Exemple #1
0
/**
 * read_lba(): Read bytes from disk, starting at given LBA
 * @bdev
 * @lba
 * @buffer
 * @size_t
 *
 * Description:  Reads @count bytes from @bdev into @buffer.
 * Returns number of bytes read on success, 0 on error.
 */
static size_t
read_lba(struct block_device *bdev, u64 lba, u8 * buffer, size_t count)
{
	size_t totalreadcount = 0;
	sector_t n = lba * (bdev_hardsect_size(bdev) / 512);

	if (!bdev || !buffer || lba > last_lba(bdev))
                return 0;

	while (count) {
		int copied = 512;
		Sector sect;
		unsigned char *data = read_dev_sector(bdev, n++, &sect);
		if (!data)
			break;
		if (copied > count)
			copied = count;
		memcpy(buffer, data, copied);
		put_dev_sector(sect);
		buffer += copied;
		totalreadcount +=copied;
		count -= copied;
	}
	return totalreadcount;
}
Exemple #2
0
static int write_sb_page(struct bitmap *bitmap, struct page *page, int wait)
{
    mdk_rdev_t *rdev;
    struct list_head *tmp;
    mddev_t *mddev = bitmap->mddev;

    ITERATE_RDEV(mddev, rdev, tmp)
    if (test_bit(In_sync, &rdev->flags)
            && !test_bit(Faulty, &rdev->flags)) {
        int size = PAGE_SIZE;
        if (page->index == bitmap->file_pages-1)
            size = roundup(bitmap->last_page_size,
                           bdev_hardsect_size(rdev->bdev));
        /* Just make sure we aren't corrupting data or
         * metadata
         */
        if (bitmap->offset < 0) {
            /* DATA  BITMAP METADATA  */
            if (bitmap->offset
                    + page->index * (PAGE_SIZE/512)
                    + size/512 > 0)
                /* bitmap runs in to metadata */
                return -EINVAL;
            if (rdev->data_offset + mddev->size*2
                    > rdev->sb_offset*2 + bitmap->offset)
                /* data runs in to bitmap */
                return -EINVAL;
        } else if (rdev->sb_offset*2 < rdev->data_offset) {
            /* METADATA BITMAP DATA */
            if (rdev->sb_offset*2
                    + bitmap->offset
                    + page->index*(PAGE_SIZE/512) + size/512
                    > rdev->data_offset)
                /* bitmap runs in to data */
                return -EINVAL;
        } else {
            /* DATA METADATA BITMAP - no problems */
        }
        md_super_write(mddev, rdev,
                       (rdev->sb_offset<<1) + bitmap->offset
                       + page->index * (PAGE_SIZE/512),
                       size,
                       page);
    }

    if (wait)
        md_super_wait(mddev);
    return 0;
}
Exemple #3
0
/**
 * last_lba(): return number of last logical block of device
 * @bdev: block device
 * 
 * Description: Returns last LBA value on success, 0 on error.
 * This is stored (by sd and ide-geometry) in
 *  the part[0] entry for this disk, and is the number of
 *  physical sectors available on the disk.
 */
static u64
last_lba(struct block_device *bdev)
{
	unsigned ssz = bdev_hardsect_size(bdev) / 512;
	unsigned loop = 0;

	if (!bdev || !bdev->bd_inode)
		return 0;

	do {
		loop++;
		ssz >>= 1;
	} while(ssz > 1);
	return ((bdev->bd_inode->i_size >> 9) >> loop) - 1ULL;
}
Exemple #4
0
xfs_buftarg_t *
xfs_alloc_buftarg(
	struct block_device	*bdev)
{
	xfs_buftarg_t		*btp;

