__EXPORT int board_app_initialize(uintptr_t arg) { #if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE) /* run C++ ctors before we go any further */ up_cxxinitialize(); # if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE) # error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE. # endif #else # error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined. #endif /* configure the high-resolution time/callout interface */ hrt_init(); /* configure the DMA allocator */ if (board_dma_alloc_init() < 0) { message("DMA alloc FAILED"); } /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); #if defined(CONFIG_STM32_BBSRAM) /* NB. the use of the console requires the hrt running * to poll the DMA */ /* Using Battery Backed Up SRAM */ int filesizes[CONFIG_STM32_BBSRAM_FILES + 1] = BSRAM_FILE_SIZES; stm32_bbsraminitialize(BBSRAM_PATH, filesizes); #if defined(CONFIG_STM32_SAVE_CRASHDUMP) /* Panic Logging in Battery Backed Up Files */ /* * In an ideal world, if a fault happens in flight the * system save it to BBSRAM will then reboot. Upon * rebooting, the system will log the fault to disk, recover * the flight state and continue to fly. But if there is * a fault on the bench or in the air that prohibit the recovery * or committing the log to disk, the things are too broken to * fly. So the question is: * * Did we have a hard fault and not make it far enough * through the boot sequence to commit the fault data to * the SD card? */ /* Do we have an uncommitted hard fault in BBSRAM? * - this will be reset after a successful commit to SD */ int hadCrash = hardfault_check_status("boot"); if (hadCrash == OK) { message("[boot] There is a hard fault logged. Hold down the SPACE BAR," \ " while booting to halt the system!\n"); /* Yes. So add one to the boot count - this will be reset after a successful * commit to SD */ int reboots = hardfault_increment_reboot("boot", false); /* Also end the misery for a user that holds for a key down on the console */ int bytesWaiting; ioctl(fileno(stdin), FIONREAD, (unsigned long)((uintptr_t) &bytesWaiting)); if (reboots > 2 || bytesWaiting != 0) { /* Since we can not commit the fault dump to disk. Display it * to the console. */ hardfault_write("boot", fileno(stdout), HARDFAULT_DISPLAY_FORMAT, false); message("[boot] There were %d reboots with Hard fault that were not committed to disk - System halted %s\n", reboots, (bytesWaiting == 0 ? "" : " Due to Key Press\n")); /* For those of you with a debugger set a break point on up_assert and * then set dbgContinue = 1 and go. */ /* Clear any key press that got us here */ static volatile bool dbgContinue = false; int c = '>'; while (!dbgContinue) { switch (c) { case EOF: case '\n': case '\r': case ' ': continue; default: putchar(c); putchar('\n'); switch (c) { case 'D': case 'd': hardfault_write("boot", fileno(stdout), HARDFAULT_DISPLAY_FORMAT, false); break; case 'C': case 'c': hardfault_rearm("boot"); hardfault_increment_reboot("boot", true); break; case 'B': case 'b': dbgContinue = true; break; default: break; } // Inner Switch message("\nEnter B - Continue booting\n" \ "Enter C - Clear the fault log\n" \ "Enter D - Dump fault log\n\n?>"); fflush(stdout); if (!dbgContinue) { c = getchar(); } break; } // outer switch } // for } // inner if } // outer if #endif // CONFIG_STM32_SAVE_CRASHDUMP #endif // CONFIG_STM32_BBSRAM /* initial LED state */ drv_led_start(); led_off(LED_RED); led_off(LED_GREEN); led_off(LED_BLUE); /* Configure SPI-based devices */ spi1 = stm32_spibus_initialize(1); if (!spi1) { message("[boot] FAILED to initialize SPI port 1\n"); board_autoled_on(LED_RED); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi1, PX4_SPIDEV_HMC, false); SPI_SELECT(spi1, PX4_SPIDEV_MPU, false); up_udelay(20); /* Get the SPI port for the FRAM */ spi2 = stm32_spibus_initialize(2); if (!spi2) { message("[boot] FAILED to initialize SPI port 2\n"); board_autoled_on(LED_RED); return -ENODEV; } /* Default SPI2 to 12MHz and de-assert the known chip selects. * MS5611 has max SPI clock speed of 20MHz */ // XXX start with 10.4 MHz and go up to 20 once validated SPI_SETFREQUENCY(spi2, 20 * 1000 * 1000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); SPI_SELECT(spi2, SPIDEV_FLASH, false); SPI_SELECT(spi2, PX4_SPIDEV_BARO, false); #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { message("[boot] Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { message("[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */ sdio_mediachange(sdio, true); #endif return OK; }
__EXPORT int board_app_initialize(uintptr_t arg) { #if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE) /* run C++ ctors before we go any further */ up_cxxinitialize(); # if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE) # error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE. # endif #else # error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined. #endif /* configure the high-resolution time/callout interface */ hrt_init(); param_init(); /* configure the DMA allocator */ if (board_dma_alloc_init() < 0) { message("DMA alloc FAILED"); } /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); #if defined(CONFIG_STM32_BBSRAM) /* NB. the use of the console requires the hrt running * to poll the DMA */ /* Using Battery Backed Up SRAM */ int filesizes[CONFIG_STM32_BBSRAM_FILES + 1] = BSRAM_FILE_SIZES; stm32_bbsraminitialize(BBSRAM_PATH, filesizes); #if defined(CONFIG_STM32_SAVE_CRASHDUMP) /* Panic Logging in Battery Backed Up Files */ /* * In an ideal world, if a fault happens in flight the * system save it to BBSRAM will then reboot. Upon * rebooting, the system will log the fault to disk, recover * the flight state and continue to fly. But if there is * a fault on the bench or in the air that prohibit the recovery * or committing the log to disk, the things are too broken to * fly. So the question is: * * Did we have a hard fault and not make it far enough * through the boot sequence to commit the fault data to * the SD card? */ /* Do we have an uncommitted hard fault in BBSRAM? * - this will be reset after a successful commit to SD */ int hadCrash = hardfault_check_status("boot"); if (hadCrash == OK) { message("[boot] There is a hard fault logged. Hold down the SPACE BAR," \ " while booting to halt the system!\n"); /* Yes. So add one to the boot count - this will be reset after a successful * commit to SD */ int reboots = hardfault_increment_reboot("boot", false); /* Also end the misery for a user that holds for a key down on the console */ int bytesWaiting; ioctl(fileno(stdin), FIONREAD, (unsigned long)((uintptr_t) &bytesWaiting)); if (reboots > 2 || bytesWaiting != 0) { /* Since we can not commit the fault dump to disk. Display it * to the console. */ hardfault_write("boot", fileno(stdout), HARDFAULT_DISPLAY_FORMAT, false); message("[boot] There were %d reboots with Hard fault that were not committed to disk - System halted %s\n", reboots, (bytesWaiting == 0 ? "" : " Due to Key Press\n")); /* For those of you with a debugger set a break point on up_assert and * then set dbgContinue = 1 and go. */ /* Clear any key press that got us here */ static volatile bool dbgContinue = false; int c = '>'; while (!dbgContinue) { switch (c) { case EOF: case '\n': case '\r': case ' ': continue; default: putchar(c); putchar('\n'); switch (c) { case 'D': case 'd': hardfault_write("boot", fileno(stdout), HARDFAULT_DISPLAY_FORMAT, false); break; case 'C': case 'c': hardfault_rearm("boot"); hardfault_increment_reboot("boot", true); break; case 'B': case 'b': dbgContinue = true; break; default: break; } // Inner Switch message("\nEnter B - Continue booting\n" \ "Enter C - Clear the fault log\n" \ "Enter D - Dump fault log\n\n?