bool AudioProcessor::Reset(int sample_rate, int num_channels)
{
	if (num_channels <= 0) {
		DEBUG("chromaprint::AudioProcessor::Reset() -- No audio channels.");
		return false;
	}
	if (sample_rate <= kMinSampleRate) {
		DEBUG("chromaprint::AudioProcessor::Reset() -- Sample rate less than "
              << kMinSampleRate << " (" << sample_rate << ").");
		return false;
	}
	m_buffer_offset = 0;
	if (m_resample_ctx) {
		av_resample_close(m_resample_ctx);
		m_resample_ctx = 0;
	}
	if (sample_rate != m_target_sample_rate) {
		m_resample_ctx = av_resample_init(
			m_target_sample_rate, sample_rate,
			kResampleFilterLength,
			kResamplePhaseShift,
			kResampleLinear,
			kResampleCutoff);
	}
	m_num_channels = num_channels;
	return true;
}
// Initialization and runtime control
static int control(struct af_instance_s* af, int cmd, void* arg)
{
  af_resample_t* s   = (af_resample_t*)af->setup;
  af_data_t *data= (af_data_t*)arg;
  int out_rate, test_output_res; // helpers for checking input format

  switch(cmd){
  case AF_CONTROL_REINIT:
    if((af->data->rate == data->rate) || (af->data->rate == 0))
        return AF_DETACH;

    af->data->nch    = data->nch;
    if (af->data->nch > AF_NCH) af->data->nch = AF_NCH;
    af->data->format = AF_FORMAT_S16_NE;
    af->data->bps    = 2;
    af->mul = (double)af->data->rate / data->rate;
    af->delay = af->data->nch * s->filter_length / min(af->mul, 1); // *bps*.5

    if (s->ctx_out_rate != af->data->rate || s->ctx_in_rate != data->rate || s->ctx_filter_size != s->filter_length ||
        s->ctx_phase_shift != s->phase_shift || s->ctx_linear != s->linear || s->ctx_cutoff != s->cutoff) {
        if(s->avrctx) av_resample_close(s->avrctx);
        s->avrctx= av_resample_init(af->data->rate, /*in_rate*/data->rate, s->filter_length, s->phase_shift, s->linear, s->cutoff);
        s->ctx_out_rate    = af->data->rate;
        s->ctx_in_rate     = data->rate;
        s->ctx_filter_size = s->filter_length;
        s->ctx_phase_shift = s->phase_shift;
        s->ctx_linear      = s->linear;
        s->ctx_cutoff      = s->cutoff;
    }

    // hack to make af_test_output ignore the samplerate change
    out_rate = af->data->rate;
    af->data->rate = data->rate;
    test_output_res = af_test_output(af, (af_data_t*)arg);
    af->data->rate = out_rate;
    return test_output_res;
  case AF_CONTROL_COMMAND_LINE:{
    s->cutoff= 0.0;
    sscanf((char*)arg,"%d:%d:%d:%d:%lf", &af->data->rate, &s->filter_length, &s->linear, &s->phase_shift, &s->cutoff);
    if(s->cutoff <= 0.0) s->cutoff= max(1.0 - 6.5/(s->filter_length+8), 0.80);
    return AF_OK;
  }
  case AF_CONTROL_RESAMPLE_RATE | AF_CONTROL_SET:
    af->data->rate = *(int*)arg;
    return AF_OK;
  }
  return AF_UNKNOWN;
}
int CFfAudioResample::Init( int nInRate, int nOutRate, int nFilterLength, int nLog2PhaseCount, int nLinear, double dCutoff )
{_STT();

	// Out with the old
	Destroy();

	// Validate sample rates
	if ( 0 >= nInRate || 0 >= nOutRate )
		return 0;

	// Build resampling context
	m_ctx = av_resample_init( nOutRate, nInRate, nFilterLength, nLog2PhaseCount, nLinear, dCutoff );
	if ( !m_ctx )
		return 0;

	// Save rates
	m_nInRate = nInRate;
	m_nOutRate = nOutRate;

	return 1;
}
Exemple #4
0
static int config_output(AVFilterLink *outlink)
{
    AVFilterContext *ctx = outlink->src;
    AVFilterLink *inlink = ctx->inputs[0];
    AResampleContext *aresample = ctx->priv;

    if (aresample->out_rate == -1)
        aresample->out_rate = outlink->sample_rate;
    else
        outlink->sample_rate = aresample->out_rate;
    outlink->time_base = (AVRational) {
        1, aresample->out_rate
    };

