SpiPlateformImplementation::SpiPlateformImplementation( SpiChipSelect cs):
_cs( cs )
{
    if( s_count++ == 0)
    {
        printf("\n SPI INIT");
#ifdef TARGET_RASPBERRY_PI
        bcm2835_spi_begin();
        
        bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);
        bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);
        bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_4096);
        bcm2835_spi_chipSelect(BCM2835_SPI_CS0);
        bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0, LOW);
#endif
        /*
        setBitOrder( SpiMSB );
        setDataMode( SpiMode_0);
        setClockDivider( SPI_CLOCK_DIVIDER_4096);
        setChipSelect( _cs );
        setCsPolarity( low );
         */
    }


}
// initializer for SPI - we indicate the pins used and OLED type
//
boolean ArduiPi_OLED::init(int8_t DC, int8_t RST, int8_t CS, uint8_t OLED_TYPE) 
{
  rst = RST==OLED_PIN_DEFAULT ? DEF_SPI_RESET : RST;  // Reset Pin
  dc  = DC ==OLED_PIN_DEFAULT ? DEF_SPI_DC    : DC;   // Data / command Pin
  cs  = CS ==OLED_PIN_DEFAULT ? DEF_SPI_CS    : (
        CS ==OLED_CS_ALTERNATE ? ALT_SPI_CS   : CS);  // Raspberry SPI chip Enable (may be CE0 or CE1)
  
  // Select OLED parameters
  if (!select_oled(OLED_TYPE))
    return false;

  // Init & Configure Raspberry PI SPI
  bcm2835_spi_begin(cs);
  bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);      
  bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);                
  
  // 16 MHz SPI bus, but Worked at 62 MHz also  
  bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_16); 

  // Set the pin that will control DC as output
  bcm2835_gpio_fsel(dc, BCM2835_GPIO_FSEL_OUTP);

  // Setup reset pin direction as output
  if (rst >= 0)
    bcm2835_gpio_fsel(rst, BCM2835_GPIO_FSEL_OUTP);

  return ( true);
}
Exemple #3
0
	void Rfid::init_rfid(void)
	{
		if(geteuid()!=0 || getenv("FAKEROOTKEY"))
		{
			(*_pLinkToConsole)->printOut("You need to be root to properly run this program");
			throw "You need to be root to properly run this program";
		}
		if(!bcm2835_init())
		{
			(*_pLinkToConsole)->printOut("Not able to initialize BCM2835");
			throw "Not able to initialize BCM2835";
		}

		bcm2835_spi_begin();
		bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);	// default
		bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);					// default
		bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_32);	// default
		bcm2835_spi_chipSelect(BCM2835_SPI_CS0);					// default
		bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0, LOW);	// default

		/*
		uid_t uid=500;
		setuid(uid);
		*/

		InitRc522();
	}
Exemple #4
0
void setupSPI() {
	/*
	//Use bcm2835_gpio_fsel(uint8_t pin, uint8_t mode) to set pin modes
	//Modes are BCM2835_GPIO_FSEL_INPT for input
	//Modes are BCM2835_GPIO_FSEL_OUTP for output
	bcm2835_gpio_fsel(SCLK, BCM2835_GPIO_FSEL_OUTP);
	bcm2835_gpio_fsel(MOSI, BCM2835_GPIO_FSEL_OUTP);
	bcm2835_gpio_fsel(MISO, BCM2835_GPIO_FSEL_INPT);

	//Clear the two output pins
	bcm2835_gpio_clr(SCLK);
	bcm2835_gpio_clr(MOSI);

	bcm2835_gpio_set_pud(SCLK, BCM2835_GPIO_PUD_DOWN);
	bcm2835_gpio_set_pud(MOSI, BCM2835_GPIO_PUD_DOWN);
	bcm2835_gpio_set_pud(MISO, BCM2835_GPIO_PUD_UP);
	*/
	bcm2835_spi_begin();
	//About 1MHz
	//bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_256);
	//About 244KHz
	//bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_1024);
	//bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_2048);
	//About 30.5kHz
	//bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_8192);
	//16KHz
	bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_16384);
	bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);
}
Exemple #5
0
bool bw_spi_dimmer_start(device_info_t *device_info) {

