void Foam::symGaussSeidelSmoother::smooth
(
    const word& fieldName_,
    scalarField& psi,
    const lduMatrix& matrix_,
    const scalarField& source,
    const FieldField<Field, scalar>& interfaceBouCoeffs_,
    const lduInterfaceFieldPtrsList& interfaces_,
    const direction cmpt,
    const label nSweeps
)
{
    scalar* __restrict__ psiPtr = psi.begin();

    const label nCells = psi.size();

    scalarField bPrime(nCells);
    scalar* __restrict__ bPrimePtr = bPrime.begin();

    const scalar* const __restrict__ diagPtr = matrix_.diag().begin();
    const scalar* const __restrict__ upperPtr =
        matrix_.upper().begin();
    const scalar* const __restrict__ lowerPtr =
        matrix_.lower().begin();

    const label* const __restrict__ uPtr =
        matrix_.lduAddr().upperAddr().begin();

    const label* const __restrict__ ownStartPtr =
        matrix_.lduAddr().ownerStartAddr().begin();


    // Parallel boundary initialisation.  The parallel boundary is treated
    // as an effective jacobi interface in the boundary.
    // Note: there is a change of sign in the coupled
    // interface update.  The reason for this is that the
    // internal coefficients are all located at the l.h.s. of
    // the matrix whereas the "implicit" coefficients on the
    // coupled boundaries are all created as if the
    // coefficient contribution is of a source-kind (i.e. they
    // have a sign as if they are on the r.h.s. of the matrix.
    // To compensate for this, it is necessary to turn the
    // sign of the contribution.

    FieldField<Field, scalar>& mBouCoeffs =
        const_cast<FieldField<Field, scalar>&>
        (
            interfaceBouCoeffs_
        );

    forAll(mBouCoeffs, patchi)
    {
        if (interfaces_.set(patchi))
        {
            mBouCoeffs[patchi].negate();
        }
    }


    for (label sweep=0; sweep<nSweeps; sweep++)
    {
        bPrime = source;

        matrix_.initMatrixInterfaces
        (
            mBouCoeffs,
            interfaces_,
            psi,
            bPrime,
            cmpt
        );

        matrix_.updateMatrixInterfaces
        (
            mBouCoeffs,
            interfaces_,
            psi,
            bPrime,
            cmpt
        );

        scalar psii;
        label fStart;
        label fEnd = ownStartPtr[0];

        for (label celli=0; celli<nCells; celli++)
        {
            // Start and end of this row
            fStart = fEnd;
            fEnd = ownStartPtr[celli + 1];

            // Get the accumulated neighbour side
            psii = bPrimePtr[celli];

            // Accumulate the owner product side
            for (label facei=fStart; facei<fEnd; facei++)
            {
                psii -= upperPtr[facei]*psiPtr[uPtr[facei]];
            }

            // Finish current psi
            psii /= diagPtr[celli];

            // Distribute the neighbour side using current psi
            for (label facei=fStart; facei<fEnd; facei++)
            {
                bPrimePtr[uPtr[facei]] -= lowerPtr[facei]*psii;
            }

            psiPtr[celli] = psii;
        }

        fStart = ownStartPtr[nCells];

        for (label celli=nCells-1; celli>=0; celli--)
        {
            // Start and end of this row
            fEnd = fStart;
            fStart = ownStartPtr[celli];

            // Get the accumulated neighbour side
            psii = bPrimePtr[celli];

            // Accumulate the owner product side
            for (label facei=fStart; facei<fEnd; facei++)
            {
                psii -= upperPtr[facei]*psiPtr[uPtr[facei]];
            }

            // Finish psi for this cell
            psii /= diagPtr[celli];

            // Distribute the neighbour side using psi for this cell
            for (label facei=fStart; facei<fEnd; facei++)
            {
                bPrimePtr[uPtr[facei]] -= lowerPtr[facei]*psii;
            }

            psiPtr[celli] = psii;
        }
    }

    // Restore interfaceBouCoeffs_
    forAll(mBouCoeffs, patchi)
    {
        if (interfaces_.set(patchi))
        {
            mBouCoeffs[patchi].negate();
        }
    }
}
Exemple #2
0
void Foam::GaussSeidelSmoother::smooth
(
    const word& fieldName_,
    scalarField& psi,
    const lduMatrix& matrix_,
    const scalarField& source,
    const FieldField<Field, scalar>& interfaceBouCoeffs_,
    const lduInterfaceFieldPtrsList& interfaces_,
    const direction cmpt,
    const label nSweeps
)
{
    register scalar*  psiPtr = psi.begin();

    register const label nCells = psi.size();

    scalarField bPrime(nCells);
    register scalar*  bPrimePtr = bPrime.begin();

    register const scalar* const  diagPtr = matrix_.diag().begin();
    register const scalar* const  upperPtr =
        matrix_.upper().begin();
    register const scalar* const  lowerPtr =
        matrix_.lower().begin();

    register const label* const  uPtr =
        matrix_.lduAddr().upperAddr().begin();

    register const label* const  ownStartPtr =
        matrix_.lduAddr().ownerStartAddr().begin();


    // Parallel boundary initialisation.  The parallel boundary is treated
    // as an effective jacobi interface in the boundary.
    // Note: there is a change of sign in the coupled
    // interface update.  The reason for this is that the
    // internal coefficients are all located at the l.h.s. of
    // the matrix whereas the "implicit" coefficients on the
    // coupled boundaries are all created as if the
    // coefficient contribution is of a source-kind (i.e. they
    // have a sign as if they are on the r.h.s. of the matrix.
    // To compensate for this, it is necessary to turn the
    // sign of the contribution.