    //TODO: make the resampling parameters configurable
    aresample->resample = av_resample_init(aresample->out_rate, inlink->sample_rate,
                                           16, 10, 0, 0.8);

    aresample->ratio = (double)outlink->sample_rate / inlink->sample_rate;

    av_log(ctx, AV_LOG_INFO, "r:%"PRId64"Hz -> r:%"PRId64"Hz\n",
           inlink->sample_rate, outlink->sample_rate);
    return 0;
}
Exemple #5
0
void BE_ST_InitAudio(void)
{
	g_sdlAudioSubsystemUp = false;
	g_sdlEmulatedOPLChipReady = false;
	int inSampleRate = BE_Cross_GetSelectedGameVerSampleRate();
	bool doDigitized = (inSampleRate != 0);
	if (!doDigitized)
		inSampleRate = OPL_SAMPLE_RATE;

	if (g_refKeenCfg.sndSubSystem)
	{
		if (SDL_InitSubSystem(SDL_INIT_AUDIO) < 0)
		{
			BE_Cross_LogMessage(BE_LOG_MSG_WARNING, "SDL audio system initialization failed,\n%s\n", SDL_GetError());
		}
		else
		{
			g_sdlAudioSpec.freq = g_refKeenCfg.sndSampleRate;
#ifdef MIXER_SAMPLE_FORMAT_FLOAT
			g_sdlAudioSpec.format = AUDIO_F32SYS;
#elif (defined MIXER_SAMPLE_FORMAT_SINT16)
			g_sdlAudioSpec.format = AUDIO_S16SYS;
#endif
			g_sdlAudioSpec.channels = 1;
			// Should be some power-of-two roughly proportional to the sample rate; Using 1024 for 48000Hz.
			for (g_sdlAudioSpec.samples = 1; g_sdlAudioSpec.samples < g_refKeenCfg.sndSampleRate/64; g_sdlAudioSpec.samples *= 2)
			{
			}

			if (doDigitized)
				g_sdlAudioSpec.callback = (g_refKeenCfg.sndSampleRate == inSampleRate) ? BEL_ST_Simple_DigiCallBack : BEL_ST_Resampling_DigiCallBack;
			else
				g_sdlAudioSpec.callback = ((g_refKeenCfg.sndSampleRate == inSampleRate) || !g_refKeenCfg.oplEmulation) ? BEL_ST_Simple_EmuCallBack : BEL_ST_Resampling_EmuCallBack;

			g_sdlAudioSpec.userdata = NULL;
			if (SDL_OpenAudio(&g_sdlAudioSpec, NULL))
			{
				BE_Cross_LogMessage(BE_LOG_MSG_WARNING, "Cannot open SDL audio device,\n%s\n", SDL_GetError());
				SDL_QuitSubSystem(SDL_INIT_AUDIO);
			}
			else
			{
#ifdef REFKEEN_CONFIG_THREADS
				g_sdlCallbackMutex = SDL_CreateMutex();
				if (!g_sdlCallbackMutex)
				{
					BE_Cross_LogMessage(BE_LOG_MSG_ERROR, "Cannot create recursive mutex for SDL audio callback,\n%s\nClosing SDL audio subsystem\n", SDL_GetError());
					SDL_CloseAudio();
					SDL_QuitSubSystem(SDL_INIT_AUDIO);
				}
				else
#endif
				{
					BE_Cross_LogMessage(BE_LOG_MSG_NORMAL, "Audio subsystem initialized, requested spec: freq %d, format %u, channels %d, samples %u\n", (int)g_sdlAudioSpec.freq, (unsigned int)g_sdlAudioSpec.format, (int)g_sdlAudioSpec.channels, (unsigned int)g_sdlAudioSpec.samples);
					g_sdlAudioSubsystemUp = true;
				}
			}
		}
	}
	// If the audio subsystem is off, let us simulate a byte rate
	// of 1000Hz (same as SDL_GetTicks() time units)
	if (!g_sdlAudioSubsystemUp)
	{
		g_sdlAudioSpec.freq = doDigitized ? inSampleRate : (NUM_OF_BYTES_FOR_SOUND_CALLBACK_WITH_DISABLED_SUBSYSTEM / sizeof(BE_ST_SndSample_T));
		g_sdlAudioSpec.callback = doDigitized ? BEL_ST_Resampling_DigiCallBack : BEL_ST_Resampling_EmuCallBack;
		return;
	}