	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);

	btp->pbr_dev =  bdev->bd_dev;
	btp->pbr_bdev = bdev;
	btp->pbr_mapping = bdev->bd_inode->i_mapping;
	xfs_setsize_buftarg(btp, PAGE_CACHE_SIZE, bdev_hardsect_size(bdev));

	return btp;
}
Exemple #5
0
/*
 * Open/close code for raw IO.
 *
 * We just rewrite the i_mapping for the /dev/raw/rawN file descriptor to
 * point at the blockdev's address_space and set the file handle to use
 * O_DIRECT.
 *
 * Set the device's soft blocksize to the minimum possible.  This gives the
 * finest possible alignment and has no adverse impact on performance.
 */
static int raw_open(struct inode *inode, struct file *filp)
{
	const int minor = iminor(inode);
	struct block_device *bdev;
	int err;

	if (minor == 0) {	/* It is the control device */
		filp->f_op = &raw_ctl_fops;
		return 0;
	}

	down(&raw_mutex);

	/*
	 * All we need to do on open is check that the device is bound.
	 */
	bdev = raw_devices[minor].binding;
	err = -ENODEV;
	if (!bdev)
		goto out;
	igrab(bdev->bd_inode);
	err = blkdev_get(bdev, filp->f_mode, 0);
	if (err)
		goto out;
	err = bd_claim(bdev, raw_open);
	if (err)
		goto out1;
	err = set_blocksize(bdev, bdev_hardsect_size(bdev));
	if (err)
		goto out2;
	filp->f_flags |= O_DIRECT;
	filp->f_mapping = bdev->bd_inode->i_mapping;
	if (++raw_devices[minor].inuse == 1)
		filp->f_dentry->d_inode->i_mapping =
			bdev->bd_inode->i_mapping;
	filp->private_data = bdev;
	up(&raw_mutex);
	return 0;

out2:
	bd_release(bdev);
out1:
	blkdev_put(bdev);
out:
	up(&raw_mutex);
	return err;
}
Exemple #6
0
/**
 * efi_partition(struct parsed_partitions *state, struct block_device *bdev)
 * @state
 * @bdev
 *
 * Description: called from check.c, if the disk contains GPT
 * partitions, sets up partition entries in the kernel.
 *
 * If the first block on the disk is a legacy MBR,
 * it will get handled by msdos_partition().
 * If it's a Protective MBR, we'll handle it here.
 *
 * We do not create a Linux partition for GPT, but
 * only for the actual data partitions.
 * Returns:
 * -1 if unable to read the partition table
 *  0 if this isn't our partition table
 *  1 if successful
 *
 */
int
efi_partition(struct parsed_partitions *state, struct block_device *bdev)
{
	gpt_header *gpt = NULL;
	gpt_entry *ptes = NULL;
	u32 i;
	unsigned ssz = bdev_hardsect_size(bdev) / 512;

	if (!find_valid_gpt(bdev, &gpt, &ptes) || !gpt || !ptes) {
		kfree(gpt);
		kfree(ptes);
		return 0;
	}

	Dprintk("GUID Partition Table is valid!  Yea!\n");

	for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) {
		u64 start = le64_to_cpu(ptes[i].starting_lba);
		u64 size = le64_to_cpu(ptes[i].ending_lba) -
			   le64_to_cpu(ptes[i].starting_lba) + 1ULL;

		if (!is_pte_valid(&ptes[i], last_lba(bdev)))
			continue;

		put_partition(state, i+1, start * ssz, size * ssz);

		/* If this is a RAID volume, tell md */
		if (!efi_guidcmp(ptes[i].partition_type_guid,
				 PARTITION_LINUX_RAID_GUID))
			state->parts[i+1].flags = 1;

