static int __blk_rq_map_user_iov(struct request *rq,
		struct rq_map_data *map_data, struct iov_iter *iter,
		gfp_t gfp_mask, bool copy)
{
	struct request_queue *q = rq->q;
	struct bio *bio, *orig_bio;
	int ret;

	if (copy)
		bio = bio_copy_user_iov(q, map_data, iter, gfp_mask);
	else
		bio = bio_map_user_iov(q, iter, gfp_mask);

	if (IS_ERR(bio))
		return PTR_ERR(bio);

	if (map_data && map_data->null_mapped)
		bio_set_flag(bio, BIO_NULL_MAPPED);

	iov_iter_advance(iter, bio->bi_iter.bi_size);
	if (map_data)
		map_data->offset += bio->bi_iter.bi_size;

	orig_bio = bio;
	blk_queue_bounce(q, &bio);

	/*
	 * We link the bounce buffer in and could have to traverse it
	 * later so we have to get a ref to prevent it from being freed
	 */
	bio_get(bio);

	ret = blk_rq_append_bio(q, rq, bio);
	if (ret) {
		bio_endio(bio);
		__blk_rq_unmap_user(orig_bio);
		bio_put(bio);
		return ret;
	}

	return 0;
}
Exemple #2
0
/**
 * bio_alloc_bioset - allocate a bio for I/O
 * @gfp_mask:   the GFP_ mask given to the slab allocator
 * @nr_iovecs:	number of iovecs to pre-allocate
 * @bs:		the bio_set to allocate from.
 *
 * Description:
 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 *   backed by the @bs's mempool.
 *
 *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
 *   always be able to allocate a bio. This is due to the mempool guarantees.
 *   To make this work, callers must never allocate more than 1 bio at a time
 *   from this pool. Callers that need to allocate more than 1 bio must always
 *   submit the previously allocated bio for IO before attempting to allocate
 *   a new one. Failure to do so can cause deadlocks under memory pressure.
 *
 *   Note that when running under generic_make_request() (i.e. any block
 *   driver), bios are not submitted until after you return - see the code in
 *   generic_make_request() that converts recursion into iteration, to prevent
 *   stack overflows.
 *
 *   This would normally mean allocating multiple bios under
 *   generic_make_request() would be susceptible to deadlocks, but we have
 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 *   thread.
 *
 *   However, we do not guarantee forward progress for allocations from other
 *   mempools. Doing multiple allocations from the same mempool under
 *   generic_make_request() should be avoided - instead, use bio_set's front_pad
 *   for per bio allocations.
 *
 *   RETURNS:
 *   Pointer to new bio on success, NULL on failure.
 */
struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
{
	gfp_t saved_gfp = gfp_mask;
	unsigned front_pad;
	unsigned inline_vecs;
	unsigned long idx = BIO_POOL_NONE;
	struct bio_vec *bvl = NULL;
	struct bio *bio;
	void *p;

	if (!bs) {
		if (nr_iovecs > UIO_MAXIOV)
			return NULL;

		p = kmalloc(sizeof(struct bio) +
			    nr_iovecs * sizeof(struct bio_vec),
			    gfp_mask);
		front_pad = 0;
		inline_vecs = nr_iovecs;
	} else {
		/* should not use nobvec bioset for nr_iovecs > 0 */
		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
			return NULL;
		/*
		 * generic_make_request() converts recursion to iteration; this
		 * means if we're running beneath it, any bios we allocate and
		 * submit will not be submitted (and thus freed) until after we
		 * return.
		 *
		 * This exposes us to a potential deadlock if we allocate
		 * multiple bios from the same bio_set() while running
		 * underneath generic_make_request(). If we were to allocate
		 * multiple bios (say a stacking block driver that was splitting
		 * bios), we would deadlock if we exhausted the mempool's
		 * reserve.
		 *
		 * We solve this, and guarantee forward progress, with a rescuer
		 * workqueue per bio_set. If we go to allocate and there are
		 * bios on current->bio_list, we first try the allocation
		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
		 * bios we would be blocking to the rescuer workqueue before
		 * we retry with the original gfp_flags.
		 */

		if (current->bio_list && !bio_list_empty(current->bio_list))
			gfp_mask &= ~__GFP_DIRECT_RECLAIM;

		p = mempool_alloc(bs->bio_pool, gfp_mask);
		if (!p && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
			p = mempool_alloc(bs->bio_pool, gfp_mask);
		}

		front_pad = bs->front_pad;
		inline_vecs = BIO_INLINE_VECS;
	}

	if (unlikely(!p))
		return NULL;

	bio = p + front_pad;
	bio_init(bio);

	if (nr_iovecs > inline_vecs) {
		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
		if (!bvl && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
		}

		if (unlikely(!bvl))
			goto err_free;

		bio_set_flag(bio, BIO_OWNS_VEC);
	} else if (nr_iovecs) {
		bvl = bio->bi_inline_vecs;
	}

	bio->bi_pool = bs;
	bio->bi_flags |= idx << BIO_POOL_OFFSET;
	bio->bi_max_vecs = nr_iovecs;
	bio->bi_io_vec = bvl;
	return bio;

err_free:
	mempool_free(p, bs->bio_pool);
	return NULL;
}
Exemple #3
0
/*
 * Increment chain count for the bio. Make sure the CHAIN flag update
 * is visible before the raised count.
 */
static inline void bio_inc_remaining(struct bio *bio)
{
	bio_set_flag(bio, BIO_CHAIN);
	smp_mb__before_atomic();
	atomic_inc(&bio->__bi_remaining);
}