Exemple #1
0
void libblis_test_xpbym_check
     (
       test_params_t* params,
       obj_t*         x,
       obj_t*         beta,
       obj_t*         y,
       obj_t*         y_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_dt( y );
	num_t  dt_real = bli_obj_dt_proj_to_real( y );

	dim_t  m       = bli_obj_length( y );
	dim_t  n       = bli_obj_width( y );

	obj_t  x_temp, y_temp;
	obj_t  norm;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	// - y_orig is randomized.
	// Note:
	// - alpha should have a non-zero imaginary component in the complex
	//   cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := beta * y_orig + conjx(x)
	//
	// is functioning correctly if
	//
	//   normf( y - ( beta * y_orig + conjx(x) ) )
	//
	// is negligible.
	//

	bli_obj_scalar_init_detached( dt_real, &norm );

    bli_obj_create( dt, m, n, 0, 0, &x_temp );
    bli_obj_create( dt, m, n, 0, 0, &y_temp );

    bli_copym( x,      &x_temp );
    bli_copym( y_orig, &y_temp );

    bli_scalm( beta, &y_temp );
	bli_addm( &x_temp, &y_temp );

    bli_subm( &y_temp, y );
    bli_normfm( y, &norm );
    bli_getsc( &norm, resid, &junk );

    bli_obj_free( &x_temp );
    bli_obj_free( &y_temp );
}
Exemple #2
0
void libblis_test_scalv_check
     (
       test_params_t* params,
       obj_t*         beta,
       obj_t*         y,
       obj_t*         y_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_dt( y );
	num_t  dt_real = bli_obj_dt_proj_to_real( y );

	dim_t  m       = bli_obj_vector_dim( y );

	obj_t  norm_y_r;
	obj_t  nbeta;

	obj_t  y2;

	double junk;

	//
	// Pre-conditions:
	// - y_orig is randomized.
	// Note:
	// - beta should have a non-zero imaginary component in the complex
	//   cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := conjbeta(beta) * y_orig
	//
	// is functioning correctly if
	//
	//   normf( y + -conjbeta(beta) * y_orig )
	//
	// is negligible.
	//

	bli_obj_create( dt, m, 1, 0, 0, &y2 );
    bli_copyv( y_orig, &y2 );

	bli_obj_scalar_init_detached( dt,      &nbeta );
	bli_obj_scalar_init_detached( dt_real, &norm_y_r );

	bli_copysc( beta, &nbeta );
	bli_mulsc( &BLIS_MINUS_ONE, &nbeta );

	bli_scalv( &nbeta, &y2 );
    bli_addv( &y2, y );

    bli_normfv( y, &norm_y_r );

    bli_getsc( &norm_y_r, resid, &junk );

    bli_obj_free( &y2 );
}
Exemple #3
0
void libblis_test_randv_check
     (
       test_params_t* params,
       obj_t*         x,
       double*        resid
     )
{
	num_t  dt_real = bli_obj_dt_proj_to_real( x );
	dim_t  m_x     = bli_obj_vector_dim( x );
	obj_t  sum;

	*resid = 0.0;

	//
	// The two most likely ways that randv would fail is if all elements
	// were zero, or if all elements were greater than or equal to one.
	// We check both of these conditions by computing the sum of the
	// absolute values of the elements of x.
	//

	bli_obj_scalar_init_detached( dt_real, &sum );

	bli_norm1v( x, &sum );

	if ( bli_is_float( dt_real ) )
	{
		float*  sum_x = bli_obj_buffer_at_off( &sum );

		if      ( *sum_x == *bli_d0   ) *resid = 1.0;
		else if ( *sum_x >= 2.0 * m_x ) *resid = 2.0;
	}
	else // if ( bli_is_double( dt_real ) )
	{
		double* sum_x = bli_obj_buffer_at_off( &sum );

		if      ( *sum_x == *bli_d0   ) *resid = 1.0;
		else if ( *sum_x >= 2.0 * m_x ) *resid = 2.0;
	}
}
Exemple #4
0
void libblis_test_copym_check
     (
       test_params_t* params,
       obj_t*         x,
       obj_t*         y,
       double*        resid
     )
{
	num_t  dt_real = bli_obj_dt_proj_to_real( x );