		/* If this is a EFI System partition, tell hotplug */
		if (!efi_guidcmp(ptes[i].partition_type_guid,
				 PARTITION_SYSTEM_GUID))
			state->parts[i+1].is_efi_system_partition = 1;
	}
	kfree(ptes);
	kfree(gpt);
	printk("\n");
	return 1;
}
Exemple #7
0
/**
 * alloc_read_gpt_header(): Allocates GPT header, reads into it from disk
 * @bdev
 * @lba is the Logical Block Address of the partition table
 * 
 * Description: returns GPT header on success, NULL on error.   Allocates
 * and fills a GPT header starting at @ from @bdev.
 * Note: remember to free gpt when finished with it.
 */
static gpt_header *
alloc_read_gpt_header(struct block_device *bdev, u64 lba)
{
	gpt_header *gpt;
	unsigned ssz = bdev_hardsect_size(bdev);

	if (!bdev)
		return NULL;

	gpt = kmalloc(ssz, GFP_KERNEL);
	if (!gpt)
		return NULL;
	memset(gpt, 0, sizeof (gpt_header));

	if (read_lba(bdev, lba, (u8 *) gpt, ssz) < ssz) {
		kfree(gpt);
                gpt=NULL;
		return NULL;
	}

	return gpt;
}
Exemple #8
0
static int write_sb_page(struct bitmap *bitmap, struct page *page, int wait)
{
	mdk_rdev_t *rdev;
	struct list_head *tmp;
	mddev_t *mddev = bitmap->mddev;

	ITERATE_RDEV(mddev, rdev, tmp)
		if (test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags)) {
			int size = PAGE_SIZE;
			if (page->index == bitmap->file_pages-1)
				size = roundup(bitmap->last_page_size,
					       bdev_hardsect_size(rdev->bdev));
			md_super_write(mddev, rdev,
				       (rdev->sb_offset<<1) + bitmap->offset
				       + page->index * (PAGE_SIZE/512),
				       size,
				       page);
		}

	if (wait)
		md_super_wait(mddev);
	return 0;
}
Exemple #9
0
int msdos_partition(struct parsed_partitions *state, struct block_device *bdev)
{
	int sector_size = bdev_hardsect_size(bdev) / 512;
	Sector sect;
	unsigned char *data;
	struct partition *p;
	int slot;

	data = read_dev_sector(bdev, 0, &sect);
	if (!data)
		return -1;
	if (!msdos_magic_present(data + 510)) {
		put_dev_sector(sect);
		return 0;
	}

	if (aix_magic_present(data, bdev)) {
		put_dev_sector(sect);
		printk( " [AIX]");
		return 0;
	}

	/*
	 * Now that the 55aa signature is present, this is probably
	 * either the boot sector of a FAT filesystem or a DOS-type
	 * partition table. Reject this in case the boot indicator
	 * is not 0 or 0x80.
	 */
	p = (struct partition *) (data + 0x1be);
	for (slot = 1; slot <= 4; slot++, p++) {
		if (p->boot_ind != 0 && p->boot_ind != 0x80) {
			put_dev_sector(sect);
			return 0;
		}
	}

#ifdef CONFIG_EFI_PARTITION
	p = (struct partition *) (data + 0x1be);
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		/* If this is an EFI GPT disk, msdos should ignore it. */
		if (SYS_IND(p) == EFI_PMBR_OSTYPE_EFI_GPT) {
			put_dev_sector(sect);
			return 0;
		}
	}
#endif
	p = (struct partition *) (data + 0x1be);

	/*
	 * Look for partitions in two passes:
	 * First find the primary and DOS-type extended partitions.
	 * On the second pass look inside *BSD, Unixware and Solaris partitions.
	 */

	state->next = 5;
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		u32 start = START_SECT(p)*sector_size;
		u32 size = NR_SECTS(p)*sector_size;
		if (!size)
			continue;
		if (is_extended_partition(p)) {
			/* prevent someone doing mkfs or mkswap on an
			   extended partition, but leave room for LILO */
			put_partition(state, slot, start, size == 1 ? 1 : 2);
			printk(" <");
			parse_extended(state, bdev, start, size);
			printk(" >");
			continue;
		}
		put_partition(state, slot, start, size);
		if (SYS_IND(p) == LINUX_RAID_PARTITION)
			state->parts[slot].flags = 1;
		if (SYS_IND(p) == DM6_PARTITION)
			printk("[DM]");
		if (SYS_IND(p) == EZD_PARTITION)
			printk("[EZD]");
	}

	printk("\n");

