Exemple #1
0
int main(int argc, char * argv[]){
    Board * board;
    int x, y;
    Pos pos;
    UCTNode * uct_tree = 0;
    UCTNode * ptr;

    board_initialize();
    uct_initialize();

    board = board_new();

    while(1) {
        board_print(board, stdout);
        printf("\nBlack: ");
        if(scanf("%d %d", &x, &y) == -1)
            break;
        board_play(board, to_pos(x, y), BLACK);

        board_print(board, stdout);
        pos = uct_search(board, WHITE);
        board_play(board, pos, WHITE);
    }

    //for(ptr = uct_tree->child; ptr; ptr = ptr->next)
    //    printf("%d ", ptr->move);

    puts("");

    board_destroy();
    uct_destroy();
    return 0;
}
Exemple #2
0
static coord_t *
replay_genmove(struct engine *e, struct board *b, struct time_info *ti, enum stone color, bool pass_all_alive)
{
	struct replay *r = e->data;
	struct playout_setup s; memset(&s, 0, sizeof(s));

	coord_t coord = r->playout->choose(r->playout, &s, b, color);

	if (!is_pass(coord)) {
		struct move m;
		m.coord = coord; m.color = color;
		if (board_play(b, &m) >= 0)
			goto have_move;

		if (DEBUGL(2)) {
			fprintf(stderr, "Pre-picked move %d,%d is ILLEGAL:\n",
				coord_x(coord, b), coord_y(coord, b));
			board_print(b, stderr);
		}
	}

	/* Defer to uniformly random move choice. */
	board_play_random(b, color, &coord, (ppr_permit) r->playout->permit, r->playout);

have_move:
	if (!group_at(b, coord)) {
		/* This was suicide. Just pass. */
		/* XXX: We should check for non-suicide alternatives. */
		return coord_pass();
	}

	return coord_copy(coord);
}
Exemple #3
0
UCTNode * uct_select(UCTNode * self, Board * board, Color color) {
    UCTNode * ptr, * best_ptr;
    float uct, best_uct = 0;

    while(1) {
        best_uct = 0;
        best_ptr = 0;
        for(ptr = self->child; ptr; ptr = ptr->next) {
            if(ptr->move == nil) continue;
            if(ptr->visits == 0)
                uct = 10000. + (rand() & 0xFF);
            else {
                uct = UCT_K * sqrtf(
                    logf(self->visits) / ptr->visits
                ) + 1.0 * ptr->wins / ptr->visits;
            }
            if(uct > best_uct) {
                best_uct = uct;
                best_ptr = ptr;
            }
        }
        if(board_play(board, best_ptr->move, color)) break;
        else best_ptr->move = nil;
    }
    return best_ptr;
}
Exemple #4
0
int
uct_playout(struct uct *u, struct board *b, enum stone player_color, struct tree *t)
{
	struct board b2;
	board_copy(&b2, b);

	struct playout_amafmap amaf;
	amaf.gamelen = amaf.game_baselen = 0;

	/* Walk the tree until we find a leaf, then expand it and do
	 * a random playout. */
	struct tree_node *n = t->root;
	enum stone node_color = stone_other(player_color);
	assert(node_color == t->root_color);

	/* Make sure the root node is expanded. */
	if (tree_leaf_node(n) && !__sync_lock_test_and_set(&n->is_expanded, 1))
		tree_expand_node(t, n, &b2, player_color, u, 1);

	/* Tree descent history. */
	/* XXX: This is somewhat messy since @n and descent[dlen-1].node are
	 * redundant. */
	struct uct_descent descent[DESCENT_DLEN];
	descent[0].node = n; descent[0].lnode = NULL;
	int dlen = 1;
	/* Total value of the sequence. */
	struct move_stats seq_value = { .playouts = 0 };
	/* The last "significant" node along the descent (i.e. node
	 * with higher than configured number of playouts). For black
	 * and white. */
	struct tree_node *significant[2] = { NULL, NULL };
	if (n->u.playouts >= u->significant_threshold)
		significant[node_color - 1] = n;

	int result;
	int pass_limit = (board_size(&b2) - 2) * (board_size(&b2) - 2) / 2;
	int passes = is_pass(b->last_move.coord) && b->moves > 0;