>"); fflush(stdout); if (!dbgContinue) { c = getchar(); } break; } // outer switch } // for } // inner if } // outer if #endif // CONFIG_STM32_SAVE_CRASHDUMP #endif // CONFIG_STM32_BBSRAM /* initial LED state */ drv_led_start(); led_off(LED_RED); led_off(LED_GREEN); led_off(LED_BLUE); #ifdef CONFIG_SPI int ret = stm32_spi_bus_initialize(); if (ret != OK) { board_autoled_on(LED_RED); return ret; } #endif #ifdef CONFIG_MMCSD ret = stm32_sdio_initialize(); if (ret != OK) { board_autoled_on(LED_RED); return ret; } #endif return OK; }
__EXPORT int nsh_archinitialize(void) { /* configure ADC pins */ px4_arch_configgpio(GPIO_ADC1_IN2); /* BATT_VOLTAGE_SENS */ px4_arch_configgpio(GPIO_ADC1_IN3); /* BATT_CURRENT_SENS */ px4_arch_configgpio(GPIO_ADC1_IN4); /* VDD_5V_SENS */ px4_arch_configgpio(GPIO_ADC1_IN13); /* FMU_AUX_ADC_1 */ px4_arch_configgpio(GPIO_ADC1_IN14); /* FMU_AUX_ADC_2 */ px4_arch_configgpio(GPIO_ADC1_IN15); /* PRESSURE_SENS */ /* configure power supply control/sense pins */ px4_arch_configgpio(GPIO_VDD_5V_PERIPH_EN); px4_arch_configgpio(GPIO_VDD_3V3_SENSORS_EN); px4_arch_configgpio(GPIO_VDD_BRICK_VALID); px4_arch_configgpio(GPIO_VDD_5V_PERIPH_OC); /* configure the GPIO pins to outputs and keep them low */ px4_arch_configgpio(GPIO_GPIO0_OUTPUT); px4_arch_configgpio(GPIO_GPIO1_OUTPUT); px4_arch_configgpio(GPIO_GPIO2_OUTPUT); px4_arch_configgpio(GPIO_GPIO3_OUTPUT); px4_arch_configgpio(GPIO_GPIO4_OUTPUT); px4_arch_configgpio(GPIO_GPIO5_OUTPUT); /* configure the high-resolution time/callout interface */ hrt_init(); /* configure the DMA allocator */ if (board_dma_alloc_init() < 0) { message("DMA alloc FAILED"); } /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); /* Configure SPI-based devices */ spi1 = px4_spibus_initialize(1); if (!spi1) { message("[boot] FAILED to initialize SPI port 1\n"); up_ledon(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_ICM, false); SPI_SELECT(spi1, PX4_SPIDEV_BARO, false); SPI_SELECT(spi1, PX4_SPIDEV_MPU, false); up_udelay(20); /* Get the SPI port for the FRAM */ spi2 = px4_spibus_initialize(2); if (!spi2) { message("[boot] FAILED to initialize SPI port 2\n"); up_ledon(LED_AMBER); return -ENODEV; } /* Default SPI2 to 37.5 MHz (40 MHz rounded to nearest valid divider, F4 max) * and de-assert the known chip selects. */ // XXX start with 10.4 MHz in FRAM usage and go up to 37.5 once validated SPI_SETFREQUENCY(spi2, 12 * 1000 * 1000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); SPI_SELECT(spi2, SPIDEV_FLASH, false); #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { message("[boot] Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { message("[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */ sdio_mediachange(sdio, true); #endif return OK; }
__EXPORT int board_app_initialize(uintptr_t arg) { #if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE) /* run C++ ctors before we go any further */ up_cxxinitialize(); # if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE) # error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE. # endif #else # error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined. #endif /* configure the high-resolution time/callout interface */ hrt_init(); param_init(); /* configure the DMA allocator */ if (board_dma_alloc_init() < 0) { message("DMA alloc FAILED"); } /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); /* Configure SPI-based devices */ spi3 = px4_spibus_initialize(3); if (!spi3) { message("[boot] FAILED to initialize SPI port 3\n"); board_autoled_on(LED_AMBER); return -ENODEV; } /* Default SPI3 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi3, 10000000); SPI_SETBITS(spi3, 8); SPI_SETMODE(spi3, SPIDEV_MODE3); SPI_SELECT(spi3, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi3, PX4_SPIDEV_ACCEL_MAG, false); SPI_SELECT(spi3, PX4_SPIDEV_BARO, false); up_udelay(20); /* Get the SPI port for the FRAM */ spi4 = px4_spibus_initialize(4); if (!spi4) { message("[boot] FAILED to initialize SPI port 4\n"); board_autoled_on(LED_AMBER); return -ENODEV; } /* Default SPI4 to 37.5 MHz (40 MHz rounded to nearest valid divider, F4 max) * and de-assert the known chip selects. */ // XXX start with 10.4 MHz in FRAM usage and go up to 37.5 once validated SPI_SETFREQUENCY(spi4, 12 * 1000 * 1000); SPI_SETBITS(spi4, 8); SPI_SETMODE(spi4, SPIDEV_MODE3); SPI_SELECT(spi4, SPIDEV_FLASH(0), false); return OK; }
__EXPORT int board_app_initialize(uintptr_t arg) { /* Ensure the power is on 1 ms before we drive the GPIO pins */ usleep(1000); if (OK == determin_hw_version(&hw_version, & hw_revision)) { switch (hw_version) { case HW_VER_FMUV2_STATE: break; case HW_VER_FMUV3_STATE: hw_type[1]++; hw_type[2] = '0'; /* Has CAN2 