	obj_t  norm_y_r;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := conjx(x)
	//
	// is functioning correctly if
	//
	//   normfm( y - conjx(x) )
	//
	// is negligible.
	//

	bli_obj_scalar_init_detached( dt_real, &norm_y_r );

	bli_subm( x, y );

	bli_normfm( y, &norm_y_r );

	bli_getsc( &norm_y_r, resid, &junk );
}
Exemple #5
0
void libblis_test_symv_check
     (
       test_params_t* params,
       obj_t*         alpha,
       obj_t*         a,
       obj_t*         x,
       obj_t*         beta,
       obj_t*         y,
       obj_t*         y_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_dt( y );
	num_t  dt_real = bli_obj_dt_proj_to_real( y );

	dim_t  m       = bli_obj_vector_dim( y );

	obj_t  v;
	obj_t  norm;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized and symmetric.
	// - x is randomized.
	// - y_orig is randomized.
	// Note:
	// - alpha and beta should have non-zero imaginary components in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := beta * y_orig + alpha * conja(A) * conjx(x)
	//
	// is functioning correctly if
	//
	//   normf( y - v )
	//
	// is negligible, where
	//
	//   v = beta * y_orig + alpha * conja(A_dense) * x
	//

	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, m, 1, 0, 0, &v );

	bli_copyv( y_orig, &v );

	bli_mksymm( a );
	bli_obj_set_struc( BLIS_GENERAL, a );
	bli_obj_set_uplo( BLIS_DENSE, a );

	bli_gemv( alpha, a, x, beta, &v );

	bli_subv( &v, y );
	bli_normfv( y, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &v );
}
Exemple #6
0
void libblis_test_gemm_check
     (
       test_params_t* params,
       obj_t*         alpha,
       obj_t*         a,
       obj_t*         b,
       obj_t*         beta,
       obj_t*         c,
       obj_t*         c_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_dt( c );
	num_t  dt_real = bli_obj_dt_proj_to_real( c );

	dim_t  m       = bli_obj_length( c );
	dim_t  n       = bli_obj_width( c );
	dim_t  k       = bli_obj_width_after_trans( a );

	obj_t  norm;
	obj_t  t, v, w, z;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized.
	// - b is randomized.
	// - c_orig is randomized.
	// Note:
	// - alpha and beta should have non-zero imaginary components in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   C := beta * C_orig + alpha * transa(A) * transb(B)
	//
	// is functioning correctly if
	//
	//   normf( v - z )
	//
	// is negligible, where
	//
	//   v = C * t
	//   z = ( beta * C_orig + alpha * transa(A) * transb(B) ) * t
	//     = beta * C_orig * t + alpha * transa(A) * transb(B) * t
	//     = beta * C_orig * t + alpha * transa(A) * w
	//     = beta * C_orig * t + z
	//

	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, n, 1, 0, 0, &t );
	bli_obj_create( dt, m, 1, 0, 0, &v );
	bli_obj_create( dt, k, 1, 0, 0, &w );
	bli_obj_create( dt, m, 1, 0, 0, &z );

	libblis_test_vobj_randomize( params, TRUE, &t );

	bli_gemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v );

	bli_gemv( &BLIS_ONE, b, &t, &BLIS_ZERO, &w );
	bli_gemv( alpha, a, &w, &BLIS_ZERO, &z );
	bli_gemv( beta, c_orig, &t, &BLIS_ONE, &z );

	bli_subv( &z, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );
}
Exemple #7
0
void libblis_test_gemm_md_check
     (
       test_params_t* params,
       obj_t*         alpha,
       obj_t*         a,
       obj_t*         b,
       obj_t*         beta,
       obj_t*         c,
       obj_t*         c_orig,
       double*        resid
     )
{
	num_t  dt_real = bli_obj_dt_proj_to_real( c );
	num_t  dt_comp = bli_obj_dt_proj_to_complex( c );
	num_t  dt;

	dim_t  m       = bli_obj_length( c );
	dim_t  n       = bli_obj_width( c );
	dim_t  k       = bli_obj_width_after_trans( a );

	obj_t  norm;
	obj_t  t, v, w, z;

	double junk;