	/* debug */
	static char spaces[] = "\0                                                      ";
	/* /debug */
	if (UDEBUGL(8))
		fprintf(stderr, "--- UCT walk with color %d\n", player_color);

	while (!tree_leaf_node(n) && passes < 2) {
		spaces[dlen - 1] = ' '; spaces[dlen] = 0;


		/*** Choose a node to descend to: */

		/* Parity is chosen already according to the child color, since
		 * it is applied to children. */
		node_color = stone_other(node_color);
		int parity = (node_color == player_color ? 1 : -1);

		assert(dlen < DESCENT_DLEN);
		descent[dlen] = descent[dlen - 1];
		if (u->local_tree && (!descent[dlen].lnode || descent[dlen].node->d >= u->tenuki_d)) {
			/* Start new local sequence. */
			/* Remember that node_color already holds color of the
			 * to-be-found child. */
			descent[dlen].lnode = node_color == S_BLACK ? t->ltree_black : t->ltree_white;
		}

		if (!u->random_policy_chance || fast_random(u->random_policy_chance))
			u->policy->descend(u->policy, t, &descent[dlen], parity, b2.moves > pass_limit);
		else
			u->random_policy->descend(u->random_policy, t, &descent[dlen], parity, b2.moves > pass_limit);


		/*** Perform the descent: */

		if (descent[dlen].node->u.playouts >= u->significant_threshold) {
			significant[node_color - 1] = descent[dlen].node;
		}

		seq_value.playouts += descent[dlen].value.playouts;
		seq_value.value += descent[dlen].value.value * descent[dlen].value.playouts;
		n = descent[dlen++].node;
		assert(n == t->root || n->parent);
		if (UDEBUGL(7))
			fprintf(stderr, "%s+-- UCT sent us to [%s:%d] %d,%f\n",
			        spaces, coord2sstr(node_coord(n), t->board),
				node_coord(n), n->u.playouts,
				tree_node_get_value(t, parity, n->u.value));

		/* Add virtual loss if we need to; this is used to discourage
		 * other threads from visiting this node in case of multiple
		 * threads doing the tree search. */
		if (u->virtual_loss)
			stats_add_result(&n->u, node_color == S_BLACK ? 0.0 : 1.0, u->virtual_loss);

		assert(node_coord(n) >= -1);
		record_amaf_move(&amaf, node_coord(n));

		struct move m = { node_coord(n), node_color };
		int res = board_play(&b2, &m);

		if (res < 0 || (!is_pass(m.coord) && !group_at(&b2, m.coord)) /* suicide */
		    || b2.superko_violation) {
			if (UDEBUGL(4)) {
				for (struct tree_node *ni = n; ni; ni = ni->parent)
					fprintf(stderr, "%s<%"PRIhash"> ", coord2sstr(node_coord(ni), t->board), ni->hash);
				fprintf(stderr, "marking invalid %s node %d,%d res %d group %d spk %d\n",
				        stone2str(node_color), coord_x(node_coord(n),b), coord_y(node_coord(n),b),
					res, group_at(&b2, m.coord), b2.superko_violation);
			}
			n->hints |= TREE_HINT_INVALID;
			result = 0;
			goto end;
		}

		if (is_pass(node_coord(n)))
			passes++;
		else
			passes = 0;

