(SIGQUIT, &sigact, NULL);
	sigaction(SIGPIPE, &sigact, NULL);
#else
	signal(SIGINT, sighandler);
	signal(SIGTERM, sighandler);
#endif
        int opt;
	
        struct rtl_ais_config config;
        rtl_ais_default_config(&config);

        config.host = strdup("127.0.0.1");
        config.port = strdup("10110");
        
	while ((opt = getopt(argc, argv, "l:r:s:o:EODd:g:p:RAP:h:nLS:?")) != -1)
	{
		switch (opt) {
		case 'l':
                        config.left_freq = (int)atofs(optarg);
			break;
		case 'r':
			config.right_freq = (int)atofs(optarg);
			break;
		case 's':
			config.sample_rate = (int)atofs(optarg);
                        break;
		case 'o':
			config.output_rate = (int)atofs(optarg);
			break;
		case 'E':
			config.edge = !config.edge;
			break;
		case 'D':
			config.dc_filter = !config.dc_filter;
			break;
		case 'O':
			config.oversample = !config.oversample;
			break;
		case 'd':
			config.dev_index = verbose_device_search(optarg);
			config.dev_given = 1;
			break;
		case 'g':
			config.gain = (int)(atof(optarg) * 10);
			break;
		case 'p':
			config.ppm_error = atoi(optarg);
			config.custom_ppm = 1;
			break;
		case 'R':
			config.rtl_agc=1;
			break;
		case 'A':
			config.use_internal_aisdecoder=0;
			break;
		case 'P':
			config.port=strdup(optarg);
			break;
		case 'h':
			config.host=strdup(optarg);
			break;
		case 'L':
			config.show_levels=1;
			break;
		case 'S':
			config.seconds_for_decoder_stats=atoi(optarg);
			break;
		case 'n':
			config.debug_nmea = 1;
			break;
		case '?':
		default:
			usage();
			return 2;
		}
	}

	if (argc <= optind) {
		config.filename = "-";
	} else {
		config.filename = argv[optind];
	}

	if (config.edge) {
		fprintf(stderr, "Edge tuning enabled.\n");
	} else {
		fprintf(stderr, "Edge tuning disabled.\n");
	}
	if (config.dc_filter) {
		fprintf(stderr, "DC filter enabled.\n");
	} else {
		fprintf(stderr, "DC filter disabled.\n");
	}
	if (config.rtl_agc) {
		fprintf(stderr, "RTL AGC enabled.\n");
	} else {
		fprintf(stderr, "RTL AGC disabled.\n");
	}
	if (config.use_internal_aisdecoder) {
		fprintf(stderr, "Internal AIS decoder enabled.\n");
	} else {
		fprintf(stderr, "Internal AIS decoder disabled.\n");
	}

        struct rtl_ais_context *ctx = rtl_ais_start(&config);
        if(!ctx) {
                fprintf(stderr, "\nrtl_ais_start failed, exiting...\n");
                exit(1);
        }

        // loop printing received ais messages to console
        while(!do_exit && rtl_ais_isactive(ctx)) {
                const char *str;
                while((str = rtl_ais_next_message(ctx)))
                        puts(str);

                usleep(50000);
        }

        rtl_ais_cleanup(ctx);
        return 0;
}
int main(int argc, char **argv)
{
#ifndef _WIN32
	struct sigaction sigact;
#endif
	char *filename = NULL;
	int n_read;
	int r, opt;
	int gain = 0;
	int ppm_error = 0;
	int sync_mode = 0;
	FILE *file;
	uint8_t *buffer;
	int dev_index = 0;
	int dev_given = 0;
	uint32_t frequency = 100000000;
	uint32_t bandwidth = DEFAULT_BANDWIDTH;
	uint32_t samp_rate = DEFAULT_SAMPLE_RATE;
	uint32_t out_block_size = DEFAULT_BUF_LENGTH;

	while ((opt = getopt(argc, argv, "d:f:g:s:w:b:n:p:S")) != -1) {
		switch (opt) {
		case 'd':
			dev_index = verbose_device_search(optarg);
			dev_given = 1;
			break;
		case 'f':
			frequency = (uint32_t)atofs(optarg);
			break;
		case 'g':
			gain = (int)(atof(optarg) * 10); /* tenths of a dB */
			break;
		case 's':
			samp_rate = (uint32_t)atofs(optarg);
			break;
		case 'w':
			bandwidth = (uint32_t)atofs(optarg);
			break;
		case 'p':
			ppm_error = atoi(optarg);
			break;
		case 'b':
			out_block_size = (uint32_t)atof(optarg);
			break;
		case 'n':
			bytes_to_read = (uint32_t)atof(optarg) * 2;
			break;
		case 'S':
			sync_mode = 1;
			break;
		default:
			usage();
			break;
		}
	}

	if (argc <= optind) {
		usage();
	} else {
		filename = argv[optind];
	}

	if(out_block_size < MINIMAL_BUF_LENGTH ||
	   out_block_size > MAXIMAL_BUF_LENGTH ){
		fprintf(stderr,
			"Output block size wrong value, falling back to default\n");
		fprintf(stderr,
			"Minimal length: %u\n", MINIMAL_BUF_LENGTH);
		fprintf(stderr,
			"Maximal length: %u\n", MAXIMAL_BUF_LENGTH);
		out_block_size = DEFAULT_BUF_LENGTH;
	}

	buffer = malloc(out_block_size * sizeof(uint8_t));

	if (!dev_given) {
		dev_index = verbose_device_search("0");
	}

	if (dev_index < 0) {
		exit(1);
	}

	r = rtlsdr_open(&dev, (uint32_t)dev_index);
	if (r < 0) {
		fprintf(stderr, "Failed to open rtlsdr device #%d.\n", dev_index);
		exit(1);
	}
#ifndef _WIN32
	sigact.sa_handler = sighandler;
	sigemptyset(&sigact.sa_mask);
	sigact.sa_flags = 0;
	sigaction(SIGINT, &sigact, NULL);
	sigaction(SIGTERM, &sigact, NULL);
	sigaction(SIGQUIT, &sigact, NULL);
	sigaction(SIGPIPE, &sigact, NULL);
#else
	SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE );
#endif
	/* Set the sample rate */
	verbose_set_sample_rate(dev, samp_rate);