	if (device_info->slave_address == (uint8_t) 0) {
		device_info->slave_address = BW_DIMMER_DEFAULT_SLAVE_ADDRESS;
	}

	if (device_info->speed_hz == (uint32_t) 0) {
		device_info->speed_hz = (uint32_t) BW_DIMMER_SPI_SPEED_DEFAULT_HZ;
	} else if (device_info->speed_hz > (uint32_t) BW_DIMMER_SPI_SPEED_MAX_HZ) {
		device_info->speed_hz = (uint32_t) BW_DIMMER_SPI_SPEED_MAX_HZ;
	}

	if (device_info->chip_select >= SPI_CS2) {
		device_info->chip_select = SPI_CS2;
		bcm2835_aux_spi_begin();
		device_info->internal.clk_div = bcm2835_aux_spi_CalcClockDivider(device_info->speed_hz);
	} else {
		bcm2835_spi_begin();
		device_info->internal.clk_div = (uint16_t)((uint32_t) BCM2835_CORE_CLK_HZ / device_info->speed_hz);
	}

	char id[BW_ID_STRING_LENGTH+1];
	bw_spi_read_id(device_info, id);

	if (memcmp(id, "spi_dimmer", 10) == 0) {
		return true;
	}

	return false;
}
Exemple #6
0
int main(int argc, char **argv)
{
    // If you call this, it will not actually access the GPIO
    // Use for testing
    //        bcm2835_set_debug(1);

    if (!bcm2835_init())
    {
        return 1;
    }

    bcm2835_spi_begin();
    bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);      // The default
    bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);                   // The default
    bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_65536); // The default
    bcm2835_spi_chipSelect(BCM2835_SPI_CS0);                      // The default
    bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0, LOW);      // the default

    int i;
    for( i = 0; i < 100; i++ )
    {
        // Send a byte to the slave and simultaneously read a byte back from the slave
        // If you tie MISO to MOSI, you should read back what was sent
        uint8_t data = bcm2835_spi_transfer(i);
        printf("Wrote: %02X Read from SPI: %02X\n", i, data);
    }

    bcm2835_spi_end();
    bcm2835_close();
    return 0;
}
Exemple #7
0
int main(int argc, char **argv) {
	if (!bcm2835_init())
		return 1;
	bcm2835_spi_begin();
	bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);
	bcm2835_spi_setDataMode(BCM2835_SPI_MODE1);
	bcm2835_spi_setClockDivider(2170-200);
	bcm2835_spi_chipSelect(BCM2835_SPI_CS0);
	bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0, LOW);
	
	volatile uint32_t* paddr = bcm2835_spi0 + BCM2835_SPI0_CS/4;
	bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_LEN, BCM2835_SPI0_CS_LEN); //make it 9 bit
	
	volatile uint32_t* ltoh = bcm2835_spi0+BCM2835_SPI0_LTOH/4;
	bcm2835_peri_set_bits(ltoh,0b1111,0);
	
	unsigned int i='a';
	
	while(1) {
		for(char c='a';c<='z';c++) {
			spi_uart_tx(c);
			spi_uart_tx(' ');
		}
		spi_uart_tx('\n');
		
// 		bcm2835_delay(10);
// 		printf(" ");
	}
	
	bcm2835_spi_end();
	bcm2835_close();
	
	return 0;
}
Exemple #8
0
void SPI::begin( int busNo ) {
    if (!bcm2835_init()) {
        return;
    }

    bcm2835_spi_begin();
}
int main(int argc, char **argv){
	if (!bcm2835_init())
		return 1;

	// SPI INIT
	bcm2835_spi_begin();
	bcm2835_spi_setClockDivider(SPI_CLOCK_DIVIDER_26); 			// 250MHz / 26 = 9.6MHz
	bcm2835_spi_setDataMode(BCM2835_SPI_MODE0); 				// CPOL = 0, CPHA = 0
	bcm2835_spi_chipSelect(BCM2835_SPI_CS1);					// chip select 1

	HRF_config_FSK();
	HRF_wait_for(ADDR_IRQFLAGS1, MASK_MODEREADY, true);			// wait until ready after mode switching
	HRF_clr_fifo();


	printf("send LEGACY message:\t");
	static bool switchState = false;
	switchState = !switchState;
	bcm2835_gpio_write(LEDR, switchState);

