void bli_trsm_blk_var3b( obj_t* a, obj_t* b, obj_t* c, trsm_t* cntl, trsm_thrinfo_t* thread ) { obj_t c_pack_s; obj_t a1_pack_s, b1_pack_s; obj_t a1, b1; obj_t* a1_pack = NULL; obj_t* b1_pack = NULL; obj_t* c_pack = NULL; dim_t i; dim_t b_alg; dim_t k_trans; // Prune any zero region that exists along the partitioning dimension. bli_trsm_prune_unref_mparts_k( a, b, c ); // Initialize pack objects for C that are passed into packm_init(). if( thread_am_ochief( thread ) ) { bli_obj_init_pack( &c_pack_s ); // Initialize object for packing C. bli_packm_init( c, &c_pack_s, cntl_sub_packm_c( cntl ) ); // Scale C by beta (if instructed). bli_scalm_int( &BLIS_ONE, c, cntl_sub_scalm( cntl ) ); } c_pack = thread_obroadcast( thread, &c_pack_s ); if( thread_am_ichief( thread ) ) { bli_obj_init_pack( &a1_pack_s ); bli_obj_init_pack( &b1_pack_s ); } a1_pack = thread_ibroadcast( thread, &a1_pack_s ); b1_pack = thread_ibroadcast( thread, &b1_pack_s ); // Pack C (if instructed). bli_packm_int( c, c_pack, cntl_sub_packm_c( cntl ), trsm_thread_sub_opackm( thread ) ); // Query dimension in partitioning direction. k_trans = bli_obj_width_after_trans( *a ); // Partition along the k dimension. for ( i = 0; i < k_trans; i += b_alg ) { // Determine the current algorithmic blocksize. // NOTE: We call a trsm-specific function to determine the kc // blocksize so that we can implement the "nudging" of kc to be // a multiple of mr, as needed. b_alg = bli_trsm_determine_kc_b( i, k_trans, b, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and B1. bli_acquire_mpart_r2l( BLIS_SUBPART1, i, b_alg, a, &a1 ); bli_acquire_mpart_b2t( BLIS_SUBPART1, i, b_alg, b, &b1 ); // Initialize objects for packing A1 and B1. if( thread_am_ichief( thread ) ) { bli_packm_init( &a1, a1_pack, cntl_sub_packm_a( cntl ) ); bli_packm_init( &b1, b1_pack, cntl_sub_packm_b( cntl ) ); } thread_ibarrier( thread ); // Pack A1 (if instructed). bli_packm_int( &a1, a1_pack, cntl_sub_packm_a( cntl ), trsm_thread_sub_ipackm( thread ) ); // Pack B1 (if instructed). bli_packm_int( &b1, b1_pack, cntl_sub_packm_b( cntl ), trsm_thread_sub_ipackm( thread ) ); // Perform trsm subproblem. bli_trsm_int( &BLIS_ONE, a1_pack, b1_pack, &BLIS_ONE, c_pack, cntl_sub_trsm( cntl ), trsm_thread_sub_trsm( thread ) ); // This variant executes multiple rank-k updates. Therefore, if the // internal alpha scalars on A/B and C are non-zero, we must ensure // that they are only used in the first iteration. thread_ibarrier( thread ); if ( i == 0 && thread_am_ichief( thread ) ) { bli_obj_scalar_reset( a ); bli_obj_scalar_reset( b ); bli_obj_scalar_reset( c_pack ); } } thread_obarrier( thread ); // Unpack C (if C was packed). bli_unpackm_int( c_pack, c, cntl_sub_unpackm_c( cntl ), trsm_thread_sub_opackm( thread ) ); // If any packing buffers were acquired within packm, release them back // to the memory manager. if( thread_am_ochief( thread ) ) { bli_packm_release( c_pack, cntl_sub_packm_c( cntl ) ); } if( thread_am_ichief( thread ) ) { bli_packm_release( a1_pack, cntl_sub_packm_a( cntl ) ); bli_packm_release( b1_pack, cntl_sub_packm_b( cntl ) ); } }
void bli_trsm_blk_var1b( obj_t* a, obj_t* b, obj_t* c, trsm_t* cntl, trsm_thrinfo_t* thread ) { obj_t b_pack_s; obj_t a1_pack_s; obj_t a1, c1; obj_t* b_pack = NULL; obj_t* a1_pack = NULL; dim_t i; dim_t b_alg; // Prune any zero region that exists along the partitioning dimension. bli_trsm_prune_unref_mparts_m( a, b, c ); // Initialize object for packing B. if( thread_am_ochief( thread ) ) { bli_obj_init_pack( &b_pack_s ); bli_packm_init( b, &b_pack_s, cntl_sub_packm_b( cntl ) ); } b_pack = thread_obroadcast( thread, &b_pack_s ); // Initialize object for packing