	/* second pass - output for each on a separate line */
	p = (struct partition *) (0x1be + data);
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		unsigned char id = SYS_IND(p);
		int n;

		if (!NR_SECTS(p))
			continue;

		for (n = 0; subtypes[n].parse && id != subtypes[n].id; n++)
			;

		if (!subtypes[n].parse)
			continue;
		subtypes[n].parse(state, bdev, START_SECT(p)*sector_size,
						NR_SECTS(p)*sector_size, slot);
	}
	put_dev_sector(sect);
	return 1;
}
Exemple #10
0
static void
parse_extended(struct parsed_partitions *state, struct block_device *bdev,
			u32 first_sector, u32 first_size)
{
	struct partition *p;
	Sector sect;
	unsigned char *data;
	u32 this_sector, this_size;
	int sector_size = bdev_hardsect_size(bdev) / 512;
	int loopct = 0;		/* number of links followed
				   without finding a data partition */
	int i;

	this_sector = first_sector;
	this_size = first_size;

	while (1) {
		if (++loopct > 100)
			return;
		if (state->next == state->limit)
			return;
		data = read_dev_sector(bdev, this_sector, &sect);
		if (!data)
			return;

		if (!msdos_magic_present(data + 510))
			goto done; 

		p = (struct partition *) (data + 0x1be);

		/*
		 * Usually, the first entry is the real data partition,
		 * the 2nd entry is the next extended partition, or empty,
		 * and the 3rd and 4th entries are unused.
		 * However, DRDOS sometimes has the extended partition as
		 * the first entry (when the data partition is empty),
		 * and OS/2 seems to use all four entries.
		 */

		/* 
		 * First process the data partition(s)
		 */
		for (i=0; i<4; i++, p++) {
			u32 offs, size, next;
			if (!NR_SECTS(p) || is_extended_partition(p))
				continue;

			/* Check the 3rd and 4th entries -
			   these sometimes contain random garbage */
			offs = START_SECT(p)*sector_size;
			size = NR_SECTS(p)*sector_size;
			next = this_sector + offs;
			if (i >= 2) {
				if (offs + size > this_size)
					continue;
				if (next < first_sector)
					continue;
				if (next + size > first_sector + first_size)
					continue;
			}

			put_partition(state, state->next, next, size);
			if (SYS_IND(p) == LINUX_RAID_PARTITION)
				state->parts[state->next].flags = ADDPART_FLAG_RAID;
			loopct = 0;
			if (++state->next == state->limit)
				goto done;
		}
		/*
		 * Next, process the (first) extended partition, if present.
		 * (So far, there seems to be no reason to make
		 *  parse_extended()  recursive and allow a tree
		 *  of extended partitions.)
		 * It should be a link to the next logical partition.
		 */
		p -= 4;
		for (i=0; i<4; i++, p++)
			if (NR_SECTS(p) && is_extended_partition(p))
				break;
		if (i == 4)
			goto done;	 /* nothing left to do */

		this_sector = first_sector + START_SECT(p) * sector_size;
		this_size = NR_SECTS(p) * sector_size;
		put_dev_sector(sect);
	}
done:
	put_dev_sector(sect);
}
Exemple #11
0
int msdos_partition(struct parsed_partitions *state, struct block_device *bdev)
{
	int sector_size = bdev_hardsect_size(bdev) / 512;
	Sector sect;
	unsigned char *data;
	struct partition *p;
	int slot;
#ifdef HACK_PARTITION_TABLE_BOOT_IND
	int check_times = 0;
#endif

	data = read_dev_sector(bdev, 0, &sect);
	if (!data)
		return -1;
	if (!msdos_magic_present(data + 510)) {
		put_dev_sector(sect);
		return 0;
	}