	// THE MAGIC LINE
	relayState = 0;												//0 = s1 on, 1 = s1 off, 2 = s2 on, 3 = s2 off (I think)
	// END MAGIC LINE

	HRF_send_OOK_msg(relayState);

	bcm2835_spi_end();
	return 0;
}
Exemple #10
0
void VM205::connect() {
	bcm2835_spi_begin();
	bcm2835_spi_setDataMode(BCM2835_SPI_MODE2);
	bcm2835_spi_chipSelect(BCM2835_SPI_CS0);
	bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);
	bcm2835_spi_setClockDivider(500);
}
Exemple #11
0
static PyObject *
PyBCM2835_spi_begin(PyObject *self, PyObject *args)
{
	bcm2835_spi_begin();

	Py_RETURN_NONE;
}
Exemple #12
0
/*
*	Function: spi_test
* Description: be used to test SPI related functions by using the AT450BXX module
*
*   host             slave
*   MISO  < - >   MISO
*   MOSI  < - >   MOSI
*   CLK    < - >   CLK
*   CE0/1 < - >   CS
*/
void spi_test(void)
{
	int num;
	unsigned char wBuf = 0x3f;
	unsigned char rBuf;
	printf("--------------->Test SPI With AT450BXX<--------------\n");
	bcm2835_spi_begin();
	bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);	  // The default
	bcm2835_spi_setDataMode(BCM2835_SPI_MODE0); 				  // The default
	bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_64); 
	//bcm2835_spi_chipSelect(BCM2835_SPI_CS0);
	//bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0, HIGH);

	bcm2835_gpio_fsel(PIN_CS, BCM2835_GPIO_FSEL_OUTP);    /*set CS, and must be called*/

	printf("SPI write 0x%x\n", wBuf);
	ee_write(0,wBuf);
	bcm2835_delay(50);

	rBuf = ee_read(0);
	printf("SPI read 0x%x\n", rBuf);
	if(wBuf == rBuf)
	{
		printf("SPI interface work well !...\n");
	}
	else
	{
		printf("SPI interface work bad !...\n");
	}
	 bcm2835_spi_end();	
}
Exemple #13
0
Fichier : spi.c Projet : sjhx/etrv
int spi_init() {
	int ret = 0;

	mode = 0;
	delay = 0;

#ifdef BCM
	if (!bcm2835_init())
		return 0;
	bcm2835_spi_begin();	
	bcm2835_spi_setClockDivider(SPI_CLOCK_DIVIDER); 			// 250MHz / 26 = 9.6MHz
	bcm2835_spi_setDataMode(BCM2835_SPI_MODE0); 				// CPOL = 0, CPHA = 0
	bcm2835_spi_chipSelect(BCM2835_SPI_CS1);					// chip select 1
	return 1;
#else
	fd = open(device, O_RDWR);
	if (fd < 0)
		pabort("can't open device");

	/*
	 * spi mode
	 */
	ret = ioctl(fd, SPI_IOC_WR_MODE, &mode);
	if (ret == -1)
		pabort("can't set spi mode");

	ret = ioctl(fd, SPI_IOC_RD_MODE, &mode);
	if (ret == -1)
		pabort("can't get spi mode");

	/*
	 * bits per word
	 */
	ret = ioctl(fd, SPI_IOC_WR_BITS_PER_WORD, &bits);
	if (ret == -1)
		pabort("can't set bits per word");

	ret = ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits);
	if (ret == -1)
		pabort("can't get bits per word");

	/*
	 * max speed hz
	 */
	ret = ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed);
	if (ret == -1)
		pabort("can't set max speed hz");

	ret = ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed);
	if (ret == -1)
		pabort("can't get max speed hz");

	printf("spi mode: %d\n", mode);
	printf("bits per word: %d\n", bits);
	printf("max speed: %d Hz (%d KHz)\n", speed, speed/1000);

	return 1;
#endif
}
Exemple #14
0
void init_touch_spi(void)
{
    bcm2835_spi_begin();
    bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);      // The default
    bcm2835_spi_setDataMode(BCM2835_SPI_MODE3);                   // The default
    bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_256); // The default