	/* Set the tuner bandwidth */
	verbose_set_bandwidth(dev, bandwidth);

	/* Set the frequency */
	verbose_set_frequency(dev, frequency);

	if (0 == gain) {
		 /* Enable automatic gain */
		verbose_auto_gain(dev);
	} else {
		/* Enable manual gain */
		gain = nearest_gain(dev, gain);
		verbose_gain_set(dev, gain);
	}

	verbose_ppm_set(dev, ppm_error);

	if(strcmp(filename, "-") == 0) { /* Write samples to stdout */
		file = stdout;
#ifdef _WIN32
		_setmode(_fileno(stdin), _O_BINARY);
#endif
	} else {
		file = fopen(filename, "wb");
		if (!file) {
			fprintf(stderr, "Failed to open %s\n", filename);
			goto out;
		}
	}

	/* Reset endpoint before we start reading from it (mandatory) */
	verbose_reset_buffer(dev);

	if (sync_mode) {
		fprintf(stderr, "Reading samples in sync mode...\n");
		while (!do_exit) {
			r = rtlsdr_read_sync(dev, buffer, out_block_size, &n_read);
			if (r < 0) {
				fprintf(stderr, "WARNING: sync read failed.\n");
				break;
			}

			if ((bytes_to_read > 0) && (bytes_to_read < (uint32_t)n_read)) {
				n_read = bytes_to_read;
				do_exit = 1;
			}

			if (fwrite(buffer, 1, n_read, file) != (size_t)n_read) {
				fprintf(stderr, "Short write, samples lost, exiting!\n");
				break;
			}

			if ((uint32_t)n_read < out_block_size) {
				fprintf(stderr, "Short read, samples lost, exiting!\n");
				break;
			}

			if (bytes_to_read > 0)
				bytes_to_read -= n_read;
		}
	} else {
		fprintf(stderr, "Reading samples in async mode...\n");
		r = rtlsdr_read_async(dev, rtlsdr_callback, (void *)file,
				      0, out_block_size);
	}

	if (do_exit)
		fprintf(stderr, "\nUser cancel, exiting...\n");
	else
		fprintf(stderr, "\nLibrary error %d, exiting...\n", r);

	if (file != stdout)
		fclose(file);

	rtlsdr_close(dev);
	free (buffer);
out:
	return r >= 0 ? r : -r;
}
Exemple #7
0
int main(int argc, char **argv)
{
	struct sigaction sigact;
	char *filename = NULL;
	int r, opt;
	int i, gain = AUTO_GAIN; /* tenths of a dB */
	int dev_index = 0;
	int dev_given = 0;
	int ppm_error = 0;
	int custom_ppm = 0;
	int left_freq = 161975000;
	int right_freq = 162025000;
	int sample_rate = 12000;
	int output_rate = 48000;
	int dongle_freq, dongle_rate, delta;
	int edge = 0;
	pthread_cond_init(&ready, NULL);
	pthread_mutex_init(&ready_m, NULL);

	while ((opt = getopt(argc, argv, "l:r:s:o:EODd:g:p:h")) != -1)
	{
		switch (opt) {
		case 'l':
			left_freq = (int)atofs(optarg);
			break;
		case 'r':
			right_freq = (int)atofs(optarg);
			break;
		case 's':
			sample_rate = (int)atofs(optarg);
			break;
		case 'o':
			output_rate = (int)atofs(optarg);
			break;
		case 'E':
			edge = !edge;
			break;
		case 'D':
			dc_filter = !dc_filter;
			break;
		case 'O':
			oversample = !oversample;
			break;
		case 'd':
			dev_index = verbose_device_search(optarg);
			dev_given = 1;
			break;
		case 'g':
			gain = (int)(atof(optarg) * 10);
			break;
		case 'p':
			ppm_error = atoi(optarg);
			custom_ppm = 1;
			break;
		case 'h':
		default:
			usage();
			return 2;
		}
	}

	if (argc <= optind) {
		filename = "-";
	} else {
		filename = argv[optind];
	}

	if (left_freq > right_freq) {
		usage();
		return 2;
	}

	/* precompute rates */
	dongle_freq = left_freq/2 + right_freq/2;
	if (edge) {
		dongle_freq -= sample_rate/2;}
	delta = right_freq - left_freq;
	if (delta > 1.2e6) {
		fprintf(stderr, "Frequencies may be at most 1.2MHz apart.");
		exit(1);
	}
	if (delta < 0) {
		fprintf(stderr, "Left channel must be lower than right channel.");
		exit(1);
	}
	i = (int)log2(2.4e6 / delta);
	dongle_rate = delta * (1<<i);
	both.rate_in = dongle_rate;
	both.rate_out = delta * 2;
	i = (int)log2(both.rate_in/both.rate_out);
	both.downsample_passes = i;
	both.downsample = 1 << i;
	left.rate_in = both.rate_out;
	i = (int)log2(left.rate_in / sample_rate);
	left.downsample_passes = i;
	left.downsample = 1 << i;
	left.rate_out = left.rate_in / left.downsample;
	
	right.rate_in = left.rate_in;
	right.rate_out = left.rate_out;
	right.downsample = left.downsample;
	right.downsample_passes = left.downsample_passes;

	if (left.rate_out > output_rate) {
		fprintf(stderr, "Channel bandwidth too high or output bandwidth too low.");
		exit(1);
	}

	stereo.rate = output_rate;

	if (edge) {
		fprintf(stderr, "Edge tuning enabled.\n");
	} else {
		fprintf(stderr, "Edge tuning disabled.\n");
	}
	if (dc_filter) {
		fprintf(stderr, "DC filter enabled.\n");
	} else {
		fprintf(stderr, "DC filter disabled.\n");
	}
	fprintf(stderr, "Buffer size: %0.2f mS\n", 1000 * (double)DEFAULT_BUF_LENGTH / (double)dongle_rate);
	fprintf(stderr, "Downsample factor: %i\n", both.downsample * left.downsample);
	fprintf(stderr, "Low pass: %i Hz\n", left.rate_out);
	fprintf(stderr, "Output: %i Hz\n", output_rate);