	/*
	 * Now that the 55aa signature is present, this is probably
	 * either the boot sector of a FAT filesystem or a DOS-type
	 * partition table. Reject this in case the boot indicator
	 * is not 0 or 0x80.
	 */
	p = (struct partition *) (data + 0x1be);
	for (slot = 1; slot <= 4; slot++, p++) {
		if (p->boot_ind != 0 && p->boot_ind != 0x80) {
#ifdef HACK_PARTITION_TABLE_BOOT_IND // hack for boot_ind != 0 && boot_ind != 0x80
			printk("\n[cfyeh-hack] %s(%d) partition->boot_ind = 0x%.2x (should be 0x0 or 0x80)\n", __func__, __LINE__, p->boot_ind);
			check_times++;
#else
			put_dev_sector(sect);
			return 0;
#endif
		}
	}

#ifdef HACK_PARTITION_TABLE_BOOT_IND // hack for boot_ind != 0 && boot_ind != 0x80
	if(check_times > 1)
	{
		printk("[cfyeh-hack] %s(%d) partition->boot_ind fail %d times !!!\n", __func__, __LINE__, check_times);
		put_dev_sector(sect);
		return 0;
	}

#endif

#ifdef CONFIG_EFI_PARTITION
	p = (struct partition *) (data + 0x1be);
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		/* If this is an EFI GPT disk, msdos should ignore it. */
		if (SYS_IND(p) == EFI_PMBR_OSTYPE_EFI_GPT) {
			put_dev_sector(sect);
			return 0;
		}
	}
#endif
	p = (struct partition *) (data + 0x1be);

	/*
	 * Look for partitions in two passes:
	 * First find the primary and DOS-type extended partitions.
	 * On the second pass look inside *BSD, Unixware and Solaris partitions.
	 */

	state->next = 5;
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		u32 start = START_SECT(p)*sector_size;
		u32 size = NR_SECTS(p)*sector_size;
		if (!size)
			continue;
		if (is_extended_partition(p)) {
			// add to know which partition is a extended partition
			// by cfyeh 2007/11/13 +
			state->parts[slot].is_part_extended = 1;
			// by cfyeh 2007/11/13 -

			/* prevent someone doing mkfs or mkswap on an
			   extended partition, but leave room for LILO */
			put_partition(state, slot, start, size == 1 ? 1 : 2);
			printk(" <");
			parse_extended(state, bdev, start, size);
			printk(" >");
			continue;
		}
		put_partition(state, slot, start, size);
		if (SYS_IND(p) == LINUX_RAID_PARTITION)
			state->parts[slot].flags = 1;
		if (SYS_IND(p) == DM6_PARTITION)
			printk("[DM]");
		if (SYS_IND(p) == EZD_PARTITION)
			printk("[EZD]");
	}

	printk("\n");

	/* second pass - output for each on a separate line */
	p = (struct partition *) (0x1be + data);
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		unsigned char id = SYS_IND(p);
		int n;

		if (!NR_SECTS(p))
			continue;

		for (n = 0; subtypes[n].parse && id != subtypes[n].id; n++)
			;

		if (!subtypes[n].parse)
			continue;
		subtypes[n].parse(state, bdev, START_SECT(p)*sector_size,
						NR_SECTS(p)*sector_size, slot);
	}
	put_dev_sector(sect);
	return 1;
}
Exemple #12
0
static int lab4fs_fill_super(struct super_block * sb, void * data, int silent)
{
    struct buffer_head * bh;
    int blocksize = BLOCK_SIZE;
    unsigned long logic_sb_block;
    unsigned offset = 0;
    unsigned long sb_block = 1;
    struct lab4fs_super_block *es;
    struct lab4fs_sb_info *sbi;
    struct inode *root;
    int hblock;
    int err = 0;

    sbi = kmalloc(sizeof(*sbi), GFP_KERNEL);
    if (!sbi)
        return -ENOMEM;

    sb->s_fs_info = sbi;
    memset(sbi, 0, sizeof(*sbi));
    blocksize = sb_min_blocksize(sb, BLOCK_SIZE);
    if (!blocksize) {
        LAB4ERROR("unable to set blocksize\n");
        err = -EIO;
        goto out_fail;
    }