}
Exemple #15
0
 //
// Set up a memory regions to access GPIO
//
void setup_io()
{
   /* open /dev/mem */
   if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC) ) < 0) {
      printf("can't open /dev/mem \n");
      exit(-1);
   }
 
   /* mmap GPIO */
   gpio_map = mmap(
      NULL,             //Any adddress in our space will do
      BLOCK_SIZE,       //Map length
      PROT_READ|PROT_WRITE,// Enable reading & writting to mapped memory
      MAP_SHARED,       //Shared with other processes
      mem_fd,           //File to map
      GPIO_BASE         //Offset to GPIO peripheral
   );
   if (gpio_map == MAP_FAILED) {
      printf("mmap error %d\n", (int)gpio_map);//errno also set!
      exit(-1);
   }
   // Always use volatile pointer!
   gpio = (volatile unsigned *)gpio_map;

#define CLK_LEN   0xA8   
   gpio_map = mmap(
      NULL,             //Any adddress in our space will do
      CLK_LEN,       //Map length
      PROT_READ|PROT_WRITE,// Enable reading & writting to mapped memory
      MAP_SHARED,       //Shared with other processes
      mem_fd,           //File to map
      CLOCK_BASE         //Offset to GPIO peripheral
   );
    if (gpio_map == MAP_FAILED) {
      printf("mmap error %d\n", (int)gpio_map);//errno also set!
      exit(-1);
   }
   // Always use volatile pointer!
   clkReg = (volatile unsigned *)gpio_map;
   
   close(mem_fd); //No need to keep mem_fd open after mmap

   if (!bcm2835_init())
   {
		printf("bcm2835_init error\n");
		exit(-1);   
   }
#if 0   
    bcm2835_spi_begin();
    bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);      // The default
    bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);                   // The default
    bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_4); 
    bcm2835_spi_chipSelect(BCM2835_SPI_CS0);                      // The default
    bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0, LOW);      // the default   
#endif
} // setup_io
Exemple #16
0
void SPIClass::begin() {
	if (!initialized) {
		if (!bcm2835_spi_begin()) {
			mys_log(LOG_ERR, "You need to be root to use SPI.\n");
			exit(1);
		}
	}

	initialized++; // reference count
}
int spi_init() {
    bcm2835_spi_begin();
    bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);      // The default
    bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);                   // The default
    //bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_65536); // The default
    bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_256); // The default
    bcm2835_spi_chipSelect(BCM2835_SPI_CS0);                      // The default
    bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0, LOW);      // the default

    return 0;
}
Exemple #18
0
/**
 *@brief Initializes the SPI peripheral
 *@return none
 */
void SPI_Initialize(void)
{	if (!bcm2835_init())
	{
		printf("BCM libray error.\n");			//Should be run with the sudo cmd
	}
	bcm2835_spi_begin();						//Configure SPI pins
	bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);      	//Configure bit order
	bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);  			//Set clock polarity and phase CPOL=0, CPHA=0
	bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_4);	//SPI baud rate at 244 Khz
	bcm2835_spi_chipSelect(BCM2835_SPI_CS_NONE);			//Control CE0 in software
	printf("SPI initialized...\n");
}
Exemple #19
0
void SPI_Init() {
	bcm2835_init();

	bcm2835_spi_begin();

	bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0, 0);
	bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS1, 0);

	bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_64);

	bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);
	bcm2835_spi_chipSelect(BCM2835_SPI_CS0);
}
Exemple #20
0
void SPIClass::begin(uint16_t divider, uint8_t bitOrder, uint8_t dataMode)
{
  setClockDivider(divider);
  setBitOrder(bitOrder);
  setDataMode(dataMode);

  //Set CS pins polarity to low
  bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0, 0);

  bcm2835_spi_begin();