B. if( thread_am_ichief( thread ) ) { bli_obj_init_pack( &a1_pack_s ); } a1_pack = thread_ibroadcast( thread, &a1_pack_s ); // Pack B1 (if instructed). bli_packm_int( b, b_pack, cntl_sub_packm_b( cntl ), trsm_thread_sub_opackm( thread ) ); dim_t my_start, my_end; num_t dt = bli_obj_execution_datatype( *a ); dim_t bf = ( bli_obj_root_is_triangular( *a ) ? bli_info_get_default_mr( BLIS_TRSM, dt ) : bli_info_get_default_nr( BLIS_TRSM, dt ) ); bli_get_range_b2t( thread, a, bf, &my_start, &my_end ); // Partition along the remaining portion of the m dimension. for ( i = my_start; i < my_end; i += b_alg ) { // Determine the current algorithmic blocksize. b_alg = bli_determine_blocksize_b( i, my_end, a, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and C1. bli_acquire_mpart_b2t( BLIS_SUBPART1, i, b_alg, a, &a1 ); bli_acquire_mpart_b2t( BLIS_SUBPART1, i, b_alg, c, &c1 ); // Initialize object for packing A1. if( thread_am_ichief( thread ) ) { bli_packm_init( &a1, a1_pack, cntl_sub_packm_a( cntl ) ); } thread_ibarrier( thread ); // Pack A1 (if instructed). bli_packm_int( &a1, a1_pack, cntl_sub_packm_a( cntl ), trsm_thread_sub_ipackm( thread ) ); // Perform trsm subproblem. bli_trsm_int( &BLIS_ONE, a1_pack, b_pack, &BLIS_ONE, &c1, cntl_sub_trsm( cntl ), trsm_thread_sub_trsm( thread ) ); thread_ibarrier( thread ); } // If any packing buffers were acquired within packm, release them back // to the memory manager. thread_obarrier( thread ); if( thread_am_ochief( thread ) ) bli_packm_release( b_pack, cntl_sub_packm_b( cntl ) ); if( thread_am_ichief( thread ) ) bli_packm_release( a1_pack, cntl_sub_packm_a( cntl ) ); }
void bli_trsm_u_blk_var4( obj_t* alpha, obj_t* a, obj_t* b, obj_t* beta, obj_t* c, trsm_t* cntl ) { obj_t a1, a1_pack; obj_t b_pack; obj_t c1; dim_t i; dim_t bm_alg; dim_t m_trans; // Initialize all pack objects that are passed into packm_init(). bli_obj_init_pack( &a1_pack ); bli_obj_init_pack( &b_pack ); // Query dimension in partitioning direction. m_trans = bli_obj_length_after_trans( *a ); // Initialize object for packing B. bli_packm_init( b, &b_pack, cntl_sub_packm_b( cntl ) ); // Find the offset to the first non-zero block of A. for ( i = 0; i < m_trans; i += bm_alg ) { // Determine the current algorithmic blocksize. bm_alg = bli_determine_blocksize_b( i, m_trans, a, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and C1. bli_acquire_mpart_b2t( BLIS_SUBPART1, i, bm_alg, a, &a1 ); if ( !bli_obj_is_zeros( a1 ) ) break; } // Fuse the first iteration with incremental packing and computation. { obj_t b_inc, b_pack_inc; obj_t c1_inc; dim_t j; dim_t bn_inc; dim_t n_trans; // Query dimension in partitioning direction. n_trans = bli_obj_width( b_pack ); // Determine the current algorithmic blocksize. bm_alg = bli_determine_blocksize_b( i, m_trans, a, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and C1. bli_acquire_mpart_b2t( BLIS_SUBPART1, i, bm_alg, a, &a1 ); bli_acquire_mpart_b2t( BLIS_SUBPART1, i, bm_alg, c, &c1 ); // Initialize objects for packing A1 and C1. bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Pack A1 and scale by alpha (if instructed). bli_packm_int( alpha, &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Partition along the n dimension. for ( j = 0; j < n_trans; j += bn_inc ) { // Determine the current incremental packing blocksize. bn_inc = bli_determine_blocksize_f( j, n_trans, b, cntl_blocksize_aux( cntl ) ); // Acquire partitions. bli_acquire_mpart_l2r( BLIS_SUBPART1, j, bn_inc, b, &b_inc ); bli_acquire_mpart_l2r( BLIS_SUBPART1, j, bn_inc, &b_pack, &b_pack_inc ); bli_acquire_mpart_l2r( BLIS_SUBPART1, j, bn_inc, &c1, &c1_inc ); // Pack B1 and scale by alpha (if