void libblis_test_hemv_check( obj_t* alpha, obj_t* a, obj_t* x, obj_t* beta, obj_t* y, obj_t* y_orig, double* resid ) { num_t dt = bli_obj_datatype( *y ); num_t dt_real = bli_obj_datatype_proj_to_real( *y ); dim_t m = bli_obj_vector_dim( *y ); obj_t v; obj_t norm; double junk; // // Pre-conditions: // - a is randomized and Hermitian. // - x is randomized. // - y_orig is randomized. // Note: // - alpha and beta should have non-zero imaginary components in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // y := beta * y_orig + alpha * conja(A) * conjx(x) // // is functioning correctly if // // normf( y - v ) // // is negligible, where // // v = beta * y_orig + alpha * conja(A_dense) * x // bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_copyv( y_orig, &v ); bli_mkherm( a ); bli_obj_set_struc( BLIS_GENERAL, *a ); bli_obj_set_uplo( BLIS_DENSE, *a ); bli_gemv( alpha, a, x, beta, &v ); bli_subv( &v, y ); bli_normfv( y, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &v ); }
void libblis_test_gemv_impl( iface_t iface, obj_t* alpha, obj_t* a, obj_t* x, obj_t* beta, obj_t* y ) { switch ( iface ) { case BLIS_TEST_SEQ_FRONT_END: bli_gemv( alpha, a, x, beta, y ); break; default: libblis_test_printf_error( "Invalid interface type.\n" ); } }
void libblis_test_gemv_impl( mt_impl_t impl, obj_t* alpha, obj_t* a, obj_t* x, obj_t* beta, obj_t* y ) { switch ( impl ) { case BLIS_TEST_SEQ_FRONT_END: bli_gemv( alpha, a, x, beta, y ); break; default: libblis_test_printf_error( "Invalid implementation type.\n" ); } }
void libblis_test_trmv_check( obj_t* alpha, obj_t* a, obj_t* x, obj_t* x_orig, double* resid ) { num_t dt = bli_obj_datatype( *x ); num_t dt_real = bli_obj_datatype_proj_to_real( *x ); dim_t m = bli_obj_vector_dim( *x ); uplo_t uploa = bli_obj_uplo( *a ); trans_t transa = bli_obj_conjtrans_status( *a ); obj_t a_local, y; obj_t norm; double junk; // // Pre-conditions: // - a is randomized and triangular. // - x is randomized. // Note: // - alpha should have a non-zero imaginary component in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // x := alpha * transa(A) * x_orig // // is functioning correctly if // // fnorm( y - x ) // // is negligible, where // // y = alpha * conja(A_dense) * x_orig // bli_obj_init_scalar( dt_real, &norm ); bli_obj_create( dt, m, 1, 0, 0, &y ); bli_obj_create( dt, m, m, 0, 0, &a_local ); bli_obj_set_struc( BLIS_TRIANGULAR, a_local ); bli_obj_set_uplo( uploa, a_local ); bli_obj_toggle_uplo_if_trans( transa, a_local ); bli_copym( a, &a_local ); bli_mktrim( &a_local ); bli_obj_set_struc( BLIS_GENERAL, a_local ); bli_obj_set_uplo( BLIS_DENSE, a_local ); bli_gemv( alpha, &a_local, x_orig, &BLIS_ZERO, &y ); bli_subv( x, &y ); bli_fnormv( &y, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &y ); bli_obj_free( &a_local ); }
void libblis_test_trsm_check ( test_params_t* params, side_t side, obj_t* alpha, obj_t* a, obj_t* b, obj_t* b_orig, double* resid ) { num_t dt = bli_obj_datatype( *b ); num_t dt_real = bli_obj_datatype_proj_to_real( *b ); dim_t m = bli_obj_length( *b ); dim_t n = bli_obj_width( *b ); obj_t norm; obj_t t, v, w, z; double junk; // // Pre-conditions: // - a is randomized and triangular. // - b_orig is randomized. // Note: // - alpha should have a non-zero imaginary component in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // B := alpha * inv(transa(A)) * B_orig (side = left) // B := alpha * B_orig * inv(transa(A)) (side = right) // // is functioning correctly if // // normf( v - z ) // // is negligible, where // // v = B * t // // z = ( alpha * inv(transa(A)) * B ) * t (side = left) // = alpha * inv(transa(A)) * B * t // = alpha * inv(transa(A)) * w // // z = ( alpha * B * inv(transa(A)) ) * t (side = right) // = alpha * B * tinv(ransa(A)) * t // = alpha * B * w bli_obj_scalar_init_detached( dt_real, &norm ); if ( bli_is_left( side ) ) { bli_obj_create( dt, n, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, m, 1, 0, 0, &w ); bli_obj_create( dt, m, 1, 0, 0, &z ); } else // else if ( bli_is_left( side ) ) { bli_obj_create( dt, n, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, n, 1, 0, 0, &w ); bli_obj_create( dt, m, 1, 0, 0, &z ); } libblis_test_vobj_randomize( params, TRUE, &t ); bli_gemv( &BLIS_ONE, b, &t, &BLIS_ZERO, &v ); if ( bli_is_left( side ) ) { bli_gemv( alpha, b_orig, &t, &BLIS_ZERO, &w ); bli_trsv( &BLIS_ONE, a, &w ); bli_copyv( &w, &z ); } else { bli_copyv( &t, &w ); bli_trsv( &BLIS_ONE, a, &w ); bli_gemv( alpha, b_orig, &w, &BLIS_ZERO, &z ); } bli_subv( &z, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w ); bli_obj_free( &z ); }
void libblis_test_syr2_check( obj_t* alpha, obj_t* x, obj_t* y, obj_t* a, obj_t* a_orig, double* resid ) { num_t dt = bli_obj_datatype( *a ); num_t dt_real = bli_obj_datatype_proj_to_real( *a ); dim_t m_a = bli_obj_length( *a ); obj_t xt, yt; obj_t t, v, w1, w2; obj_t tau, rho, norm; double junk; // // Pre-conditions: // - x is randomized. // - y is randomized. // - a is randomized and symmetric. // Note: // - alpha should have a non-zero imaginary component in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // A := A_orig + alpha * conjx(x) * conjy(y)^T + alpha * conjy(y) * conjx(x)^T // // is functioning correctly if // // normf( v - w ) // // is negligible, where // // v = A * t // w = ( A_orig + alpha * conjx(x) * conjy(y)^T + alpha * conjy(y) * conjx(x)^T ) * t // = A_orig * t + alpha * conjx(x) * conjy(y)^T * t + alpha * conjy(y) * conjx(x)^T * t // = A_orig * t + alpha * conjx(x) * conjy(y)^T * t + alpha * conjy(y) * rho // = A_orig * t + alpha * conjx(x) * conjy(y)^T * t + w1 // = A_orig * t + alpha * conjx(x) * rho + w1 // = A_orig * t + w2 + w1 // bli_mksymm( a ); bli_mksymm( a_orig ); bli_obj_set_struc( BLIS_GENERAL, *a ); bli_obj_set_struc( BLIS_GENERAL, *a_orig ); bli_obj_set_uplo( BLIS_DENSE, *a ); bli_obj_set_uplo( BLIS_DENSE, *a_orig ); bli_obj_scalar_init_detached( dt, &tau ); bli_obj_scalar_init_detached( dt, &rho ); bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m_a, 1, 0, 0, &t ); bli_obj_create( dt, m_a, 1, 0, 0, &v ); bli_obj_create( dt, m_a, 1, 0, 0, &w1 ); bli_obj_create( dt, m_a, 1, 0, 0, &w2 ); bli_obj_alias_to( *x, xt ); bli_obj_alias_to( *y, yt ); bli_setsc( 1.0/( double )m_a, -1.0/( double )m_a, &tau ); bli_setv( &tau, &t ); bli_gemv( &BLIS_ONE, a, &t, &BLIS_ZERO, &v ); bli_dotv( &xt, &t, &rho ); bli_mulsc( alpha, &rho ); bli_scal2v( &rho, y, &w1 ); bli_dotv( &yt, &t, &rho ); bli_mulsc( alpha, &rho ); bli_scal2v( &rho, x, &w2 ); bli_addv( &w2, &w1 ); bli_gemv( &BLIS_ONE, a_orig, &t, &BLIS_ONE, &w1 ); bli_subv( &w1, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w1 ); bli_obj_free( &w2 ); }