    /*
     * If the superblock doesn't start on a hardware sector boundary,
     * calculate the offset.  
     */
    if (blocksize != BLOCK_SIZE) {
        logic_sb_block = (sb_block * BLOCK_SIZE) / blocksize;
        offset = (sb_block * BLOCK_SIZE) % blocksize;
    } else {
        logic_sb_block = sb_block;
    }

    if (!(bh = sb_bread(sb, logic_sb_block))) {
        LAB4ERROR("unable to read super block\n");
        goto out_fail;
    }

    es = (struct lab4fs_super_block *) (((char *)bh->b_data) + offset);
    sb->s_magic = le32_to_cpu(es->s_magic);
    if (sb->s_magic != LAB4FS_SUPER_MAGIC) {
        if (!silent)
            LAB4ERROR("VFS: Can't find lab4fs filesystem on dev %s.\n",
                    sb->s_id);
        goto failed_mount;
    }

    sbi->s_sb = es;
    blocksize = le32_to_cpu(es->s_block_size);
    hblock = bdev_hardsect_size(sb->s_bdev);
    if (sb->s_blocksize != blocksize) {
        /*
         * Make sure the blocksize for the filesystem is larger
         * than the hardware sectorsize for the machine.
         */
        if (blocksize < hblock) {
            LAB4ERROR("blocksize %d too small for "
                    "device blocksize %d.\n", blocksize, hblock);
            goto failed_mount;
        }

        brelse (bh);
        sb_set_blocksize(sb, blocksize);
        logic_sb_block = (sb_block * BLOCK_SIZE) / blocksize;
        offset = (sb_block * BLOCK_SIZE) % blocksize;
        bh = sb_bread(sb, logic_sb_block);
        if (!bh) {
            LAB4ERROR("Can't read superblock on 2nd try.\n");
            goto failed_mount;
        }
        es = (struct lab4fs_super_block *)(((char *)bh->b_data) + offset);
        sbi->s_sb = es;
        if (es->s_magic != cpu_to_le32(LAB4FS_SUPER_MAGIC)) {
            LAB4ERROR("Magic mismatch, very weird !\n");
            goto failed_mount;
        }
    }
    sb->s_maxbytes = lab4fs_max_size(es);
    sbi->s_sbh = bh;
    sbi->s_log_block_size = log2(sb->s_blocksize);
    sbi->s_first_ino = le32_to_cpu(es->s_first_inode);
    sbi->s_inode_size = le32_to_cpu(es->s_inode_size);
    sbi->s_log_inode_size = log2(sbi->s_inode_size);
    sbi->s_inode_table = le32_to_cpu(es->s_inode_table);
    sbi->s_data_blocks = le32_to_cpu(es->s_data_blocks);
    sbi->s_next_generation = 0;
    sbi->s_free_inodes_count = le32_to_cpu(es->s_free_inodes_count);
    sbi->s_free_data_blocks_count = le32_to_cpu(es->s_free_data_blocks_count);
    sbi->s_inodes_count = le32_to_cpu(es->s_inodes_count);
    sbi->s_blocks_count = le32_to_cpu(es->s_blocks_count);

    sbi->s_inode_bitmap.nr_valid_bits = le32_to_cpu(es->s_inodes_count);
    sbi->s_data_bitmap.nr_valid_bits = le32_to_cpu(es->s_blocks_count) 
        - le32_to_cpu(es->s_data_blocks);

    rwlock_init(&sbi->rwlock);
    sb->s_op = &lab4fs_super_ops;

    err = bitmap_setup(&sbi->s_inode_bitmap, sb, le32_to_cpu(es->s_inode_bitmap));
    if (err)
        goto out_fail;
    err = bitmap_setup(&sbi->s_data_bitmap, sb, le32_to_cpu(es->s_data_bitmap));
    if (err)
        goto out_fail;

    sbi->s_root_inode = le32_to_cpu(es->s_root_inode);
    root = iget(sb, sbi->s_root_inode);
    LAB4DEBUG("I can get the root inode\n");
    print_inode(root);
    LAB4DEBUG("END\n");
    sb->s_root = d_alloc_root(root);
    if (!sb->s_root) {
        iput(root);
        kfree(sbi);
        return -ENOMEM;
    }
    return 0;

failed_mount:
out_fail:
	kfree(sbi);
	return err;
}
Exemple #13
0
int msdos_partition(struct parsed_partitions *state, struct block_device *bdev)
{
	sector_t sector_size = bdev_hardsect_size(bdev) / 512;