		enum stone next_color = stone_other(node_color);
		/* We need to make sure only one thread expands the node. If
		 * we are unlucky enough for two threads to meet in the same
		 * node, the latter one will simply do another simulation from
		 * the node itself, no big deal. t->nodes_size may exceed
		 * the maximum in multi-threaded case but not by much so it's ok.
		 * The size test must be before the test&set not after, to allow
		 * expansion of the node later if enough nodes have been freed. */
		if (tree_leaf_node(n)
		    && n->u.playouts - u->virtual_loss >= u->expand_p && t->nodes_size < u->max_tree_size
		    && !__sync_lock_test_and_set(&n->is_expanded, 1))
			tree_expand_node(t, n, &b2, next_color, u, -parity);
	}

	amaf.game_baselen = amaf.gamelen;

	if (t->use_extra_komi && u->dynkomi->persim) {
		b2.komi += round(u->dynkomi->persim(u->dynkomi, &b2, t, n));
	}

	if (passes >= 2) {
		/* XXX: No dead groups support. */
		floating_t score = board_official_score(&b2, NULL);
		/* Result from black's perspective (no matter who
		 * the player; black's perspective is always
		 * what the tree stores. */
		result = - (score * 2);

		if (UDEBUGL(5))
			fprintf(stderr, "[%d..%d] %s p-p scoring playout result %d (W %f)\n",
				player_color, node_color, coord2sstr(node_coord(n), t->board), result, score);
		if (UDEBUGL(6))
			board_print(&b2, stderr);

		board_ownermap_fill(&u->ownermap, &b2);

	} else { // assert(tree_leaf_node(n));
		/* In case of parallel tree search, the assertion might
		 * not hold if two threads chew on the same node. */
		result = uct_leaf_node(u, &b2, player_color, &amaf, descent, &dlen, significant, t, n, node_color, spaces);
	}

	if (u->policy->wants_amaf && u->playout_amaf_cutoff) {
		unsigned int cutoff = amaf.game_baselen;
		cutoff += (amaf.gamelen - amaf.game_baselen) * u->playout_amaf_cutoff / 100;
		amaf.gamelen = cutoff;
	}

	/* Record the result. */

	assert(n == t->root || n->parent);
	floating_t rval = scale_value(u, b, result);
	u->policy->update(u->policy, t, n, node_color, player_color, &amaf, &b2, rval);

	if (t->use_extra_komi) {
		stats_add_result(&u->dynkomi->score, result / 2, 1);
		stats_add_result(&u->dynkomi->value, rval, 1);
	}

	if (u->local_tree && n->parent && !is_pass(node_coord(n)) && dlen > 0) {
		/* Get the local sequences and record them in ltree. */
		/* We will look for sequence starts in our descent
		 * history, then run record_local_sequence() for each
		 * found sequence start; record_local_sequence() may
		 * pick longer sequences from descent history then,
		 * which is expected as it will create new lnodes. */
		enum stone seq_color = player_color;
		/* First move always starts a sequence. */
		record_local_sequence(u, t, &b2, descent, dlen, 1, seq_color);
		seq_color = stone_other(seq_color);
		for (int dseqi = 2; dseqi < dlen; dseqi++, seq_color = stone_other(seq_color)) {
			if (u->local_tree_allseq) {
				/* We are configured to record all subsequences. */
				record_local_sequence(u, t, &b2, descent, dlen, dseqi, seq_color);
				continue;
			}
			if (descent[dseqi].node->d >= u->tenuki_d) {
				/* Tenuki! Record the fresh sequence. */
				record_local_sequence(u, t, &b2, descent, dlen, dseqi, seq_color);
				continue;
			}
			if (descent[dseqi].lnode && !descent[dseqi].lnode) {
				/* Record result for in-descent picked sequence. */
				record_local_sequence(u, t, &b2, descent, dlen, dseqi, seq_color);
				continue;
			}
		}
	}

end:
	/* We need to undo the virtual loss we added during descend. */
	if (u->virtual_loss) {
		floating_t loss = node_color == S_BLACK ? 0.0 : 1.0;
		for (; n->parent; n = n->parent) {
			stats_rm_result(&n->u, loss, u->virtual_loss);
			loss = 1.0 - loss;
		}
	}