void libblis_test_gemmtrsm_ukr_check( side_t side, obj_t* alpha, obj_t* a1x, obj_t* a11, obj_t* bx1, obj_t* b11, obj_t* c11, obj_t* c11_orig, double* resid ) { num_t dt = bli_obj_datatype( *b11 ); num_t dt_real = bli_obj_datatype_proj_to_real( *b11 ); dim_t m = bli_obj_length( *b11 ); dim_t n = bli_obj_width( *b11 ); dim_t k = bli_obj_width( *a1x ); obj_t kappa, norm; obj_t t, v, w, z; double junk; // // Pre-conditions: // - a1x, a11, bx1, c11_orig are randomized; a11 is triangular. // - contents of b11 == contents of c11. // - side == BLIS_LEFT. // // Under these conditions, we assume that the implementation for // // B := inv(A11) * ( alpha * B11 - A1x * Bx1 ) (side = left) // // is functioning correctly if // // fnorm( v - z ) // // is negligible, where // // v = B11 * t // // z = ( inv(A11) * ( alpha * B11_orig - A1x * Bx1 ) ) * t // = inv(A11) * ( alpha * B11_orig * t - A1x * Bx1 * t ) // = inv(A11) * ( alpha * B11_orig * t - A1x * w ) // bli_obj_scalar_init_detached( dt, &kappa ); bli_obj_scalar_init_detached( dt_real, &norm ); if ( bli_is_left( side ) ) { bli_obj_create( dt, n, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, k, 1, 0, 0, &w ); bli_obj_create( dt, m, 1, 0, 0, &z ); } else // else if ( bli_is_left( side ) ) { // BLIS does not currently support right-side micro-kernels. bli_check_error_code( BLIS_NOT_YET_IMPLEMENTED ); } bli_randv( &t ); bli_setsc( 1.0/( double )n, 0.0, &kappa ); bli_scalv( &kappa, &t ); bli_gemv( &BLIS_ONE, b11, &t, &BLIS_ZERO, &v ); // Restore the diagonal of a11 to its original, un-inverted state // (needed for trsv). bli_invertd( a11 ); if ( bli_is_left( side ) ) { bli_gemv( &BLIS_ONE, bx1, &t, &BLIS_ZERO, &w ); bli_gemv( alpha, c11_orig, &t, &BLIS_ZERO, &z ); bli_gemv( &BLIS_MINUS_ONE, a1x, &w, &BLIS_ONE, &z ); bli_trsv( &BLIS_ONE, a11, &z ); } else // else if ( bli_is_left( side ) ) { // BLIS does not currently support right-side micro-kernels. bli_check_error_code( BLIS_NOT_YET_IMPLEMENTED ); } bli_subv( &z, &v ); bli_fnormv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w ); bli_obj_free( &z ); }
void libblis_test_her2k_check ( test_params_t* params, obj_t* alpha, obj_t* a, obj_t* b, obj_t* beta, obj_t* c, obj_t* c_orig, double* resid ) { num_t dt = bli_obj_datatype( *c ); num_t dt_real = bli_obj_datatype_proj_to_real( *c ); dim_t m = bli_obj_length( *c ); dim_t k = bli_obj_width_after_trans( *a ); obj_t alphac, ah, bh; obj_t norm; obj_t t, v, w1, w2, z; double junk; // // Pre-conditions: // - a is randomized. // - b is randomized. // - c_orig is randomized and Hermitian. // Note: // - alpha should have a non-zero imaginary component in the // complex cases in order to more fully exercise the implementation. // - beta must be real-valued. // // Under these conditions, we assume that the implementation for // // C := beta * C_orig + alpha * transa(A) * transb(B)^H + conj(alpha) * transb(B) * transa(A)^H // // is functioning correctly if // // normf( v - z ) // // is negligible, where // // v = C * t // z = ( beta * C_orig + alpha * transa(A) * transb(B)^H + conj(alpha) * transb(B) * transa(A)^H ) * t // = beta * C_orig * t + alpha * transa(A) * transb(B)^H * t + conj(alpha) * transb(B) * transa(A)^H * t // = beta * C_orig * t + alpha * transa(A) * transb(B)^H * t + conj(alpha) * transb(B) * w2 // = beta * C_orig * t + alpha * transa(A) * w1 + conj(alpha) * transb(B) * w2 // = beta * C_orig * t + alpha * transa(A) * w1 + z // = beta * C_orig * t + z // bli_obj_alias_with_trans( BLIS_CONJ_TRANSPOSE, *a, ah ); bli_obj_alias_with_trans( BLIS_CONJ_TRANSPOSE, *b, bh ); bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_scalar_init_detached_copy_of( dt, BLIS_CONJUGATE, alpha, &alphac ); bli_obj_create( dt, m, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, k, 1, 0, 0, &w1 ); bli_obj_create( dt, k, 1, 0, 0, &w2 ); bli_obj_create( dt, m, 1, 0, 0, &z ); libblis_test_vobj_randomize( params, TRUE, &t ); bli_hemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v ); bli_gemv( &BLIS_ONE, &ah, &t, &BLIS_ZERO, &w2 ); bli_gemv( &BLIS_ONE, &bh, &t, &BLIS_ZERO, &w1 ); bli_gemv( alpha, a, &w1, &BLIS_ZERO, &z ); bli_gemv( &alphac, b, &w2, &BLIS_ONE, &z ); bli_hemv( beta, c_orig, &t, &BLIS_ONE, &z ); bli_subv( &z, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w1 ); bli_obj_free( &w2 ); bli_obj_free( &z ); }
void libblis_test_her_check( obj_t* alpha, obj_t* x, obj_t* a, obj_t* a_orig, double* resid ) { num_t dt = bli_obj_datatype( *a ); num_t dt_real = bli_obj_datatype_proj_to_real( *a ); dim_t m_a = bli_obj_length( *a ); obj_t xh, t, v, w; obj_t tau, rho, norm; double junk; // // Pre-conditions: // - x is randomized. // - a is randomized and Hermitian. // Note: // - alpha must be real-valued. // // Under these conditions, we assume that the implementation for // // A := A_orig + alpha * conjx(x) * conjx(x)^H // // is functioning correctly if // // normf( v - w ) // // is negligible, where // // v = A * t // w = ( A_orig + alpha * conjx(x) * conjx(x)^H ) * t // = A_orig * t + alpha * conjx(x) * conjx(x)^H * t // = A_orig * t + alpha * conjx(x) * rho // = A_orig * t + w // bli_mkherm( a ); bli_mkherm( a_orig ); bli_obj_set_struc( BLIS_GENERAL, *a ); bli_obj_set_struc( BLIS_GENERAL, *a_orig ); bli_obj_set_uplo( BLIS_DENSE, *a ); bli_obj_set_uplo( BLIS_DENSE, *a_orig ); bli_obj_scalar_init_detached( dt, &tau ); bli_obj_scalar_init_detached( dt, &rho ); bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m_a, 1, 0, 0, &t ); bli_obj_create( dt, m_a, 1, 0, 0, &v ); bli_obj_create( dt, m_a, 1, 0, 0, &w ); bli_obj_alias_with_conj( BLIS_CONJUGATE, *x, xh ); bli_setsc( 1.0/( double )m_a, -1.0/( double )m_a, &tau ); bli_setv( &tau, &t ); bli_gemv( &BLIS_ONE, a, &t, &BLIS_ZERO, &v ); bli_dotv( &xh, &t, &rho ); bli_mulsc( alpha, &rho ); bli_scal2v( &rho, x, &w ); bli_gemv( &BLIS_ONE, a_orig, &t, &BLIS_ONE, &w ); bli_subv( &w, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w ); }
void libblis_test_trmm3_check( side_t side, obj_t* alpha, obj_t* a, obj_t* b, obj_t* beta, obj_t* c, obj_t* c_orig, double* resid ) { num_t dt = bli_obj_datatype( *c ); num_t dt_real = bli_obj_datatype_proj_to_real( *c ); dim_t m = bli_obj_length( *c ); dim_t n = bli_obj_width( *c ); obj_t kappa, norm; obj_t t, v, w, z; double junk; // // Pre-conditions: // - a is randomized and triangular. // - b is randomized. // - c_orig is randomized. // Note: // - alpha and beta should have non-zero imaginary components in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // C := beta * C_orig + alpha * transa(A) * transb(B) (side = left) // C := beta * C_orig + alpha * transb(B) * transa(A) (side = right) // // is functioning correctly if // // fnorm( v - z ) // // is negligible, where // // v = C * t // // z = ( beta * C_orig + alpha * transa(A) * transb(B) ) * t (side = left) // = beta * C_orig * t + alpha * transa(A) * transb(B) * t // = beta * C_orig * t + alpha * transa(A) * w // = beta * C_orig * t + z // // z = ( beta * C_orig + alpha * transb(B) * transa(A) ) * t (side = right) // = beta * C_orig * t + alpha * transb(B) * transa(A) * t // = beta * C_orig * t + alpha * transb(B) * w // = beta * C_orig * t + z bli_obj_scalar_init_detached( dt, &kappa ); bli_obj_scalar_init_detached( dt_real, &norm ); if ( bli_is_left( side ) ) { bli_obj_create( dt, n, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, m, 1, 0, 0, &w ); bli_obj_create( dt, m, 1, 0, 0, &z ); } else // else if ( bli_is_left( side ) ) { bli_obj_create( dt, n, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, n, 1, 0, 0, &w ); bli_obj_create( dt, m, 1, 0, 0, &z ); } bli_randv( &t ); bli_setsc( 1.0/( double )n, 0.0, &kappa ); bli_scalv( &kappa, &t ); bli_gemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v ); if ( bli_is_left( side ) ) { bli_gemv( &BLIS_ONE, b, &t, &BLIS_ZERO, &w ); bli_trmv( alpha, a, &w ); bli_copyv( &w, &z ); } else { bli_copyv( &t, &w ); bli_trmv( &BLIS_ONE, a, &w ); bli_gemv( alpha, b, &w, &BLIS_ZERO, &z ); } bli_gemv( beta, c_orig, &t, &BLIS_ONE, &z ); bli_subv( &z, &v ); bli_fnormv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w ); bli_obj_free( &z ); }
void libblis_test_gemm_check ( test_params_t* params, obj_t* alpha, obj_t* a, obj_t* b, obj_t* beta, obj_t* c, obj_t* c_orig, double* resid ) { num_t dt = bli_obj_dt( c ); num_t dt_real = bli_obj_dt_proj_to_real( c ); dim_t m = bli_obj_length( c ); dim_t n = bli_obj_width( c ); dim_t k = bli_obj_width_after_trans( a ); obj_t norm; obj_t t, v, w, z; double junk; // // Pre-conditions: // - a is randomized. // - b is randomized. // - c_orig is randomized. // Note: // - alpha and beta should have non-zero imaginary components in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // C := beta * C_orig + alpha * transa(A) * transb(B) // // is functioning correctly if // // normf( v - z ) // // is negligible, where // // v = C * t // z = ( beta * C_orig + alpha * transa(A) * transb(B) ) * t // = beta * C_orig * t + alpha * transa(A) * transb(B) * t // = beta * C_orig * t + alpha * transa(A) * w // = beta * C_orig * t + z // bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, n, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, k, 1, 0, 0, &w ); bli_obj_create( dt, m, 1, 0, 0, &z ); libblis_test_vobj_randomize( params, TRUE, &t ); bli_gemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v ); bli_gemv( &BLIS_ONE, b, &t, &BLIS_ZERO, &w ); bli_gemv( alpha, a, &w, &BLIS_ZERO, &z ); bli_gemv( beta, c_orig, &t, &BLIS_ONE, &z ); bli_subv( &z, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w ); bli_obj_free( &z ); }
void libblis_test_gemm_md_check ( test_params_t* params, obj_t* alpha, obj_t* a, obj_t* b, obj_t* beta, obj_t* c, obj_t* c_orig, double* resid ) { num_t dt_real = bli_obj_dt_proj_to_real( c ); num_t dt_comp = bli_obj_dt_proj_to_complex( c ); num_t dt; dim_t m = bli_obj_length( c ); dim_t n = bli_obj_width( c ); dim_t k = bli_obj_width_after_trans( a ); obj_t norm; obj_t t, v, w, z; double junk; // Compute our reference checksum in the real domain if all operands // are real, and in the complex domain otherwise. Also implicit in this // is that we use the storage precision of C to determine the precision // in which we perform the reference checksum. if ( bli_obj_is_real( a ) && bli_obj_is_real( b ) && bli_obj_is_real( c ) ) dt = dt_real; else dt = dt_comp; // This function