void bakery_lock_get(unsigned int id, unsigned int offset)
{
	unsigned int they, me, is_cached;
	unsigned int my_ticket, my_prio, their_ticket;
	bakery_info_t *their_bakery_info;
	unsigned int their_bakery_data;

	me = plat_my_core_pos();

	is_cached = read_sctlr_el3() & SCTLR_C_BIT;

	/* Get a ticket */
	my_ticket = bakery_get_ticket(id, offset, me, is_cached);

	/*
	 * Now that we got our ticket, compute our priority value, then compare
	 * with that of others, and proceed to acquire the lock
	 */
	my_prio = PRIORITY(my_ticket, me);
	for (they = 0; they < BAKERY_LOCK_MAX_CPUS; they++) {
		if (me == they)
			continue;

		/*
		 * Get a reference to the other contender's bakery info and
		 * ensure that a stale copy is not read.
		 */
		their_bakery_info = get_bakery_info_by_index(offset, id, they);
		assert(their_bakery_info);

		/* Wait for the contender to get their ticket */
		do {
			read_cache_op(their_bakery_info, is_cached);
			their_bakery_data = their_bakery_info->lock_data;
		} while (bakery_is_choosing(their_bakery_data));

		/*
		 * If the other party is a contender, they'll have non-zero
		 * (valid) ticket value. If they do, compare priorities
		 */
		their_ticket = bakery_ticket_number(their_bakery_data);
		if (their_ticket && (PRIORITY(their_ticket, they) < my_prio)) {
			/*
			 * They have higher priority (lower value). Wait for
			 * their ticket value to change (either release the lock
			 * to have it dropped to 0; or drop and probably content
			 * again for the same lock to have an even higher value)
			 */
			do {
				wfe();
				read_cache_op(their_bakery_info, is_cached);
			} while (their_ticket
				== bakery_ticket_number(their_bakery_info->lock_data));
		}
	}
	/* Lock acquired */
}
/*
 * Acquire bakery lock
 *
 * Contending CPUs need first obtain a non-zero ticket and then calculate
 * priority value. A contending CPU iterate over all other CPUs in the platform,
 * which may be contending for the same lock, in the order of their ordinal
 * position (CPU0, CPU1 and so on). A non-contending CPU will have its ticket
 * (and priority) value as 0. The contending CPU compares its priority with that
 * of others'. The CPU with the highest priority (lowest numerical value)
 * acquires the lock
 */
void bakery_lock_get(unsigned long mpidr, bakery_lock_t *bakery)
{
	unsigned int they, me;
	unsigned int my_ticket, my_prio, their_ticket;

	me = platform_get_core_pos(mpidr);

	assert_bakery_entry_valid(me, bakery);

	/* Prevent recursive acquisition */
	assert(bakery->owner != me);

	/* Get a ticket */
	my_ticket = bakery_get_ticket(bakery, me);

	/*
	 * Now that we got our ticket, compute our priority value, then compare
	 * with that of others, and proceed to acquire the lock
	 */
	my_prio = PRIORITY(my_ticket, me);
	for (they = 0; they < BAKERY_LOCK_MAX_CPUS; they++) {
		if (me == they)
			continue;

		/* Wait for the contender to get their ticket */
		while (bakery->entering[they])
			wfe();

		/*
		 * If the other party is a contender, they'll have non-zero
		 * (valid) ticket value. If they do, compare priorities
		 */
		their_ticket = bakery->number[they];
		if (their_ticket && (PRIORITY(their_ticket, they) < my_prio)) {
			/*
			 * They have higher priority (lower value). Wait for
			 * their ticket value to change (either release the lock
			 * to have it dropped to 0; or drop and probably content
			 * again for the same lock to have an even higher value)
			 */
			do {
				wfe();
			} while (their_ticket == bakery->number[they]);
		}
	}

	/* Lock acquired */
	bakery->owner = me;
}