	// Compute our reference checksum in the real domain if all operands
	// are real, and in the complex domain otherwise. Also implicit in this
	// is that we use the storage precision of C to determine the precision
	// in which we perform the reference checksum.
	if ( bli_obj_is_real( a ) &&
	     bli_obj_is_real( b ) &&
	     bli_obj_is_real( c ) ) dt = dt_real;
	else                        dt = dt_comp;

	// This function works in a manner similar to that of the function
	// libblis_test_gemm_check(), except that we project a, b, and c into
	// the complex domain (regardless of their storage datatype), and then
	// proceed with the checking accordingly.

	obj_t a2, b2, c2, c0;

	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, n, 1, 0, 0, &t );
	bli_obj_create( dt, m, 1, 0, 0, &v );
	bli_obj_create( dt, k, 1, 0, 0, &w );
	bli_obj_create( dt, m, 1, 0, 0, &z );

	libblis_test_vobj_randomize( params, TRUE, &t );

	// We need to zero out the imaginary part of t in order for our
	// checks to work in all cases. Otherwise, the imaginary parts
	// could affect intermediate products, depending on the order that
	// they are executed.
	bli_setiv( &BLIS_ZERO, &t );

	// Create complex equivalents of a, b, c_orig, and c.
	bli_obj_create( dt, m, k, 0, 0, &a2 );
	bli_obj_create( dt, k, n, 0, 0, &b2 );
	bli_obj_create( dt, m, n, 0, 0, &c2 );
	bli_obj_create( dt, m, n, 0, 0, &c0 );

	// Cast a, b, c_orig, and c into the datatype of our temporary objects.
	bli_castm( a,      &a2 );
	bli_castm( b,      &b2 );
	bli_castm( c_orig, &c2 );
	bli_castm( c,      &c0 );

	bli_gemv( &BLIS_ONE, &c0, &t, &BLIS_ZERO, &v );

#if 0
if ( bli_obj_is_scomplex( c ) &&
     bli_obj_is_float( a ) &&
     bli_obj_is_float( b ) )
{
bli_printm( "test_gemm.c: a", a, "%7.3f", "" );
bli_printm( "test_gemm.c: b", b, "%7.3f", "" );
bli_printm( "test_gemm.c: c orig", c_orig, "%7.3f", "" );
bli_printm( "test_gemm.c: c computed", c, "%7.3f", "" );
}
#endif

#if 0
	bli_gemm( alpha, &a2, &b2, beta, &c2 );
	bli_gemv( &BLIS_ONE, &c2, &t, &BLIS_ZERO, &z );
	if ( bli_obj_is_real( c ) ) bli_setiv( &BLIS_ZERO, &z );
#else
	bli_gemv( &BLIS_ONE, &b2, &t, &BLIS_ZERO, &w );
	bli_gemv( alpha, &a2, &w, &BLIS_ZERO, &z );
	bli_gemv( beta, &c2, &t, &BLIS_ONE, &z );
	if ( bli_obj_is_real( c ) ) bli_setiv( &BLIS_ZERO, &z );
#endif

	bli_subv( &z, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );

	bli_obj_free( &a2 );
	bli_obj_free( &b2 );
	bli_obj_free( &c2 );
	bli_obj_free( &c0 );
}
Exemple #8
0
void libblis_test_ger_check
     (
       test_params_t* params,
       obj_t*         alpha,
       obj_t*         x,
       obj_t*         y,
       obj_t*         a,
       obj_t*         a_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_dt( a );
	num_t  dt_real = bli_obj_dt_proj_to_real( a );

	dim_t  m_a     = bli_obj_length( a );
	dim_t  n_a     = bli_obj_width( a );