	board_done_noalloc(&b2);
	return result;
}

int
uct_playouts(struct uct *u, struct board *b, enum stone color, struct tree *t, struct time_info *ti)
{
	int i;
	if (ti && ti->dim == TD_GAMES) {
		for (i = 0; t->root->u.playouts <= ti->len.games && !uct_halt; i++)
			uct_playout(u, b, color, t);
	} else {
		for (i = 0; !uct_halt; i++)
			uct_playout(u, b, color, t);
	}
	return i;
}
Exemple #5
0
struct fbook *
fbook_init(char *filename, struct board *b)
{
	if (fbcache && fbcache->bsize == board_size(b)
	    && fbcache->handicap == b->handicap)
		return fbcache;

	FILE *f = fopen(filename, "r");
	if (!f) {
		perror(filename);
		return NULL;
	}

	struct fbook *fbook = calloc(1, sizeof(*fbook));
	fbook->bsize = board_size(b);
	fbook->handicap = b->handicap;
	/* We do not set handicap=1 in case of too low komi on purpose;
	 * we want to go with the no-handicap fbook for now. */
	for (int i = 0; i < 1<<fbook_hash_bits; i++)
		fbook->moves[i] = pass;

	if (DEBUGL(1))
		fprintf(stderr, "Loading opening fbook %s...\n", filename);

	/* Scratch board where we lay out the sequence;
	 * one for each transposition. */
	struct board *bs[8];
	for (int i = 0; i < 8; i++) {
		bs[i] = board_init(NULL);
		board_resize(bs[i], fbook->bsize - 2);
	}

	char linebuf[1024];
	while (fgets(linebuf, sizeof(linebuf), f)) {
		char *line = linebuf;
		linebuf[strlen(linebuf) - 1] = 0; // chop

		/* Format of line is:
		 * BSIZE COORD COORD COORD... | COORD
		 * BSIZE/HANDI COORD COORD COORD... | COORD
		 * We descend up to |, then add the new node
		 * with value minimax(1000), forcing UCT to
		 * always pick that node immediately. */
		int bsize = strtol(line, &line, 10);
		if (bsize != fbook->bsize - 2)
			continue;
		int handi = 0;
		if (*line == '/') {
			line++;
			handi = strtol(line, &line, 10);
		}
		if (handi != fbook->handicap)
			continue;
		while (isspace(*line)) line++;

		for (int i = 0; i < 8; i++) {
			board_clear(bs[i]);
			bs[i]->last_move.color = S_WHITE;
		}

		while (*line != '|') {
			coord_t *c = str2coord(line, fbook->bsize);

			for (int i = 0; i < 8; i++) {
				coord_t coord = coord_transform(b, *c, i);
				struct move m = { .coord = coord, .color = stone_other(bs[i]->last_move.color) };
				int ret = board_play(bs[i], &m);
				assert(ret >= 0);
			}

			coord_done(c);
			while (!isspace(*line)) line++;
			while (isspace(*line)) line++;
		}

		line++;
		while (isspace(*line)) line++;

		/* In case of multiple candidates, pick one with
		 * exponentially decreasing likelihood. */
		while (strchr(line, ' ') && fast_random(2)) {
			line = strchr(line, ' ');
			while (isspace(*line)) line++;
			// fprintf(stderr, "<%s> skip to %s\n", linebuf, line);
		}