transceiver Remove pull up */ stm32_configgpio(GPIO_CAN2_RX); break; case HW_VER_FMUV2MINI_STATE: /* Detection for a Pixhack3 */ stm32_configgpio(HW_VER_PA8); up_udelay(10); bool isph3 = stm32_gpioread(HW_VER_PA8); stm32_configgpio(HW_VER_PA8_INIT); if (isph3) { /* Pixhack3 looks like a FMuV3 Cube */ hw_version = HW_VER_FMUV3_STATE; hw_type[1]++; hw_type[2] = '0'; message("\nPixhack V3 detected, forcing to fmu-v3"); } else { /* It is a mini */ hw_type[2] = 'M'; } break; default: /* questionable px4_fmu-v2 hardware, try forcing regular FMUv2 (not much else we can do) */ message("\nbad version detected, forcing to fmu-v2"); hw_version = HW_VER_FMUV2_STATE; break; } message("\nFMUv2 ver 0x%1X : Rev %x %s\n", hw_version, hw_revision, hw_type); } /* configure SPI interfaces */ stm32_spiinitialize(); px4_platform_init(); /* configure the DMA allocator */ if (board_dma_alloc_init() < 0) { message("DMA alloc FAILED"); } /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); if (board_hardfault_init(2, true) != 0) { led_on(LED_AMBER); } /* Configure SPI-based devices */ spi1 = stm32_spibus_initialize(PX4_SPI_BUS_SENSORS); if (!spi1) { message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_BUS_SENSORS); led_on(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); up_udelay(20); /* Get the SPI port for the FRAM */ spi2 = stm32_spibus_initialize(PX4_SPI_BUS_RAMTRON); if (!spi2) { message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_BUS_RAMTRON); led_on(LED_AMBER); return -ENODEV; } /* Default SPI2 to 37.5 MHz (40 MHz rounded to nearest valid divider, F4 max) * and de-assert the known chip selects. */ // XXX start with 10.4 MHz in FRAM usage and go up to 37.5 once validated SPI_SETFREQUENCY(spi2, 12 * 1000 * 1000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); spi4 = stm32_spibus_initialize(PX4_SPI_BUS_EXT); if (!spi4) { message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_BUS_EXT); led_on(LED_AMBER); return -ENODEV; } /* Default SPI4 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi4, 10000000); SPI_SETBITS(spi4, 8); SPI_SETMODE(spi4, SPIDEV_MODE3); #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { led_on(LED_AMBER); message("[boot] Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { led_on(LED_AMBER); message("[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */ sdio_mediachange(sdio, true); #endif return OK; }
__EXPORT int board_app_initialize(uintptr_t arg) { /* configure ADC pins */ /* configure power supply control/sense pins */ #if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE) /* run C++ ctors before we go any further */ up_cxxinitialize(); # if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE) # error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE. # endif #else # error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined. #endif /* configure the high-resolution time/callout interface */ hrt_init(); param_init(); /* configure the DMA allocator */ if (board_dma_alloc_init() < 0) { message("DMA alloc FAILED"); } /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* initial LED state */ drv_led_start(); led_on(LED_AMBER); led_off(LED_AMBER); /* Configure SPI-based devices */ spi0 = px4_spibus_initialize(PX4_SPI_BUS_SENSORS); if (!spi0) { message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_BUS_SENSORS); board_autoled_on(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi0, 10000000); SPI_SETBITS(spi0, 8); SPI_SETMODE(spi0, SPIDEV_MODE3); SPI_SELECT(spi0, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi0, PX4_SPIDEV_ACCEL_MAG, false); SPI_SELECT(spi0, PX4_SPIDEV_BARO, false); SPI_SELECT(spi0, PX4_SPIDEV_MPU, false); up_udelay(20); #if defined(CONFIG_SAMV7_SPI1_MASTER) spi1 = px4_spibus_initialize(PX4_SPI_BUS_MEMORY); /* Default SPI4 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_EXT0, false); SPI_SELECT(spi1, PX4_SPIDEV_EXT1, false); #endif #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { message("[boot] Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { message("[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */ sdio_mediachange(sdio, true); #endif return OK; }