	/* precompute lengths */
	both.len_in  = DEFAULT_BUF_LENGTH;
	both.len_out = both.len_in / both.downsample;
	left.len_in  = both.len_out;
	right.len_in = both.len_out;
	left.len_out = left.len_in / left.downsample;
	right.len_out = right.len_in / right.downsample;
	left_demod.buf_len = left.len_out;
	left_demod.result_len = left_demod.buf_len / 2;
	right_demod.buf_len = left_demod.buf_len;
	right_demod.result_len = left_demod.result_len;
	stereo.bl_len = (int)((long)(DEFAULT_BUF_LENGTH/2) * (long)output_rate / (long)dongle_rate);
	stereo.br_len = stereo.bl_len;
	stereo.result_len = stereo.br_len * 2;
	stereo.rate = output_rate;

	if (!dev_given) {
		dev_index = verbose_device_search("0");
	}

	if (dev_index < 0) {
		exit(1);
	}

	downsample_init(&both);
	downsample_init(&left);
	downsample_init(&right);
	demod_init(&left_demod);
	demod_init(&right_demod);
	stereo_init(&stereo);

	r = rtlsdr_open(&dev, (uint32_t)dev_index);
	if (r < 0) {
		fprintf(stderr, "Failed to open rtlsdr device #%d.\n", dev_index);
		exit(1);
	}
	sigact.sa_handler = sighandler;
	sigemptyset(&sigact.sa_mask);
	sigact.sa_flags = 0;
	sigaction(SIGINT, &sigact, NULL);
	sigaction(SIGTERM, &sigact, NULL);
	sigaction(SIGQUIT, &sigact, NULL);
	sigaction(SIGPIPE, &sigact, NULL);

	if (strcmp(filename, "-") == 0) { /* Write samples to stdout */
		file = stdout;
		setvbuf(stdout, NULL, _IONBF, 0);
	} else {
		file = fopen(filename, "wb");
		if (!file) {
			fprintf(stderr, "Failed to open %s\n", filename);
			exit(1);
		}
	}

	/* Set the tuner gain */
	if (gain == AUTO_GAIN) {
		verbose_auto_gain(dev);
	} else {
		gain = nearest_gain(dev, gain);
		verbose_gain_set(dev, gain);
	}

	if (!custom_ppm) {
		verbose_ppm_eeprom(dev, &ppm_error);
	}
	verbose_ppm_set(dev, ppm_error);
	//r = rtlsdr_set_agc_mode(dev, 1);

	/* Set the tuner frequency */
	verbose_set_frequency(dev, dongle_freq);

	/* Set the sample rate */
	verbose_set_sample_rate(dev, dongle_rate);

	/* Reset endpoint before we start reading from it (mandatory) */
	verbose_reset_buffer(dev);

	pthread_create(&demod_thread, NULL, demod_thread_fn, (void *)(NULL));
	rtlsdr_read_async(dev, rtlsdr_callback, (void *)(NULL),
			      DEFAULT_ASYNC_BUF_NUMBER,
			      DEFAULT_BUF_LENGTH);

	if (do_exit) {
		fprintf(stderr, "\nUser cancel, exiting...\n");}
	else {
		fprintf(stderr, "\nLibrary error %d, exiting...\n", r);}
	rtlsdr_cancel_async(dev);
	safe_cond_signal(&ready, &ready_m);
	pthread_cond_destroy(&ready);
	pthread_mutex_destroy(&ready_m);

	if (file != stdout) {
		fclose(file);}

	rtlsdr_close(dev);
	return r >= 0 ? r : -r;
}
Exemple #8
0
BOOL SortTextItems(CListCtrl& list, int nCol, short mode, int low, int high)
{
   int nColCount = list.GetHeaderCtrl()->GetItemCount();
   if (high == -1) high = list.GetItemCount() - 1;
	int lo = low;
	int hi = high;
	CString midItem;

	if ( hi <= lo || hi >= list.GetItemCount()) return FALSE;

	midItem = list.GetItemText( (lo + hi) / 2, nCol );
   double midItemDbl = atofs(midItem);
   long   midItemLg  = atodx(midItem);