		coord_t *c = str2coord(line, fbook->bsize);
		for (int i = 0; i < 8; i++) {
			coord_t coord = coord_transform(b, *c, i);
#if 0
			char conflict = is_pass(fbook->moves[bs[i]->hash & fbook_hash_mask]) ? '+' : 'C';
			if (conflict == 'C')
				for (int j = 0; j < i; j++)
					if (bs[i]->hash == bs[j]->hash)
						conflict = '+';
			if (conflict == 'C') {
				hash_t hi = bs[i]->hash;
				while (!is_pass(fbook->moves[hi & fbook_hash_mask]) && fbook->hashes[hi & fbook_hash_mask] != bs[i]->hash)
					hi++;
				if (fbook->hashes[hi & fbook_hash_mask] == bs[i]->hash)
					hi = 'c';
			}
			fprintf(stderr, "%c %"PRIhash":%"PRIhash" (<%d> %s)\n", conflict,
			        bs[i]->hash & fbook_hash_mask, bs[i]->hash, i, linebuf);
#endif
			hash_t hi = bs[i]->hash;
			while (!is_pass(fbook->moves[hi & fbook_hash_mask]) && fbook->hashes[hi & fbook_hash_mask] != bs[i]->hash)
				hi++;
			fbook->moves[hi & fbook_hash_mask] = coord;
			fbook->hashes[hi & fbook_hash_mask] = bs[i]->hash;
			fbook->movecnt++;
		}
		coord_done(c);
	}

	for (int i = 0; i < 8; i++) {
		board_done(bs[i]);
	}

	fclose(f);

	if (!fbook->movecnt) {
		/* Empty book is not worth the hassle. */
		fbook_done(fbook);
		return NULL;
	}

	struct fbook *fbold = fbcache;
	fbcache = fbook;
	if (fbold)
		fbook_done(fbold);

	return fbook;
}

void fbook_done(struct fbook *fbook)
{
	if (fbook != fbcache)
		free(fbook);
}
Exemple #6
0
static void
board_load(struct board *b, FILE *f, unsigned int size)
{
	board_printed = false;
	board_resize(b, size);
	board_clear(b);
	for (int y = size - 1; y >= 0; y--) {
		char line[256];
		if (!fgets(line, sizeof(line), f)) {
			fprintf(stderr, "Premature EOF.\n");
			exit(EXIT_FAILURE);
		}
		line[strlen(line) - 1] = 0; // chomp
		if (strlen(line) != size * 2 - 1) {
			fprintf(stderr, "Line not %d char long: %s\n", size * 2 - 1, line);
			exit(EXIT_FAILURE);
		}
		for (unsigned int i = 0; i < size * 2; i++) {
			enum stone s;
			switch (line[i]) {
				case '.': s = S_NONE; break;
				case 'X': s = S_BLACK; break;
				case 'O': s = S_WHITE; break;
				default: fprintf(stderr, "Invalid stone '%c'\n", line[i]);
					 exit(EXIT_FAILURE);
			}
			i++;
			if (line[i] != ' ' && i/2 < size - 1) {
				fprintf(stderr, "No space after stone %i: '%c'\n", i/2 + 1, line[i]);
				exit(EXIT_FAILURE);
			}
			if (s == S_NONE) continue;
			struct move m = { .color = s, .coord = coord_xy(b, i/2 + 1, y + 1) };
			if (board_play(b, &m) < 0) {
				fprintf(stderr, "Failed to play %s %s\n",
					stone2str(s), coord2sstr(m.coord, b));
				board_print(b, stderr);
				exit(EXIT_FAILURE);
			}
		}
	}
	int suicides = b->captures[S_BLACK] || b->captures[S_WHITE];
	assert(!suicides);
}

static void
set_ko(struct board *b, char *arg)
{
	assert(isalpha(*arg));
	struct move last;
	last.coord = str2scoord(arg, board_size(b));
	last.color = board_at(b, last.coord);
	assert(last.color == S_BLACK || last.color == S_WHITE);
	b->last_move = last;

	/* Sanity checks */
	group_t g = group_at(b, last.coord);
	assert(board_group_info(b, g).libs == 1);
	assert(group_stone_count(b, g, 2) == 1);
	coord_t lib = board_group_info(b, g).lib[0];
	assert(board_is_eyelike(b, lib, last.color));

	b->ko.coord = lib;
	b->ko.color = stone_other(last.color);
}