	obj_t  t, v, w;
	obj_t  rho, norm;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	// - y is randomized.
	// - a is identity.
	// Note:
	// - alpha should have a non-zero imaginary component in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   A := A_orig + alpha * conjx(x) * conjy(y)
	//
	// is functioning correctly if
	//
	//   normf( v - w )
	//
	// is negligible, where
	//
	//   v = A * t
	//   w = ( A_orig + alpha * conjx(x) * conjy(y)^T ) * t
	//     =   A_orig * t + alpha * conjx(x) * conjy(y)^T * t
	//     =   A_orig * t + alpha * conjx(x) * rho
	//     =   A_orig * t + w
	//

	bli_obj_scalar_init_detached( dt,      &rho );
	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, n_a, 1, 0, 0, &t );
	bli_obj_create( dt, m_a, 1, 0, 0, &v );
	bli_obj_create( dt, m_a, 1, 0, 0, &w );

	libblis_test_vobj_randomize( params, TRUE, &t );

	bli_gemv( &BLIS_ONE, a, &t, &BLIS_ZERO, &v );

	bli_dotv( y, &t, &rho );
	bli_mulsc( alpha, &rho );
	bli_scal2v( &rho, x, &w );
	bli_gemv( &BLIS_ONE, a_orig, &t, &BLIS_ONE, &w );

	bli_subv( &w, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
}
Exemple #9
0
void libblis_test_addm_check
     (
       test_params_t* params,
       obj_t*         alpha,
       obj_t*         beta,
       obj_t*         x,
       obj_t*         y,
       double*        resid
     )
{
	num_t  dt      = bli_obj_dt( y );
	num_t  dt_real = bli_obj_dt_proj_to_real( y );
	dim_t  m       = bli_obj_length( y );
	dim_t  n       = bli_obj_width( y );

	conj_t conjx   = bli_obj_conj_status( x );

	obj_t  aplusb;
	obj_t  alpha_conj;
	obj_t  norm_r, m_r, n_r, temp_r;

	double junk;

	//
	// Pre-conditions:
	// - x is set to alpha.
	// - y_orig is set to beta.
	// Note:
	// - alpha and beta should have non-zero imaginary components in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := y_orig + conjx(x)
	//
	// is functioning correctly if
	//
	//   normfv(y) - sqrt( absqsc( beta + conjx(alpha) ) * m * n )
	//
	// is negligible.
	//

	bli_obj_scalar_init_detached( dt,      &aplusb );
	bli_obj_scalar_init_detached( dt_real, &temp_r );
	bli_obj_scalar_init_detached( dt_real, &norm_r );
	bli_obj_scalar_init_detached( dt_real, &m_r );
	bli_obj_scalar_init_detached( dt_real, &n_r );

	bli_obj_scalar_init_detached_copy_of( dt, conjx, alpha, &alpha_conj );

	bli_normfm( y, &norm_r );

	bli_copysc( beta, &aplusb );
	bli_addsc( &alpha_conj, &aplusb );

	bli_setsc( ( double )m, 0.0, &m_r );
	bli_setsc( ( double )n, 0.0, &n_r );

	bli_absqsc( &aplusb, &temp_r );
	bli_mulsc( &m_r, &temp_r );
	bli_mulsc( &n_r, &temp_r );
	bli_sqrtsc( &temp_r, &temp_r );
	bli_subsc( &temp_r, &norm_r );

	bli_getsc( &norm_r, resid, &junk );
}
Exemple #10
0
void libblis_test_trsm_check
     (
       test_params_t* params,
       side_t         side,
       obj_t*         alpha,
       obj_t*         a,
       obj_t*         b,
       obj_t*         b_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_dt( b );
	num_t  dt_real = bli_obj_dt_proj_to_real( b );

	dim_t  m       = bli_obj_length( b );
	dim_t  n       = bli_obj_width( b );

	obj_t  norm;
	obj_t  t, v, w, z;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized and triangular.
	// - b_orig is randomized.
	// Note:
	// - alpha should have a non-zero imaginary component in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   B := alpha * inv(transa(A)) * B_orig    (side = left)
	//   B := alpha * B_orig * inv(transa(A))    (side = right)
	//
	// is functioning correctly if
	//
	//   normf( v - z )
	//
	// is negligible, where
	//
	//   v = B * t
	//
	//   z = ( alpha * inv(transa(A)) * B ) * t     (side = left)
	//     = alpha * inv(transa(A)) * B * t
	//     = alpha * inv(transa(A)) * w
	//
	//   z = ( alpha * B * inv(transa(A)) ) * t     (side = right)
	//     = alpha * B * tinv(ransa(A)) * t
	//     = alpha * B * w