	if (g_refKeenCfg.oplEmulation)
	{
		YM3812Init(1, 3579545, OPL_SAMPLE_RATE);
		g_sdlEmulatedOPLChipReady = true;
	}

	if ((doDigitized || g_sdlEmulatedOPLChipReady) && (g_sdlAudioSpec.freq != inSampleRate))
	{
		// Should allocate this first, for g_sdlSrcData.data_in
		g_sdlMiscOutNumOfSamples = 2*g_sdlAudioSpec.samples;
		g_sdlMiscOutSamples = (BE_ST_SndSample_T *)malloc(sizeof(BE_ST_SndSample_T) * g_sdlMiscOutNumOfSamples); 
		if (g_sdlMiscOutSamples == NULL)
			BE_ST_ExitWithErrorMsg("BE_ST_InitAudio: Out of memory! (Failed to allocate g_sdlMiscOutSamples.)");

#ifndef REFKEEN_RESAMPLER_NONE
		if (g_refKeenCfg.useResampler)
		{
#if (!defined REFKEEN_RESAMPLER_LIBRESAMPLE) && (!defined REFKEEN_RESAMPLER_LIBAVCODEC)
			char errMsg[160];
#endif

#if (defined REFKEEN_RESAMPLER_LIBSWRESAMPLE)
			g_sdlSwrContext = swr_alloc_set_opts(
				NULL,                // allocating a new context
				AV_CH_LAYOUT_MONO,   // out channels layout
				AV_SAMPLE_FMT_S16,   // out format
				g_sdlAudioSpec.freq, // out rate
				AV_CH_LAYOUT_MONO,   // in channels layout
				AV_SAMPLE_FMT_S16,   // in format
				inSampleRate,        // in rate
				0,
				NULL
			);
			if (g_sdlSwrContext == NULL)
				BE_ST_ExitWithErrorMsg("BE_ST_InitAudio: swr_alloc_set_opts failed!");
			int error = swr_init(g_sdlSwrContext);
			if (error != 0)
			{
				// av_err2str requires libavutil/libavutil-ffmpeg, so don't convert code to string
				snprintf(errMsg, sizeof(errMsg), "BE_ST_InitAudio: swr_init failed! Error code: %d", error);
				BE_ST_ExitWithErrorMsg(errMsg);
			}
#elif (defined REFKEEN_RESAMPLER_LIBAVRESAMPLE)
			g_sdlAvAudioResampleContext = avresample_alloc_context();
			if (g_sdlAvAudioResampleContext == NULL)
				BE_ST_ExitWithErrorMsg("BE_ST_InitAudio: avresample_alloc_context failed!");
			av_opt_set_int(g_sdlAvAudioResampleContext, "in_channel_layout",  AV_CH_LAYOUT_MONO,   0);
			av_opt_set_int(g_sdlAvAudioResampleContext, "out_channel_layout", AV_CH_LAYOUT_MONO,   0);
			av_opt_set_int(g_sdlAvAudioResampleContext, "in_sample_rate",     inSampleRate,        0);
			av_opt_set_int(g_sdlAvAudioResampleContext, "out_sample_rate",    g_sdlAudioSpec.freq, 0);
			av_opt_set_int(g_sdlAvAudioResampleContext, "in_sample_fmt",      AV_SAMPLE_FMT_S16,   0);
			av_opt_set_int(g_sdlAvAudioResampleContext, "out_sample_fmt",     AV_SAMPLE_FMT_S16,   0);
			int error = avresample_open(g_sdlAvAudioResampleContext);
			if (error != 0)
			{
				// av_err2str requires libavutil/libavutil-ffmpeg, so don't convert code to string
				snprintf(errMsg, sizeof(errMsg), "BE_ST_InitAudio: swr_init failed! Error code: %d", error);
				BE_ST_ExitWithErrorMsg(errMsg);
			}
#elif (defined REFKEEN_RESAMPLER_LIBAVCODEC)
			avcodec_register_all();
			g_sdlAvResampleContext = av_resample_init(
				g_sdlAudioSpec.freq,	// out rate
				inSampleRate,	// in rate
				16,	// filter length