works in a manner similar to that of the function // libblis_test_gemm_check(), except that we project a, b, and c into // the complex domain (regardless of their storage datatype), and then // proceed with the checking accordingly. obj_t a2, b2, c2, c0; bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, n, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, k, 1, 0, 0, &w ); bli_obj_create( dt, m, 1, 0, 0, &z ); libblis_test_vobj_randomize( params, TRUE, &t ); // We need to zero out the imaginary part of t in order for our // checks to work in all cases. Otherwise, the imaginary parts // could affect intermediate products, depending on the order that // they are executed. bli_setiv( &BLIS_ZERO, &t ); // Create complex equivalents of a, b, c_orig, and c. bli_obj_create( dt, m, k, 0, 0, &a2 ); bli_obj_create( dt, k, n, 0, 0, &b2 ); bli_obj_create( dt, m, n, 0, 0, &c2 ); bli_obj_create( dt, m, n, 0, 0, &c0 ); // Cast a, b, c_orig, and c into the datatype of our temporary objects. bli_castm( a, &a2 ); bli_castm( b, &b2 ); bli_castm( c_orig, &c2 ); bli_castm( c, &c0 ); bli_gemv( &BLIS_ONE, &c0, &t, &BLIS_ZERO, &v ); #if 0 if ( bli_obj_is_scomplex( c ) && bli_obj_is_float( a ) && bli_obj_is_float( b ) ) { bli_printm( "test_gemm.c: a", a, "%7.3f", "" ); bli_printm( "test_gemm.c: b", b, "%7.3f", "" ); bli_printm( "test_gemm.c: c orig", c_orig, "%7.3f", "" ); bli_printm( "test_gemm.c: c computed", c, "%7.3f", "" ); } #endif #if 0 bli_gemm( alpha, &a2, &b2, beta, &c2 ); bli_gemv( &BLIS_ONE, &c2, &t, &BLIS_ZERO, &z ); if ( bli_obj_is_real( c ) ) bli_setiv( &BLIS_ZERO, &z ); #else bli_gemv( &BLIS_ONE, &b2, &t, &BLIS_ZERO, &w ); bli_gemv( alpha, &a2, &w, &BLIS_ZERO, &z ); bli_gemv( beta, &c2, &t, &BLIS_ONE, &z ); if ( bli_obj_is_real( c ) ) bli_setiv( &BLIS_ZERO, &z ); #endif bli_subv( &z, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w ); bli_obj_free( &z ); bli_obj_free( &a2 ); bli_obj_free( &b2 ); bli_obj_free( &c2 ); bli_obj_free( &c0 ); }
void libblis_test_syr2k_check( obj_t* alpha, obj_t* a, obj_t* b, obj_t* beta, obj_t* c, obj_t* c_orig, double* resid ) { num_t dt = bli_obj_datatype( *c ); num_t dt_real = bli_obj_datatype_proj_to_real( *c ); dim_t m = bli_obj_length( *c ); dim_t k = bli_obj_width_after_trans( *a ); obj_t at, bt; obj_t kappa, norm; obj_t t, v, w1, w2, z; double junk; // // Pre-conditions: // - a is randomized. // - b is randomized. // - c_orig is randomized and symmetric. // Note: // - alpha and beta should have non-zero imaginary components in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // C := beta * C_orig + alpha * transa(A) * transb(B)^T + alpha * transb(B) * transa(A)^T // // is functioning correctly if // // normf( v - z ) // // is negligible, where // // v = C * t // z = ( beta * C_orig + alpha * transa(A) * transb(B)^T + alpha * transb(B) * transa(A)^T ) * t // = beta * C_orig * t + alpha * transa(A) * transb(B)^T * t + alpha * transb(B) * transa(A)^T * t // = beta * C_orig * t + alpha * transa(A) * transb(B)^T * t + alpha * transb(B) * w2 // = beta * C_orig * t + alpha * transa(A) * w1 + alpha * transb(B) * w2 // = beta * C_orig * t + alpha * transa(A) * w1 + z // = beta * C_orig * t + z // bli_obj_alias_with_trans( BLIS_TRANSPOSE, *a, at ); bli_obj_alias_with_trans( BLIS_TRANSPOSE, *b, bt ); bli_obj_scalar_init_detached( dt, &kappa ); bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, k, 1, 0, 