instructed). bli_packm_int( alpha, &b_inc, &b_pack_inc, cntl_sub_packm_b( cntl ) ); // Perform trsm subproblem. bli_trsm_int( BLIS_LEFT, alpha, &a1_pack, &b_pack_inc, beta, &c1_inc, cntl_sub_trsm( cntl ) ); } } // Partition along the remaining portion of the m dimension. for ( i = i + bm_alg; i < m_trans; i += bm_alg ) { // Determine the current algorithmic blocksize. bm_alg = bli_determine_blocksize_b( i, m_trans, a, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and C1. bli_acquire_mpart_b2t( BLIS_SUBPART1, i, bm_alg, a, &a1 ); bli_acquire_mpart_b2t( BLIS_SUBPART1, i, bm_alg, c, &c1 ); // Initialize object for packing A1. bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Pack A1 and scale by alpha (if instructed). bli_packm_int( alpha, &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); if ( bli_obj_intersects_diag( a1_pack ) ) bli_trsm_int( BLIS_LEFT, alpha, &a1_pack, &b_pack, beta, &c1, cntl_sub_trsm( cntl ) ); else bli_gemm_int( &BLIS_MINUS_ONE, &a1_pack, &b_pack, &BLIS_ONE, &c1, cntl_sub_gemm( cntl ) ); } // If any packing buffers were acquired within packm, release them back // to the memory manager. bli_obj_release_pack( &a1_pack ); bli_obj_release_pack( &b_pack ); }
void bli_trmm_blk_var3b( obj_t* a, obj_t* b, obj_t* c, gemm_t* cntl, trmm_thrinfo_t* thread ) { obj_t c_pack_s; obj_t a1_pack_s, b1_pack_s; obj_t a1, b1; obj_t* a1_pack = NULL; obj_t* b1_pack = NULL; obj_t* c_pack = NULL; dim_t i; dim_t b_alg; dim_t k_trans; if( thread_am_ochief( thread ) ){ // Initialize object for packing C bli_obj_init_pack( &c_pack_s ); bli_packm_init( c, &c_pack_s, cntl_sub_packm_c( cntl ) ); // Scale C by beta (if instructed). bli_scalm_int( &BLIS_ONE, c, cntl_sub_scalm( cntl ) ); } c_pack = thread_obroadcast( thread, &c_pack_s ); // Initialize pack objects for A and B that are passed into packm_init(). if( thread_am_ichief( thread ) ){ bli_obj_init_pack( &a1_pack_s ); bli_obj_init_pack( &b1_pack_s ); } a1_pack = thread_ibroadcast( thread, &a1_pack_s ); b1_pack = thread_ibroadcast( thread, &b1_pack_s ); // Pack C (if instructed). bli_packm_int( c, c_pack, cntl_sub_packm_c( cntl ), trmm_thread_sub_opackm( thread ) ); // Query dimension in partitioning direction. k_trans = bli_obj_width_after_trans( *a ); // Partition along the k dimension. for ( i = 0; i < k_trans; i += b_alg ) { // Determine the current algorithmic blocksize. // NOTE: We call a trmm-specific function to determine the kc // blocksize so that we can implement the "nudging" of kc to be // a multiple of mr or nr, as needed. b_alg = bli_trmm_determine_kc_b( i, k_trans, a, b, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and B1. bli_acquire_mpart_r2l( BLIS_SUBPART1, i, b_alg, a, &a1 ); bli_acquire_mpart_b2t( BLIS_SUBPART1, i, b_alg, b, &b1 ); // Initialize objects for packing A1 and B1. if( thread_am_ichief( thread ) ) { bli_packm_init( &a1, a1_pack, cntl_sub_packm_a( cntl ) ); bli_packm_init( &b1, b1_pack, cntl_sub_packm_b( cntl ) ); } thread_ibarrier( thread ); // Pack A1 (if instructed). bli_packm_int( &a1, a1_pack, cntl_sub_packm_a( cntl ), trmm_thread_sub_ipackm( thread ) ); // Pack B1 (if instructed). bli_packm_int( &b1, b1_pack, cntl_sub_packm_b( cntl ), trmm_thread_sub_ipackm( thread ) ); // Perform trmm subproblem. bli_trmm_int( &BLIS_ONE, a1_pack, b1_pack, &BLIS_ONE, c_pack, cntl_sub_gemm( cntl ), trmm_thread_sub_trmm( thread ) ); thread_ibarrier( thread ); } thread_obarrier( thread ); // Unpack C (if C was packed). bli_unpackm_int( c_pack, c, cntl_sub_unpackm_c( cntl ), trmm_thread_sub_opackm( thread ) ); // If any packing buffers were acquired within packm, release them back // to the memory manager. if( thread_am_ochief( thread ) ){ bli_packm_release( c_pack, cntl_sub_packm_c( cntl ) ); } if( thread_am_ichief( thread ) ){ bli_packm_release( a1_pack, cntl_sub_packm_a( cntl ) ); bli_packm_release( b1_pack, cntl_sub_packm_b( cntl ) ); } }