				10,	// phase count
				0,	// linear FIR filter
				1.0	// cutoff frequency
			);
			if (g_sdlAvResampleContext == NULL)
				BE_ST_ExitWithErrorMsg("BE_ST_InitAudio: av_resample_init failed!");
#elif (defined REFKEEN_RESAMPLER_LIBRESAMPLE)
			g_sdlResampleFactor = (double)g_sdlAudioSpec.freq/inSampleRate;
			g_sdlResampleHandle = resample_open(0, g_sdlResampleFactor, g_sdlResampleFactor);
			if (g_sdlResampleHandle == NULL)
				BE_ST_ExitWithErrorMsg("BE_ST_InitAudio: resample_open failed!");
#elif (defined REFKEEN_RESAMPLER_LIBSOXR)
			soxr_io_spec_t io_spec = soxr_io_spec(SOXR_INT16, SOXR_INT16);
			soxr_quality_spec_t q_spec = soxr_quality_spec(SOXR_LQ, 0); // Default quality spec adds an audible latency for resampling to 8000Hz
			soxr_error_t error;
			g_sdlSoxr = soxr_create(
				inSampleRate, // in rate
				g_sdlAudioSpec.freq, // out rate
				1, // channels
				&error,
				&io_spec,
				&q_spec,
				NULL // runtime spec
			);
			if (g_sdlSoxr == NULL)
			{
				snprintf(errMsg, sizeof(errMsg), "BE_ST_InitAudio: soxr_create failed!\nError: %s", soxr_strerror(error));
				BE_ST_ExitWithErrorMsg(errMsg);
			}
#elif (defined REFKEEN_RESAMPLER_LIBSPEEXDSP)
			int error;
			g_sdlSpeexResamplerState = speex_resampler_init(
				1, // channels
				inSampleRate, // in rate
				g_sdlAudioSpec.freq, // out rate
				0, // quality in the range 0-10 (10 is higher)
				&error
			);
			if (g_sdlSpeexResamplerState == NULL)
			{
				snprintf(errMsg, sizeof(errMsg), "BE_ST_InitAudio: speex_resampler_init failed! Error code: %d\nError: %s", error, speex_resampler_strerror(error));
				BE_ST_ExitWithErrorMsg(errMsg);
			}
#elif (defined REFKEEN_RESAMPLER_LIBSAMPLERATE)
			int error;
			g_sdlSrcResampler = src_new(SRC_SINC_FASTEST, 1, &error);
			if (g_sdlSrcResampler == NULL)
			{
				snprintf(errMsg, sizeof(errMsg), "BE_ST_InitAudio: src_new failed!\nError code: %d", error);
				BE_ST_ExitWithErrorMsg(errMsg);
			}
			g_sdlSrcData.data_in = doDigitized ? g_sdlMiscOutSamples : g_sdlALOutSamples;
			g_sdlSrcData.src_ratio = (double)g_sdlAudioSpec.freq / inSampleRate;
#endif
		}
		else
#endif // REFKEEN_RESAMPLER_NONE
		{
			// The sum of all entries should be g_sdlAudioSpec.freq,
			// "uniformly" distributed over g_sdlALSampleRateConvTable
			g_sdlSampleRateConvTable = (int *)malloc(sizeof(int) * inSampleRate);
			if (g_sdlSampleRateConvTable == NULL)
				BE_ST_ExitWithErrorMsg("BE_ST_InitAudio: Failed to allocate memory for sample rate conversion!");
			g_sdlSampleRateConvTableSize = inSampleRate;
			for (int i = 0; i < inSampleRate; ++i)
			{
				// Using uint64_t cause an overflow is possible
				g_sdlSampleRateConvTable[i] = ((uint64_t)(i+1)*(uint64_t)g_sdlAudioSpec.freq/inSampleRate)-(uint64_t)i*(uint64_t)g_sdlAudioSpec.freq/inSampleRate;
			}
			g_sdlSampleRateConvCurrIndex = 0;
			g_sdlSampleRateConvCounter = 0;
		}
	}
}