	// loop through the list until indices cross
	while ( lo <= hi ) {

		// rowText will hold all column text for one row
      switch ( mode ) {
      case STI_TEXT|STI_REVERSE:  // text ascendant
         // find the first element that is greater than or equal to 
         // the partition element starting from the left Index.
			while ( ( lo < high ) &&
            ( midItem.CollateNoCase(list.GetItemText(lo, nCol)) > 0 ) )
				++lo;
         // find an element that is smaller than or equal to 
         // the partition element starting from the right Index.
			while ( ( hi > low ) &&
            ( midItem.CollateNoCase(list.GetItemText(hi, nCol)) < 0 ) )
				--hi;
         break;
      case STI_TEXT:  // text descendant
			while ( ( lo < high ) &&
            ( midItem.CollateNoCase(list.GetItemText(lo, nCol)) < 0 ) )
				++lo;
			while ( ( hi > low ) &&
            ( midItem.CollateNoCase(list.GetItemText(hi, nCol)) > 0 ) )
				--hi;
         break;
      // Trie a l'envers les numeriques (par defaut le plus grand au debut)
      case STI_NUMBER:  // number descendant
			while ( ( lo < high ) &&
            ( midItemDbl < atofs(list.GetItemText(lo, nCol))) )
				++lo;
			while ( ( hi > low ) &&
            ( midItemDbl > atofs(list.GetItemText(hi, nCol))) )
				--hi;
         break;
      case STI_NUMBER|STI_REVERSE:  // number ascendant
			while ( ( lo < high ) &&
            ( midItemDbl > atofs(list.GetItemText(lo, nCol))) )
				++lo;
			while ( ( hi > low ) &&
            ( midItemDbl < atofs(list.GetItemText(hi, nCol))) )
				--hi;
         break;
      case STI_HEXADEC:  // number descendant
			while ( ( lo < high ) &&
            ( midItemLg < atodx(list.GetItemText(lo, nCol))) )
				++lo;
			while ( ( hi > low ) &&
            ( midItemLg > atodx(list.GetItemText(hi, nCol))) )
				--hi;
         break;
      case STI_HEXADEC|STI_REVERSE:  // number ascendant
			while ( ( lo < high ) &&
            ( midItemLg > atodx(list.GetItemText(lo, nCol))) )
				++lo;
			while ( ( hi > low ) &&
            ( midItemLg < atodx(list.GetItemText(hi, nCol))) )
				--hi;
         break;
      // Trie a l'envers les numeriques (par defaut le plus grand au debut)
      case STI_ABSOLU:  // number descendant
			while ( ( lo < high ) &&
            ( midItemDbl < atofsa(list.GetItemText(lo, nCol))) )
				++lo;
			while ( ( hi > low ) &&
            ( midItemDbl > atofsa(list.GetItemText(hi, nCol))) )
				--hi;
         break;
      case STI_ABSOLU|STI_REVERSE:  // number ascendant
			while ( ( lo < high ) &&
            ( midItemDbl > atofsa(list.GetItemText(lo, nCol))) )
				++lo;
			while ( ( hi > low ) &&
            ( midItemDbl < atofsa(list.GetItemText(hi, nCol))) )
				--hi;
         break;
      default: return FALSE; 
      }

		// if the indexes have not crossed, swap
		// and if the items are not equal
		if ( lo <= hi ) {
			// swap only if the items are not equal
			if ( list.GetItemText(lo, nCol).CollateNoCase(list.GetItemText(hi, nCol)) != 0) {
				// swap the rows
				LV_ITEM lvitemlo, lvitemhi;

				lvitemlo.mask = LVIF_IMAGE|LVIF_STATE|LVIF_PARAM;
				lvitemlo.iSubItem = 0;
				lvitemlo.stateMask = -1;

				lvitemhi = lvitemlo;
				lvitemlo.iItem = lo;
				lvitemhi.iItem = hi;

				list.GetItem( &lvitemhi );
				list.GetItem( &lvitemlo );

				lvitemhi.iItem = lo;
				lvitemlo.iItem = hi;
				list.SetItem( &lvitemhi );
				list.SetItem( &lvitemlo );

            for (int i = 0; i < nColCount; i++) {
               CString &text = list.GetItemText(lo, i);
					list.SetItemText(lo, i, list.GetItemText(hi, i));
					list.SetItemText(hi, i, text);
            }
			}
			++lo;
			--hi;
		}
	}

	// If the right index has not reached the left side of array
	// must now sort the left partition.
	if ( low < hi  ) SortTextItems( list, nCol, mode, low, hi);

	// If the left index has not reached the right side of array
	// must now sort the right partition.
	if ( lo < high ) SortTextItems( list, nCol, mode, lo, high );

	return TRUE;
}
Exemple #9
0
// main program
int main (int argc, char **argv)
{
    // command-line options
    int verbose = 1;

    int ppm_error = 0;
    int gain = 0;
    float rx_resamp_rate;
    float bandwidth      = 800e3f;
    int r, n_read;

    uint32_t frequency = 100000000;
    uint32_t samp_rate = DEFAULT_SAMPLE_RATE;
    uint32_t out_block_size = DEFAULT_BUF_LENGTH;
    uint8_t *buffer;
    complex float *buffer_norm;

    int dev_index = 0;
    int dev_given = 0;

    struct sigaction sigact;
    normalizer_t *norm;

    float kf = 0.1f;                    // modulation factor
    liquid_freqdem_type type = LIQUID_FREQDEM_DELAYCONJ;

    //
    int d;
    while ((d = getopt(argc,argv,"hf:b:B:G:p:s:")) != EOF) {
            switch (d) {
                case 'h':   usage();                    return 0;
                case 'f':   frequency   = atof(optarg); break;
                case 'b':   bandwidth   = atof(optarg); break;
                case 'B':   out_block_size = (uint32_t)atof(optarg); break;
                case 'G':   gain = (int)(atof(optarg) * 10); break;
                case 'p':   ppm_error = atoi(optarg); break;
                case 's':   samp_rate = (uint32_t)atofs(optarg); break;
                case 'd':
                    dev_index = verbose_device_search(optarg);
                    dev_given = 1;
                    break;
                default:    usage();                    return 1;
            }
    }

    if (!dev_given) {
            dev_index = verbose_device_search("0");
    }

    if (dev_index < 0) {
            exit(1);
    }

    r = rtlsdr_open(&dev, (uint32_t)dev_index);
    if (r < 0) {
            fprintf(stderr, "Failed to open rtlsdr device #%d.\n", dev_index);
            exit(1);
    }

    sigact.sa_handler = sighandler;
    sigemptyset(&sigact.sa_mask);
    sigact.sa_flags = 0;
    sigaction(SIGINT, &sigact, NULL);
    sigaction(SIGTERM, &sigact, NULL);
    sigaction(SIGQUIT, &sigact, NULL);
    sigaction(SIGPIPE, &sigact, NULL);