  //Initialize a timestamp for millis calculation
  gettimeofday(&RHStartTime, NULL);
}
Exemple #21
0
int bw_spi_dio_start(device_info_t *device_info) {

	if (bcm2835_init() != 1)
		return 1;

	bcm2835_spi_begin();
	// Just once. Assuming all devices do have the same
	bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);

	if (device_info->slave_address <= 0)
		device_info->slave_address = BW_DIO_DEFAULT_SLAVE_ADDRESS;

	return 0;
}
Exemple #22
0
/**************************************************************************
    Function:	spi_lcd_init
    Purpose:	Initialize SPI device	
    Returns:	
    Note:	Sets defaults	
 *************************************************************************/
int spi_lcd_init(struct spi_lcd_dev *dev)
{
	// wait for 100ms for power up delay - could probably skip this.
	bcm2835_delay(100);

	bcm2835_spi_begin();
	bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);
	bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);
	bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_65536);
	bcm2835_spi_chipSeclect(BCM2835_SPI_CS0);
	bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0,LOW);
	
	return 0;
}
Exemple #23
0
LEDMatrix::LEDMatrix(int width, int height) {
	this->width = width;
	this->height = height;

	//Initialize the color array
	for(int i = 0; i < (width*height); i++) {
		colors.push_back(Color());
	}

	//Initialize the BCM2835 library
	bcm2835_init();
	bcm2835_spi_begin();

	bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_128);
}
/*!
 * Start the SPI communication
 */
void EcgCapture::spiInit()
{
    bcm2835_gpio_fsel(PIN18, BCM2835_GPIO_FSEL_OUTP);
    bcm2835_gpio_write(PIN18, LOW);
    delay(100);
    bcm2835_gpio_write(PIN18, HIGH);
    delay(100);
    bcm2835_spi_begin();
    bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);
    bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);
    bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_512);
    bcm2835_spi_chipSelect(BCM2835_SPI_CS0);
    bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0, LOW);
    bcm2835_gpio_fsel(PIN16, BCM2835_GPIO_FSEL_INPT);
}
MPU9250::MPU9250()
{
  if (!bcm2835_init())
    {
      printf("bcm2835_init failed. Are you running as root??\n");
    }
  if (!bcm2835_spi_begin())
    {
      printf("bcm2835_spi_begin failedg. Are you running as root??\n");
    }
  bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);      // The default
  bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);                   // The default
  bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_16); // The default
  bcm2835_spi_setChipSelectPolarity(MPU9250_PIN, LOW);      // the default
  bcm2835_spi_chipSelect(MPU9250_PIN);                      // The default    
}
Exemple #26
0
void main(int argc, char* argv)
{
   /* Pour le debugging
      1 == Print sur la console les operations des fonctions 
      0 == Comportement normal du programme */
   bcm2835_set_debug(0);

   /* Initialisation de la librairie */
   if(bcm2835_close())
   {
      /* code d'initialisation bcm */
      printf("Version de la librairie : %d", bcm2835_version());

      if(bcm2835_spi_begin())
      {
         /* Initialisation de la SPI
            Voir header pour valeurs */
         bcm2835_spi_setClockDivider(CLK_SPEED);
         bcm2835_spi_setDataMode(PI_MODE);
         bcm2835_spi_setBitOrder(BIT_ORDER);
         /* Selecte un CS pour le transfert de donnees */
         bcm2835_spi_chipSelect(CS_SLAVE);

         /* Test de transfert avec retour */
         uint8_t ret;
         ret = bcm2835_spi_transfer(5);
         printf("Retour de l'Arduino : %d", ret);

         /* Test de transfert sans retour */
         bcm2835_spi_transfern("A", 1);

         bcm2835_spi_end();
      }
      else
      {
         printf("Erreur de l'init de SPI\n");
      }

      bcm2835_close(void); /* Libere la memoire et ferme la librairie */
   }
   else
   {
      printf("Echec de l'ouverture de la librairie\n");
   }
}
Exemple #27
0
int DIS_init() {
	if (!bcm2835_init())
		return 1;

	bcm2835_gpio_fsel(DIS_CS1, BCM2835_GPIO_FSEL_OUTP);
	bcm2835_gpio_fsel(DIS_CS2, BCM2835_GPIO_FSEL_OUTP);
	bcm2835_gpio_fsel(DIS_CS3, BCM2835_GPIO_FSEL_OUTP);
	bcm2835_gpio_fsel(DIS_CS4, BCM2835_GPIO_FSEL_OUTP);

	chipSelect(DIS_NONE);

	bcm2835_spi_begin();
	bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);
	bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);
	bcm2835_spi_setClockDivider(DIS_CLOCK_DIVIDER);
	bcm2835_spi_chipSelect(BCM2835_SPI_CS_NONE);
	return 0;
}
Exemple #28
0
/**
 * @ingroup DEV
 *
 * @param dmx_device_info
 */
static void ws2812_init(dmx_device_info_t * dmx_device_info, const uint8_t *dmx_data) {
	struct _rdm_sub_devices_info *rdm_sub_devices_info =  &(dmx_device_info)->rdm_sub_devices_info;

	bcm2835_spi_begin();