    FieldField<Field, scalar> mBouCoeffs(interfaceBouCoeffs_.size());

    forAll(mBouCoeffs, patchi)
    {
        if (interfaces_.set(patchi))
        {
            mBouCoeffs.set(patchi, -interfaceBouCoeffs_[patchi]);
        }
    }

    for (label sweep=0; sweep<nSweeps; sweep++)
    {
        bPrime = source;

        matrix_.initMatrixInterfaces
        (
            mBouCoeffs,
            interfaces_,
            psi,
            bPrime,
            cmpt
        );

        matrix_.updateMatrixInterfaces
        (
            mBouCoeffs,
            interfaces_,
            psi,
            bPrime,
            cmpt
        );

        register scalar curPsi;
        register label fStart;
        register label fEnd = ownStartPtr[0];

        for (register label cellI=0; cellI<nCells; cellI++)
        {
            // Start and end of this row
            fStart = fEnd;
            fEnd = ownStartPtr[cellI + 1];

            // Get the accumulated neighbour side
            curPsi = bPrimePtr[cellI];

            // Accumulate the owner product side
            for (register label curFace=fStart; curFace<fEnd; curFace++)
            {
                curPsi -= upperPtr[curFace]*psiPtr[uPtr[curFace]];
            }

            // Finish current psi
            curPsi /= diagPtr[cellI];

            // Distribute the neighbour side using current psi
            for (register label curFace=fStart; curFace<fEnd; curFace++)
            {
                bPrimePtr[uPtr[curFace]] -= lowerPtr[curFace]*curPsi;
            }

            psiPtr[cellI] = curPsi;
        }
    }
}
void Foam::TGaussSeidelSmoother<Type, DType, LUType>::smooth
(
    const word& fieldName_,
    Field<Type>& psi,
    const LduMatrix<Type, DType, LUType>& matrix_,
    const Field<DType>& rD_,
    const label nSweeps
)
{
    Type* __restrict__ psiPtr = psi.begin();

    const label nCells = psi.size();

    Field<Type> bPrime(nCells);
    Type* __restrict__ bPrimePtr = bPrime.begin();

    const DType* const __restrict__ rDPtr = rD_.begin();

    const LUType* const __restrict__ upperPtr =
        matrix_.upper().begin();

    const LUType* const __restrict__ lowerPtr =
        matrix_.lower().begin();

    const label* const __restrict__ uPtr =
        matrix_.lduAddr().upperAddr().begin();

    const label* const __restrict__ ownStartPtr =
        matrix_.lduAddr().ownerStartAddr().begin();


    // Parallel boundary initialisation.  The parallel boundary is treated
    // as an effective jacobi interface in the boundary.
    // Note: there is a change of sign in the coupled
    // interface update to add the contibution to the r.h.s.

    FieldField<Field, LUType> mBouCoeffs(matrix_.interfacesUpper().size());

    forAll(mBouCoeffs, patchi)
    {
        if (matrix_.interfaces().set(patchi))
        {
            mBouCoeffs.set(patchi, -matrix_.interfacesUpper()[patchi]);
        }
    }

    for (label sweep=0; sweep<nSweeps; sweep++)
    {
        bPrime = matrix_.source();

        matrix_.initMatrixInterfaces
        (
            mBouCoeffs,
            psi,
            bPrime
        );

        matrix_.updateMatrixInterfaces
        (
            mBouCoeffs,
            psi,
            bPrime
        );

        Type curPsi;
        label fStart;
        label fEnd = ownStartPtr[0];

        for (label celli=0; celli<nCells; celli++)
        {
            // Start and end of this row
            fStart = fEnd;
            fEnd = ownStartPtr[celli + 1];

            // Get the accumulated neighbour side
            curPsi = bPrimePtr[celli];

            // Accumulate the owner product side
            for (label curFace=fStart; curFace<fEnd; curFace++)
            {
                curPsi -= dot(upperPtr[curFace], psiPtr[uPtr[curFace]]);
            }

            // Finish current psi
            curPsi = dot(rDPtr[celli], curPsi);

            // Distribute the neighbour side using current psi
            for (label curFace=fStart; curFace<fEnd; curFace++)
            {
                bPrimePtr[uPtr[curFace]] -= dot(lowerPtr[curFace], curPsi);
            }

            psiPtr[celli] = curPsi;
        }
    }
}