void bli_trmm_blk_var3b( obj_t* a, obj_t* b, obj_t* c, trmm_t* cntl ) { obj_t a1, a1_pack; obj_t b1, b1_pack; obj_t c_pack; dim_t i; dim_t b_alg; dim_t k_trans; // Initialize all pack objects that are passed into packm_init(). bli_obj_init_pack( &a1_pack ); bli_obj_init_pack( &b1_pack ); bli_obj_init_pack( &c_pack ); // Query dimension in partitioning direction. k_trans = bli_obj_width_after_trans( *a ); // Scale C by beta (if instructed). bli_scalm_int( &BLIS_ONE, c, cntl_sub_scalm( cntl ) ); // Initialize object for packing C. bli_packm_init( c, &c_pack, cntl_sub_packm_c( cntl ) ); // Pack C (if instructed). bli_packm_int( c, &c_pack, cntl_sub_packm_c( cntl ) ); // Partition along the k dimension. for ( i = 0; i < k_trans; i += b_alg ) { // Determine the current algorithmic blocksize. b_alg = bli_determine_blocksize_b( i, k_trans, b, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and B1. bli_acquire_mpart_r2l( BLIS_SUBPART1, i, b_alg, a, &a1 ); bli_acquire_mpart_b2t( BLIS_SUBPART1, i, b_alg, b, &b1 ); // Initialize objects for packing A1 and B1. bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); bli_packm_init( &b1, &b1_pack, cntl_sub_packm_b( cntl ) ); // Pack A1 (if instructed). bli_packm_int( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Pack B1 (if instructed). bli_packm_int( &b1, &b1_pack, cntl_sub_packm_b( cntl ) ); // Perform trmm subproblem. bli_trmm_int( &BLIS_ONE, &a1_pack, &b1_pack, &BLIS_ONE, &c_pack, cntl_sub_trmm( cntl ) ); } // Unpack C (if C was packed). bli_unpackm_int( &c_pack, c, cntl_sub_unpackm_c( cntl ) ); // If any packing buffers were acquired within packm, release them back // to the memory manager. bli_obj_release_pack( &a1_pack ); bli_obj_release_pack( &b1_pack ); bli_obj_release_pack( &c_pack ); }
void bli_trsm_blk_var1b( obj_t* a, obj_t* b, obj_t* c, trsm_t* cntl ) { obj_t a1, a1_pack; obj_t b_pack; obj_t c1; dim_t i; dim_t b_alg; dim_t m_trans; dim_t offA; // Initialize all pack objects that are passed into packm_init(). bli_obj_init_pack( &a1_pack ); bli_obj_init_pack( &b_pack ); // Set the default length of and offset to the non-zero part of A. m_trans = bli_obj_length_after_trans( *a ); offA = 0; // If A is upper triangular, we have to adjust where the non-zero part of // A begins. if ( bli_obj_is_upper( *a ) ) offA = m_trans - bli_abs( bli_obj_diag_offset_after_trans( *a ) ) - bli_obj_width_after_trans( *a ); // Initialize object for packing B. bli_packm_init( b, &b_pack, cntl_sub_packm_b( cntl ) ); // Pack B1 (if instructed). bli_packm_int( b, &b_pack, cntl_sub_packm_b( cntl ) ); // Partition along the remaining portion of the m dimension. for ( i = offA; i < m_trans; i += b_alg ) { // Determine the current algorithmic blocksize. b_alg = bli_determine_blocksize_b( i, m_trans, a, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and C1. bli_acquire_mpart_b2t( BLIS_SUBPART1, i, b_alg, a, &a1 ); bli_acquire_mpart_b2t( BLIS_SUBPART1, i, b_alg, c, &c1 ); //if ( bli_obj_is_zeros( a1 ) ) continue; // Initialize object for packing A1. bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Pack A1 (if instructed). bli_packm_int( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Perform trsm subproblem. bli_trsm_int( &BLIS_ONE, &a1_pack, &b_pack, &BLIS_ONE, &c1, cntl_sub_trsm( cntl ) ); } // If any packing buffers were acquired within packm, release them back // to the memory manager. bli_obj_release_pack( &a1_pack ); bli_obj_release_pack( &b_pack ); }