	(void *)_memcpy(rdm_sub_devices_info, &sub_device_info, sizeof(struct _rdm_sub_devices_info));
	dmx_device_info->rdm_sub_devices_info.dmx_start_address = dmx_device_info->dmx_start_address;
	(void *)_memcpy(dmx_device_info->rdm_sub_devices_info.device_label, device_label, device_label_len);
	dmx_device_info->rdm_sub_devices_info.device_label_length = device_label_len;

	// WS2812 specific
	if ((dmx_device_info->pixel_count == (uint8_t)0) || ((uint16_t) dmx_device_info->pixel_count * (uint16_t) WS2812_SLOTS_PER_PIXEL > (uint16_t) DMX_UNIVERSE_SIZE)) {
		dmx_device_info->pixel_count = (uint8_t) ((uint16_t) DMX_UNIVERSE_SIZE / (uint16_t) WS2812_SLOTS_PER_PIXEL);
	}

	dmx_device_info->rdm_sub_devices_info.dmx_footprint = dmx_device_info->pixel_count * (uint16_t) WS2812_SLOTS_PER_PIXEL;
	dmx_device_info->rdm_sub_devices_info.rdm_personalities->slots = dmx_device_info->pixel_count * (uint16_t) WS2812_SLOTS_PER_PIXEL;
}
int main(int argc, char **argv)
{
    if (!bcm2835_init())
        return 1;

    char buffer[4];
    buffer[0] = 50;
    int i,temp;

    bcm2835_spi_begin();
    bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);
    bcm2835_spi_setDataMode(BCM2835_SPI_MODE3);                    //SCLK rising edge - clock idle state 1
    bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_65536);  //set clock frequency
    bcm2835_spi_chipSelect(BCM2835_SPI_CS1);                       //use chip select 1
    bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS1, LOW);       //chip select 0 to activate


    buffer[0]=buffer[1]=buffer[2]=buffer[3]=0;
    //bcm2835_spi_transfern(buffer,4);

    buffer[0] = 0x58;       //read the id
    bcm2835_spi_transfern(buffer,2);
    printf("id:%02X\n",buffer[1]);
    
    while(1)
    {
        buffer[0] = 0x50;       //read the temp
        bcm2835_spi_transfern(buffer,3);
        printf("status %02X %02X\n",buffer[1],buffer[2]);
        temp = buffer[1]; 
        temp = temp<<8;
        temp = temp + ( buffer[2] & 0xF8);
        printf("status %08x\n",temp);
        temp = temp>>3;
        temp = temp/16;
        printf("temp:%d\n",temp);
        sleep(1);
    }

    bcm2835_spi_end();
    bcm2835_close();
    return 0;
}
Exemple #30
0
void init_lcd_spi(void)
{    
    bcm2835_init();

    bcm2835_spi_begin();
    bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);      // The default
    bcm2835_spi_setDataMode(BCM2835_SPI_MODE3);                   // The default
    bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_256); // The default

    bcm2835_gpio_fsel(RPI_GPIO_P1_16, BCM2835_GPIO_FSEL_OUTP);
    bcm2835_gpio_fsel(RPI_GPIO_P1_22, BCM2835_GPIO_FSEL_OUTP);
    bcm2835_gpio_fsel(RPI_GPIO_P1_24, BCM2835_GPIO_FSEL_OUTP);
    bcm2835_gpio_fsel(RPI_GPIO_P1_26, BCM2835_GPIO_FSEL_OUTP);
    bcm2835_gpio_fsel(PENIRQ, BCM2835_GPIO_FSEL_INPT);
    bcm2835_gpio_set_pud(PENIRQ, BCM2835_GPIO_PUD_UP);///////////////////////

   printf("\n spi-lcd22 test :\n Start .......\n  ");

}