	Sector sect;
	unsigned char *data;
	struct partition *p;
	struct fat_boot_sector *fb;
	int slot;

	data = read_dev_sector(bdev, 0, &sect);
	if (!data)
		return -1;
	if (!msdos_magic_present(data + 510)) {
		put_dev_sector(sect);
		return 0;
	}

	if (aix_magic_present(data, bdev)) {
		put_dev_sector(sect);
		printk( " [AIX]");
		return 0;
	}

	/*
	 * Now that the 55aa signature is present, this is probably
	 * either the boot sector of a FAT filesystem or a DOS-type
	 * partition table. Reject this in case the boot indicator
	 * is not 0 or 0x80.
	 */
	p = (struct partition *) (data + 0x1be);
	for (slot = 1; slot <= 4; slot++, p++) {
		if (p->boot_ind != 0 && p->boot_ind != 0x80) {
			/*
			 * Even without a valid boot inidicator value
			 * its still possible this is valid FAT filesystem
			 * without a partition table.
			 */
			fb = (struct fat_boot_sector *) data;
			if (slot == 1 && fb->reserved && fb->fats
				&& fat_valid_media(fb->media)) {
				printk("\n");
				put_dev_sector(sect);
				return 1;
			} else {
				put_dev_sector(sect);
				return 0;
			}
		}
	}

#ifdef CONFIG_EFI_PARTITION
	p = (struct partition *) (data + 0x1be);
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		/* If this is an EFI GPT disk, msdos should ignore it. */
		if (SYS_IND(p) == EFI_PMBR_OSTYPE_EFI_GPT) {
			put_dev_sector(sect);
			return 0;
		}
	}
#endif
	p = (struct partition *) (data + 0x1be);

	/*
	 * Look for partitions in two passes:
	 * First find the primary and DOS-type extended partitions.
	 * On the second pass look inside *BSD, Unixware and Solaris partitions.
	 */

	state->next = 5;
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		sector_t start = start_sect(p)*sector_size;
		sector_t size = nr_sects(p)*sector_size;
		if (!size)
			continue;
		if (is_extended_partition(p)) {
			/*
			 * prevent someone doing mkfs or mkswap on an
			 * extended partition, but leave room for LILO
			 * FIXME: this uses one logical sector for > 512b
			 * sector, although it may not be enough/proper.
			 */
			sector_t n = 2;
			n = min(size, max(sector_size, n));
			put_partition(state, slot, start, n);

			printk(" <");
			parse_extended(state, bdev, start, size);
			printk(" >");
			continue;
		}
		put_partition(state, slot, start, size);
		if (SYS_IND(p) == LINUX_RAID_PARTITION)
			state->parts[slot].flags = 1;
		if (SYS_IND(p) == DM6_PARTITION)
			printk("[DM]");
		if (SYS_IND(p) == EZD_PARTITION)
			printk("[EZD]");
	}

	printk("\n");

	/* second pass - output for each on a separate line */
	p = (struct partition *) (0x1be + data);
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		unsigned char id = SYS_IND(p);
		int n;

		if (!nr_sects(p))
			continue;

		for (n = 0; subtypes[n].parse && id != subtypes[n].id; n++)
			;

		if (!subtypes[n].parse)
			continue;
		subtypes[n].parse(state, bdev, start_sect(p)*sector_size,
						nr_sects(p)*sector_size, slot);
	}
	put_dev_sector(sect);
	return 1;
}