0, &w1 ); bli_obj_create( dt, k, 1, 0, 0, &w2 ); bli_obj_create( dt, m, 1, 0, 0, &z ); bli_randv( &t ); bli_setsc( 1.0/( double )m, 0.0, &kappa ); bli_scalv( &kappa, &t ); bli_symv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v ); bli_gemv( &BLIS_ONE, &at, &t, &BLIS_ZERO, &w2 ); bli_gemv( &BLIS_ONE, &bt, &t, &BLIS_ZERO, &w1 ); bli_gemv( alpha, a, &w1, &BLIS_ZERO, &z ); bli_gemv( alpha, b, &w2, &BLIS_ONE, &z ); bli_symv( beta, c_orig, &t, &BLIS_ONE, &z ); bli_subv( &z, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w1 ); bli_obj_free( &w2 ); bli_obj_free( &z ); }
void libblis_test_ger_check ( test_params_t* params, obj_t* alpha, obj_t* x, obj_t* y, obj_t* a, obj_t* a_orig, double* resid ) { num_t dt = bli_obj_dt( a ); num_t dt_real = bli_obj_dt_proj_to_real( a ); dim_t m_a = bli_obj_length( a ); dim_t n_a = bli_obj_width( a ); obj_t t, v, w; obj_t rho, norm; double junk; // // Pre-conditions: // - x is randomized. // - y is randomized. // - a is identity. // Note: // - alpha should have a non-zero imaginary component in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // A := A_orig + alpha * conjx(x) * conjy(y) // // is functioning correctly if // // normf( v - w ) // // is negligible, where // // v = A * t // w = ( A_orig + alpha * conjx(x) * conjy(y)^T ) * t // = A_orig * t + alpha * conjx(x) * conjy(y)^T * t // = A_orig * t + alpha * conjx(x) * rho // = A_orig * t + w // bli_obj_scalar_init_detached( dt, &rho ); bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, n_a, 1, 0, 0, &t ); bli_obj_create( dt, m_a, 1, 0, 0, &v ); bli_obj_create( dt, m_a, 1, 0, 0, &w ); libblis_test_vobj_randomize( params, TRUE, &t ); bli_gemv( &BLIS_ONE, a, &t, &BLIS_ZERO, &v ); bli_dotv( y, &t, &rho ); bli_mulsc( alpha, &rho ); bli_scal2v( &rho, x, &w ); bli_gemv( &BLIS_ONE, a_orig, &t, &BLIS_ONE, &w ); bli_subv( &w, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w ); }
void libblis_test_herk_check( obj_t* alpha, obj_t* a, obj_t* beta, obj_t* c, obj_t* c_orig, double* resid ) { num_t dt = bli_obj_datatype( *c ); num_t dt_real = bli_obj_datatype_proj_to_real( *c ); dim_t m = bli_obj_length( *c ); dim_t k = bli_obj_width_after_trans( *a ); obj_t ah; obj_t kappa, norm; obj_t t, v, w, z; double junk; // // Pre-conditions: // - a is randomized. // - c_orig is randomized and Hermitian. // Note: // - alpha and beta must be real-valued. // // Under these conditions, we assume that the implementation for // // C := beta * C_orig + alpha * transa(A) * transa(A)^H // // is functioning correctly if // // fnorm( v - z ) // // is negligible, where // // v = C * t // z = ( beta * C_orig + alpha * transa(A) * transa(A)^H ) * t // = beta * C_orig * t + alpha * transa(A) * transa(A)^H * t // = beta * C_orig * t + alpha * transa(A) * w // = beta * C_orig * t + z // bli_obj_alias_with_trans( BLIS_CONJ_TRANSPOSE, *a, ah ); bli_obj_scalar_init_detached( dt, &kappa ); bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, k, 1, 0, 0, &w ); bli_obj_create( dt, m, 1, 0, 0, &z ); bli_randv( &t ); bli_setsc( 1.0/( double )m, 0.0, &kappa ); bli_scalv( &kappa, &t ); bli_hemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v ); bli_gemv( &BLIS_ONE, &ah, &t, &BLIS_ZERO, &w ); bli_gemv( alpha, a, &w, &BLIS_ZERO, &z ); bli_hemv( beta, c_orig, &t, &BLIS_ONE, &z ); bli_subv( &z, &v ); bli_fnormv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w ); bli_obj_free( &z ); }