    /* Set the sample rate */
    verbose_set_sample_rate(dev, samp_rate);

    /* Set the frequency */
    verbose_set_frequency(dev, frequency);

    if (0 == gain) {
            /* Enable automatic gain */
            verbose_auto_gain(dev);
    } else {
            /* Enable manual gain */
            gain = nearest_gain(dev, gain);
            verbose_gain_set(dev, gain);
    }

    verbose_ppm_set(dev, ppm_error);

    rx_resamp_rate = bandwidth/samp_rate;

    printf("frequency       :   %10.4f [MHz]\n", frequency*1e-6f);
    printf("bandwidth       :   %10.4f [kHz]\n", bandwidth*1e-3f);
    printf("sample rate     :   %10.4f kHz = %10.4f kHz * %8.6f\n",
           samp_rate * 1e-3f,
           bandwidth    * 1e-3f,
           1.0f / rx_resamp_rate);
    printf("verbosity       :    %s\n", (verbose?"enabled":"disabled"));

    unsigned int i,j;

    // add arbitrary resampling component
    msresamp_crcf resamp = msresamp_crcf_create(rx_resamp_rate, 60.0f);
    assert(resamp);

    //allocate recv buffer
    buffer = malloc(out_block_size * sizeof(uint8_t));
    assert(buffer);

    buffer_norm = malloc(out_block_size * sizeof(complex float));
    assert(buffer_norm);

    // create buffer for arbitrary resamper output
    int b_len = ((int)(out_block_size * rx_resamp_rate) + 64) >> 1;
    complex float buffer_resamp[b_len];
    int16_t buffer_demod[b_len];
    debug("resamp_buffer_len: %d\n", b_len);

    norm = normalizer_create();

    verbose_reset_buffer(dev);

    freqdem dem = freqdem_create(kf,type);

    while (!do_exit) {
            // grab data from device
            r = rtlsdr_read_sync(dev, buffer, out_block_size, &n_read);
            if (r < 0) {
                    fprintf(stderr, "WARNING: sync read failed.\n");
                    break;
            }

            if ((bytes_to_read > 0) && (bytes_to_read < (uint32_t)n_read)) {
                    n_read = bytes_to_read;
                    do_exit = 1;
            }

            // push data through arbitrary resampler and give to frame synchronizer
            // TODO : apply bandwidth-dependent gain
            for (i=0; i<n_read/2; i++) {
                    // grab sample from usrp buffer
                    buffer_norm[i] = normalizer_normalize(norm, *((uint16_t*)buffer+i));
            }
            // push through resampler (one at a time)
            unsigned int nw;
            float demod;
            msresamp_crcf_execute(resamp, buffer_norm, n_read/2, buffer_resamp, &nw);

            for(j=0;j<nw;j++)
                {
                    freqdem_demodulate(dem, buffer_resamp[j], &demod);
                    buffer_demod[j] = to_int16(demod);

                }

            if (fwrite(buffer_demod, 2, nw, stdout) != (size_t)nw) {
                    fprintf(stderr, "Short write, samples lost, exiting!\n");
                    break;
            }

            if ((uint32_t)n_read < out_block_size) {
                    fprintf(stderr, "Short read, samples lost, exiting!\n");
                    break;
            }

            if (bytes_to_read > 0)
                bytes_to_read -= n_read;

    }

    // destroy objects
    freqdem_destroy(dem);
    normalizer_destroy(&norm);
    msresamp_crcf_destroy(resamp);

    rtlsdr_close(dev);
    free (buffer);

    return 0;
}
Exemple #10
0
// main program
int main (int argc, char **argv)
{
    // command-line options
    int verbose = 1;

    int ppm_error = 0;
    int gain = 0;
    unsigned int nfft    = 64;
    float offset         = -65.0f;
    float scale          = 5.0f;
    float fft_rate       = 10.0f;
    float rx_resamp_rate;
    float bandwidth      = 800e3f;
    unsigned int logsize = 4096;
    char filename[256]   = "rtl_asgram.dat";
    int r, n_read;

    uint32_t frequency = 100000000;
    uint32_t samp_rate = DEFAULT_SAMPLE_RATE;
    uint32_t out_block_size = DEFAULT_BUF_LENGTH;
    uint8_t *buffer;

    int dev_index = 0;
    int dev_given = 0;

    struct sigaction sigact;
    normalizer_t *norm;

    //
    int d;
    while ((d = getopt(argc,argv,"hf:b:B:G:n:p:s:o:r:L:F:")) != EOF) {
        switch (d) {
        case 'h':
            usage();
            return 0;
        case 'f':
            frequency   = atof(optarg);
            break;
        case 'b':
            bandwidth   = atof(optarg);
            break;
        case 'B':
            out_block_size = (uint32_t)atof(optarg);
            break;
        case 'G':
            gain = (int)(atof(optarg) * 10);
            break;
        case 'n':
            nfft        = atoi(optarg);
            break;
        case 'o':
            offset      = atof(optarg);
            break;
        case 'p':
            ppm_error = atoi(optarg);
            break;
        case 's':
            samp_rate = (uint32_t)atofs(optarg);
            break;
        case 'r':
            fft_rate    = atof(optarg);
            break;
        case 'L':
            logsize     = atoi(optarg);
            break;
        case 'F':
            strncpy(filename,optarg,255);
            break;
        case 'd':
            dev_index = verbose_device_search(optarg);
            dev_given = 1;
            break;
        default:
            usage();
            return 1;
        }
    }