	bli_obj_scalar_init_detached( dt_real, &norm );

	if ( bli_is_left( side ) )
	{
		bli_obj_create( dt, n, 1, 0, 0, &t );
		bli_obj_create( dt, m, 1, 0, 0, &v );
		bli_obj_create( dt, m, 1, 0, 0, &w );
		bli_obj_create( dt, m, 1, 0, 0, &z );
	}
	else // else if ( bli_is_left( side ) )
	{
		bli_obj_create( dt, n, 1, 0, 0, &t );
		bli_obj_create( dt, m, 1, 0, 0, &v );
		bli_obj_create( dt, n, 1, 0, 0, &w );
		bli_obj_create( dt, m, 1, 0, 0, &z );
	}

	libblis_test_vobj_randomize( params, TRUE, &t );

	bli_gemv( &BLIS_ONE, b, &t, &BLIS_ZERO, &v );

	if ( bli_is_left( side ) )
	{
		bli_gemv( alpha, b_orig, &t, &BLIS_ZERO, &w );
		bli_trsv( &BLIS_ONE, a, &w );
		bli_copyv( &w, &z );
	}
	else
	{
		bli_copyv( &t, &w );
		bli_trsv( &BLIS_ONE, a, &w );
		bli_gemv( alpha, b_orig, &w, &BLIS_ZERO, &z );
	}

	bli_subv( &z, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );
}
Exemple #11
0
void libblis_test_gemv_check
     (
       test_params_t* params,
       obj_t*         kappa,
       obj_t*         alpha,
       obj_t*         a,
       obj_t*         x,
       obj_t*         beta,
       obj_t*         y,
       obj_t*         y_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_dt( y );
	num_t  dt_real = bli_obj_dt_proj_to_real( y );

	conj_t conja   = bli_obj_conj_status( a );

	dim_t  n_x     = bli_obj_vector_dim( x );
	dim_t  m_y     = bli_obj_vector_dim( y );

	dim_t  min_m_n = bli_min( m_y, n_x );

	obj_t  x_temp, y_temp;
	obj_t  kappac, norm;
	obj_t  xT_temp, yT_temp, yT;

	double junk;

	//
	// Pre-conditions:
	// - a is initialized to kappa along the diagonal.
	// - x is randomized.
	// - y_orig is randomized.
	// Note:
	// - alpha, beta, and kappa should have non-zero imaginary components in
	//   the complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := beta * y_orig + alpha * transa(A) * conjx(x)
	//
	// is functioning correctly if
	//
	//   normf( y - z )
	//
	// is negligible, where
	//
	//   z = beta * y_orig + alpha * conja(kappa) * x
	//

	bli_obj_scalar_init_detached_copy_of( dt, conja, kappa, &kappac );
	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, n_x, 1, 0, 0, &x_temp );
	bli_obj_create( dt, m_y, 1, 0, 0, &y_temp );

	bli_copyv( x,      &x_temp );
	bli_copyv( y_orig, &y_temp );

	bli_acquire_vpart_f2b( BLIS_SUBPART1, 0, min_m_n, 
	                       &x_temp, &xT_temp );
	bli_acquire_vpart_f2b( BLIS_SUBPART1, 0, min_m_n, 
	                       &y_temp, &yT_temp );
	bli_acquire_vpart_f2b( BLIS_SUBPART1, 0, min_m_n, 
	                       y, &yT );

	bli_scalv( &kappac, &xT_temp );
	bli_scalv( beta, &yT_temp );
	bli_axpyv( alpha, &xT_temp, &yT_temp );

	bli_subv( &yT_temp, &yT );
	bli_normfv( &yT, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &x_temp );
	bli_obj_free( &y_temp );
}