    // validate parameters
    if (fft_rate <= 0.0f || fft_rate > 100.0f) {
        fprintf(stderr,"error: %s, fft rate must be in (0, 100) Hz\n", argv[0]);
        exit(1);
    }

    if (!dev_given) {
        dev_index = verbose_device_search("0");
    }

    if (dev_index < 0) {
        exit(1);
    }

    r = rtlsdr_open(&dev, (uint32_t)dev_index);
    if (r < 0) {
        fprintf(stderr, "Failed to open rtlsdr device #%d.\n", dev_index);
        exit(1);
    }

    sigact.sa_handler = sighandler;
    sigemptyset(&sigact.sa_mask);
    sigact.sa_flags = 0;
    sigaction(SIGINT, &sigact, NULL);
    sigaction(SIGTERM, &sigact, NULL);
    sigaction(SIGQUIT, &sigact, NULL);
    sigaction(SIGPIPE, &sigact, NULL);

    /* Set the sample rate */
    verbose_set_sample_rate(dev, samp_rate);

    /* Set the frequency */
    verbose_set_frequency(dev, frequency);

    if (0 == gain) {
        /* Enable automatic gain */
        verbose_auto_gain(dev);
    } else {
        /* Enable manual gain */
        gain = nearest_gain(dev, gain);
        verbose_gain_set(dev, gain);
    }

    verbose_ppm_set(dev, ppm_error);

    rx_resamp_rate = bandwidth/samp_rate;

    printf("frequency       :   %10.4f [MHz]\n", frequency*1e-6f);
    printf("bandwidth       :   %10.4f [kHz]\n", bandwidth*1e-3f);
    printf("sample rate     :   %10.4f kHz = %10.4f kHz * %8.6f\n",
           samp_rate * 1e-3f,
           bandwidth    * 1e-3f,
           1.0f / rx_resamp_rate);
    printf("verbosity       :    %s\n", (verbose?"enabled":"disabled"));

    unsigned int i;

    // add arbitrary resampling component
    msresamp_crcf resamp = msresamp_crcf_create(rx_resamp_rate, 60.0f);
    assert(resamp);

    // create buffer for sample logging
    windowcf log = windowcf_create(logsize);

    // create ASCII spectrogram object
    float maxval;
    float maxfreq;
    char ascii[nfft+1];
    ascii[nfft] = '\0'; // append null character to end of string
    asgram q = asgram_create(nfft);
    asgram_set_scale(q, offset, scale);

    // assemble footer
    unsigned int footer_len = nfft + 16;
    char footer[footer_len+1];
    for (i=0; i<footer_len; i++)
        footer[i] = ' ';
    footer[1] = '[';
    footer[nfft/2 + 3] = '+';
    footer[nfft + 4] = ']';
    sprintf(&footer[nfft+6], "%8.3f MHz", frequency*1e-6f);
    unsigned int msdelay = 1000 / fft_rate;

    // create/initialize Hamming window
    float w[nfft];
    for (i=0; i<nfft; i++)
        w[i] = hamming(i,nfft);

    //allocate recv buffer
    buffer = malloc(out_block_size * sizeof(uint8_t));
    assert(buffer);

    // create buffer for arbitrary resamper output
    int b_len = ((int)(out_block_size * rx_resamp_rate) + 64) >> 1;
    complex float buffer_resamp[b_len];
    debug("resamp_buffer_len: %d", b_len);

    // timer to control asgram output
    timer t1 = timer_create();
    timer_tic(t1);

    norm = normalizer_create();

    verbose_reset_buffer(dev);

    while (!do_exit) {
        // grab data from device
        r = rtlsdr_read_sync(dev, buffer, out_block_size, &n_read);
        if (r < 0) {
            fprintf(stderr, "WARNING: sync read failed.\n");
            break;
        }

        if ((bytes_to_read > 0) && (bytes_to_read < (uint32_t)n_read)) {
            n_read = bytes_to_read;
            do_exit = 1;
        }

        // push data through arbitrary resampler and give to frame synchronizer
        // TODO : apply bandwidth-dependent gain
        for (i=0; i<n_read/2; i++) {
            // grab sample from usrp buffer
            complex float rtlsdr_sample = normalizer_normalize(norm, *((uint16_t*)buffer+i));

            // push through resampler (one at a time)
            unsigned int nw;
            msresamp_crcf_execute(resamp, &rtlsdr_sample, 1, buffer_resamp, &nw);

            // push resulting samples into asgram object
            asgram_push(q, buffer_resamp, nw);

            // write samples to log
            windowcf_write(log, buffer_resamp, nw);
        }

        if ((uint32_t)n_read < out_block_size) {
            fprintf(stderr, "Short read, samples lost, exiting!\n");
            break;
        }

        if (bytes_to_read > 0)
            bytes_to_read -= n_read;

        if (timer_toc(t1) > msdelay*1e-3f) {
            // reset timer
            timer_tic(t1);

            // run the spectrogram
            asgram_execute(q, ascii, &maxval, &maxfreq);

            // print the spectrogram
            printf(" > %s < pk%5.1fdB [%5.2f]\n", ascii, maxval, maxfreq);
            printf("%s\r", footer);
            fflush(stdout);
        }
    }

    // try to write samples to file
    FILE * fid = fopen(filename,"w");
    if (fid != NULL) {
        // write header
        fprintf(fid, "# %s : auto-generated file\n", filename);
        fprintf(fid, "#\n");
        fprintf(fid, "# num_samples :   %u\n", logsize);
        fprintf(fid, "# frequency   :   %12.8f MHz\n", frequency*1e-6f);
        fprintf(fid, "# bandwidth   :   %12.8f kHz\n", bandwidth*1e-3f);

        // save results to file
        complex float * rc;   // read pointer
        windowcf_read(log, &rc);
        for (i=0; i<logsize; i++)
            fprintf(fid, "%12.4e %12.4e\n", crealf(rc[i]), cimagf(rc[i]));

        // close it up
        fclose(fid);
        printf("results written to '%s'\n", filename);
    } else {
        fprintf(stderr,"error: %s, could not open '%s' for writing\n", argv[0], filename);
    }

    // destroy objects
    normalizer_destroy(&norm);
    msresamp_crcf_destroy(resamp);
    windowcf_destroy(log);
    asgram_destroy(q);
    timer_destroy(t1);

    rtlsdr_close(dev);
    free (buffer);

    return 0;
}
Exemple #11
0
int main(int argc, char** argv) {
    uint32_t opt;

    int32_t  rtl_result;
    int32_t  rtl_count;
    char     rtl_vendor[256], rtl_product[256], rtl_serial[256];

    initrx_options();
    initDecoder_options();

    /* RX buffer allocation */
    rx_state.iSamples=malloc(sizeof(float)*SIGNAL_LENGHT*SIGNAL_SAMPLE_RATE);
    rx_state.qSamples=malloc(sizeof(float)*SIGNAL_LENGHT*SIGNAL_SAMPLE_RATE);

    /* Stop condition setup */
    rx_state.exit_flag   = false;
    rx_state.decode_flag = false;
    uint32_t nLoop = 0;


    if (argc <= 1)
        usage();

    while ((opt = getopt(argc, argv, "f:c:l:g:a:o:p:u:d:n:i:H:Q:S")) != -1) {
        switch (opt) {
        case 'f': // Frequency
            rx_options.dialfreq = (uint32_t)atofs(optarg);
            break;
        case 'c': // Callsign
            sprintf(dec_options.rcall, "%.12s", optarg);
            break;
        case 'l': // Locator / Grid
            sprintf(dec_options.rloc, "%.6s", optarg);
            break;
        case 'g': // Small signal amplifier gain
            rx_options.gain = atoi(optarg);
            if (rx_options.gain < 0) rx_options.gain = 0;
            if (rx_options.gain > 49) rx_options.gain = 49;
            rx_options.gain *= 10;
            break;
        case 'a': // Auto gain
            rx_options.autogain = atoi(optarg);
            if (rx_options.autogain < 0) rx_options.autogain = 0;
            if (rx_options.autogain > 1) rx_options.autogain = 1;
            break;
        case 'o': // Fine frequency correction
            rx_options.shift = atoi(optarg);
            break;
        case 'p':
            rx_options.ppm = atoi(optarg);
            break;
        case 'u': // Upconverter frequency
            rx_options.upconverter = (uint32_t)atofs(optarg);
            break;
        case 'd': // Direct Sampling
            rx_options.directsampling = (uint32_t)atofs(optarg);
            break;
        case 'n': // Stop after n iterations
            rx_options.maxloop = (uint32_t)atofs(optarg);
            break;
        case 'i': // Select the device to use
            rx_options.device = (uint32_t)atofs(optarg);
            break;
        case 'H': // Decoder option, use a hastable
            dec_options.usehashtable = 1;
            break;
        case 'Q': // Decoder option, faster
            dec_options.quickmode = 1;
            break;
        case 'S': // Decoder option, single pass mode (same as original wsprd)
            dec_options.subtraction = 0;
            dec_options.npasses = 1;
            break;
        default:
            usage();
            break;
        }
    }

    if (rx_options.dialfreq == 0) {
        fprintf(stderr, "Please specify a dial frequency.\n");
        fprintf(stderr, " --help for usage...\n");
        exit(1);
    }

    if (dec_options.rcall[0] == 0) {
        fprintf(stderr, "Please specify your callsign.\n");
        fprintf(stderr, " --help for usage...\n");
        exit(1);
    }

    if (dec_options.rloc[0] == 0) {
        fprintf(stderr, "Please specify your locator.\n");
        fprintf(stderr, " --help for usage...\n");
        exit(1);
    }

    /* Calcule shift offset */
    rx_options.realfreq = rx_options.dialfreq + rx_options.shift + rx_options.upconverter;

    /* Store the frequency used for the decoder */
    dec_options.freq = rx_options.dialfreq;

    /* If something goes wrong... */
    signal(SIGINT, &sigint_callback_handler);
    signal(SIGTERM, &sigint_callback_handler);
    signal(SIGILL, &sigint_callback_handler);
    signal(SIGFPE, &sigint_callback_handler);
    signal(SIGSEGV, &sigint_callback_handler);
    signal(SIGABRT, &sigint_callback_handler);

    /* Init & parameter the device */
    rtl_count = rtlsdr_get_device_count();
    if (!rtl_count) {
        fprintf(stderr, "No supported devices found\n");
        return EXIT_FAILURE;
    }


    fprintf(stderr, "Found %d device(s):\n", rtl_count);
    for (uint32_t i=0; i<rtl_count; i++) {
        rtlsdr_get_device_usb_strings(i, rtl_vendor, rtl_product, rtl_serial);
        fprintf(stderr, "  %d:  %s, %s, SN: %s\n", i, rtl_vendor, rtl_product, rtl_serial);
    }
    fprintf(stderr, "\nUsing device %d: %s\n", rx_options.device, rtlsdr_get_device_name(rx_options.device));


    rtl_result = rtlsdr_open(&rtl_device, rx_options.device);
    if (rtl_result < 0) {
        fprintf(stderr, "ERROR: Failed to open rtlsdr device #%d.\n", rx_options.device);
        return EXIT_FAILURE;
    }

    if (rx_options.directsampling) {
        rtl_result = rtlsdr_set_direct_sampling(rtl_device, rx_options.directsampling);
        if (rtl_result < 0) {
            fprintf(stderr, "ERROR: Failed to set direct sampling\n");
            rtlsdr_close(rtl_device);
            return EXIT_FAILURE;
        }
    }

    rtl_result = rtlsdr_set_sample_rate(rtl_device, SAMPLING_RATE);
    if (rtl_result < 0) {
        fprintf(stderr, "ERROR: Failed to set sample rate\n");
        rtlsdr_close(rtl_device);
        return EXIT_FAILURE;
    }


    rtl_result = rtlsdr_set_tuner_gain_mode(rtl_device, 1);
    if (rtl_result < 0) {
        fprintf(stderr, "ERROR: Failed to enable manual gain\n");
        rtlsdr_close(rtl_device);
        return EXIT_FAILURE;
    }


    if (rx_options.autogain) {
        rtl_result = rtlsdr_set_tuner_gain_mode(rtl_device, 0);
        if (rtl_result != 0) {
            fprintf(stderr, "ERROR: Failed to set tuner gain\n");
            rtlsdr_close(rtl_device);
            return EXIT_FAILURE;
        }
    } else {
        rtl_result = rtlsdr_set_tuner_gain(rtl_device, rx_options.gain);
        if (rtl_result != 0) {
            fprintf(stderr, "ERROR: Failed to set tuner gain\n");
            rtlsdr_close(rtl_device);
            return EXIT_FAILURE;
        }
    }


    if (rx_options.ppm != 0) {
        rtl_result = rtlsdr_set_freq_correction(rtl_device, rx_options.ppm);
        if (rtl_result < 0) {
            fprintf(stderr, "ERROR: Failed to set ppm error\n");
            rtlsdr_close(rtl_device);
            return EXIT_FAILURE;
        }
    }


    rtl_result = rtlsdr_set_center_freq(rtl_device, rx_options.realfreq + FS4_RATE + 1500);
    if (rtl_result < 0) {
        fprintf(stderr, "ERROR: Failed to set frequency\n");
        rtlsdr_close(rtl_device);
        return EXIT_FAILURE;
    }


    rtl_result = rtlsdr_reset_buffer(rtl_device);
    if (rtl_result < 0) {
        fprintf(stderr, "ERROR: Failed to reset buffers.\n");
        rtlsdr_close(rtl_device);
        return EXIT_FAILURE;
    }

    /* Print used parameter */
    time_t rawtime;
    time ( &rawtime );
    struct tm *gtm = gmtime(&rawtime);
    printf("\nStarting rtlsdr-wsprd (%04d-%02d-%02d, %02d:%02dz) -- Version 0.2\n",
           gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday, gtm->tm_hour, gtm->tm_min);
    printf("  Callsign     : %s\n", dec_options.rcall);
    printf("  Locator      : %s\n", dec_options.rloc);
    printf("  Dial freq.   : %d Hz\n", rx_options.dialfreq);
    printf("  Real freq.   : %d Hz\n", rx_options.realfreq);
    printf("  PPM factor   : %d\n", rx_options.ppm);
    if(rx_options.autogain)
        printf("  Auto gain    : enable\n");
    else
        printf("  Gain         : %d dB\n", rx_options.gain/10);


    /* Time alignment stuff */
    struct timeval lTime;
    gettimeofday(&lTime, NULL);
    uint32_t sec   = lTime.tv_sec % 120;
    uint32_t usec  = sec * 1000000 + lTime.tv_usec;
    uint32_t uwait = 120000000 - usec;
    printf("Wait for time sync (start in %d sec)\n\n", uwait/1000000);

    /* Prepare a low priority param for the decoder thread */
    struct sched_param param;
    pthread_attr_init(&dec.tattr);
    pthread_attr_setschedpolicy(&dec.tattr, SCHED_RR);
    pthread_attr_getschedparam(&dec.tattr, &param);
    param.sched_priority = 90;  // = sched_get_priority_min();
    pthread_attr_setschedparam(&dec.tattr, &param);

    /* Create a thread and stuff for separate decoding
       Info : https://computing.llnl.gov/tutorials/pthreads/
    */
    pthread_rwlock_init(&dec.rw, NULL);
    pthread_cond_init(&dec.ready_cond, NULL);
    pthread_mutex_init(&dec.ready_mutex, NULL);
    pthread_create(&dongle.thread, NULL, rtlsdr_rx, NULL);
    pthread_create(&dec.thread, &dec.tattr, wsprDecoder, NULL);


    /* Main loop : Wait, read, decode */
    while (!rx_state.exit_flag && !(rx_options.maxloop && (nLoop >= rx_options.maxloop))) {
        /* Wait for time Sync on 2 mins */
        gettimeofday(&lTime, NULL);
        sec   = lTime.tv_sec % 120;
        usec  = sec * 1000000 + lTime.tv_usec;
        uwait = 120000000 - usec + 10000;  // Adding 10ms, to be sure to reach this next minute
        usleep(uwait);
        //printf("SYNC! RX started\n");

        /* Use the Store the date at the begin of the frame */
        time ( &rawtime );
        gtm = gmtime(&rawtime);
        sprintf(rx_options.date,"%02d%02d%02d", gtm->tm_year - 100, gtm->tm_mon + 1, gtm->tm_mday);
        sprintf(rx_options.uttime,"%02d%02d", gtm->tm_hour, gtm->tm_min);

        /* Start to store the samples */
        initSampleStorage();

        while( (rx_state.exit_flag == false) &&
                (rx_state.iqIndex < (SIGNAL_LENGHT * SIGNAL_SAMPLE_RATE) ) ) {
            usleep(250000);
        }
        nLoop++;
    }

    /* Stop the RX and free the blocking function */
    rtlsdr_cancel_async(rtl_device);

    /* Close the RTL device */
    rtlsdr_close(rtl_device);

    printf("Bye!\n");

    /* Wait the thread join (send a signal before to terminate the job) */
    pthread_mutex_lock(&dec.ready_mutex);
    pthread_cond_signal(&dec.ready_cond);
    pthread_mutex_unlock(&dec.ready_mutex);
    pthread_join(dec.thread, NULL);
    pthread_join(dongle.thread, NULL);

    /* Destroy the lock/cond/thread */
    pthread_rwlock_destroy(&dec.rw);
    pthread_cond_destroy(&dec.ready_cond);
    pthread_mutex_destroy(&dec.ready_mutex);
    pthread_exit(NULL);

    return EXIT_SUCCESS;
}