Exemple #1
0
Mu0Poly* newMu0ThermoFromXML(const XML_Node& Mu0Node)
{
    bool dimensionlessMu0Values = false;

    doublereal h298 = 0.0;
    if (Mu0Node.hasChild("H298")) {
        h298 = getFloat(Mu0Node, "H298", "actEnergy");
    }

    size_t numPoints = 1;
    if (Mu0Node.hasChild("numPoints")) {
        numPoints = getInteger(Mu0Node, "numPoints");
    }

    vector_fp cValues(numPoints);
    const XML_Node* valNode_ptr = getByTitle(Mu0Node, "Mu0Values");
    if (!valNode_ptr) {
        throw CanteraError("installMu0ThermoFromXML", "missing Mu0Values");
    }
    getFloatArray(*valNode_ptr, cValues, true, "actEnergy");

    // Check to see whether the Mu0's were input in a dimensionless form. If
    // they were, then the assumed temperature needs to be adjusted from the
    // assumed T = 273.15
    if (valNode_ptr->attrib("units") == "Dimensionless") {
        dimensionlessMu0Values = true;
    }
    if (cValues.size() != numPoints) {
        throw CanteraError("installMu0ThermoFromXML", "numPoints inconsistent");
    }

    vector_fp cTemperatures(numPoints);
    const XML_Node* tempNode_ptr = getByTitle(Mu0Node, "Mu0Temperatures");
    if (!tempNode_ptr) {
        throw CanteraError("installMu0ThermoFromXML",
                           "missing Mu0Temperatures");
    }
    getFloatArray(*tempNode_ptr, cTemperatures, false);
    if (cTemperatures.size() != numPoints) {
        throw CanteraError("installMu0ThermoFromXML", "numPoints inconsistent");
    }

    // Fix up dimensionless Mu0 values if input
    if (dimensionlessMu0Values) {
        for (size_t i = 0; i < numPoints; i++) {
            cValues[i] *= cTemperatures[i] / 273.15;
        }
    }

    vector_fp c(2 + 2 * numPoints);
    c[0] = static_cast<double>(numPoints);
    c[1] = h298;
    for (size_t i = 0; i < numPoints; i++) {
        c[2+i*2] = cTemperatures[i];
        c[2+i*2+1] = cValues[i];
    }

    return new Mu0Poly(fpValue(Mu0Node["Tmin"]), fpValue(Mu0Node["Tmax"]),
                       fpValue(Mu0Node["Pref"]), &c[0]);
}
Exemple #2
0
void MatrixStorage<ValueType>::convertCSR2CSC(
    LAMAArray<IndexType>& colIA,
    LAMAArray<IndexType>& colJA,
    LAMAArray<ValueType>& colValues,
    const IndexType numColumns,
    const LAMAArray<IndexType>& rowIA,
    const LAMAArray<IndexType>& rowJA,
    const LAMAArray<ValueType>& rowValues,
    const ContextPtr loc )
{
    // ContextPtr loc = ContextFactory::getContext( Context::Host );

    const IndexType numRows = rowIA.size() - 1;
    const IndexType numValues = rowJA.size();

    LAMA_ASSERT_EQUAL_DEBUG( rowJA.size(), rowValues.size() )

    LAMA_INTERFACE_FN_T( convertCSR2CSC, loc, CSRUtils, Transpose, ValueType )

    LAMA_LOG_INFO( logger,
                   "MatrixStorage::CSR2CSC of matrix " << numRows << " x " << numColumns << ", #nnz = " << numValues << " on " << *loc )

    LAMA_REGION( "Storage.CSR2CSC" )

    WriteOnlyAccess<IndexType> cIA( colIA, loc, numColumns + 1 );
    WriteOnlyAccess<IndexType> cJA( colJA, loc, numValues );
    WriteOnlyAccess<ValueType> cValues( colValues, loc, numValues );

    ReadAccess<IndexType> rIA( rowIA, loc );
    ReadAccess<IndexType> rJA( rowJA, loc );
    ReadAccess<ValueType> rValues( rowValues, loc );

    LAMA_CONTEXT_ACCESS( loc )
    convertCSR2CSC( cIA.get(), cJA.get(), cValues.get(), rIA.get(), rJA.get(), rValues.get(), numRows, numColumns,
                    numValues );
}
Exemple #3
0
void installMu0ThermoFromXML(const std::string& speciesName, SpeciesThermo<ValAndDerivType>& sp, size_t k,
                             const XML_Node* Mu0Node_ptr)
{

    doublereal tmin, tmax;
    bool dimensionlessMu0Values = false;
    const XML_Node& Mu0Node = *Mu0Node_ptr;

    tmin = fpValue(Mu0Node["Tmin"]);
    tmax = fpValue(Mu0Node["Tmax"]);
    doublereal pref = fpValue(Mu0Node["Pref"]);

    doublereal h298 = 0.0;
    if (Mu0Node.hasChild("H298")) {
        h298 = getFloat(Mu0Node, "H298", "actEnergy");
    }

    size_t numPoints = 1;
    if (Mu0Node.hasChild("numPoints")) {
        numPoints = getInteger(Mu0Node, "numPoints");
    }

    vector_fp cValues(numPoints);
    const XML_Node* valNode_ptr = getByTitle(const_cast<XML_Node&>(Mu0Node), "Mu0Values");
    if (!valNode_ptr) {
        throw CanteraError("installMu0ThermoFromXML", "missing required while processing " + speciesName);
    }
    getFloatArray(*valNode_ptr, cValues, true, "actEnergy");
    /*
     * Check to see whether the Mu0's were input in a dimensionless
     * form. If they were, then the assumed temperature needs to be
     * adjusted from the assumed T = 273.15
     */
    string uuu = (*valNode_ptr)["units"];
    if (uuu == "Dimensionless") {
        dimensionlessMu0Values = true;
    }
    size_t ns = cValues.size();
    if (ns != numPoints) {
        throw CanteraError("installMu0ThermoFromXML", "numPoints inconsistent while processing " + speciesName);
    }

    vector_fp cTemperatures(numPoints);
    const XML_Node* tempNode_ptr = getByTitle(const_cast<XML_Node&>(Mu0Node), "Mu0Temperatures");
    if (!tempNode_ptr) {
        throw CanteraError("installMu0ThermoFromXML", "missing required while processing + " + speciesName);
    }
    getFloatArray(*tempNode_ptr, cTemperatures, false);
    ns = cTemperatures.size();
    if (ns != numPoints) {
        throw CanteraError("installMu0ThermoFromXML", "numPoints inconsistent while processing " + speciesName);
    }

    /*
     * Fix up dimensionless Mu0 values if input
     */
    if (dimensionlessMu0Values) {
        for (size_t i = 0; i < numPoints; i++) {
            cValues[i] *= cTemperatures[i] / 273.15;
        }
    }

    vector_fp c(2 + 2 * numPoints);

    c[0] = static_cast<double>(numPoints);
    c[1] = h298;
    for (size_t i = 0; i < numPoints; i++) {
        c[2 + i * 2] = cTemperatures[i];
        c[2 + i * 2 + 1] = cValues[i];
    }

    sp.install(speciesName, k, MU0_INTERP, &c[0], tmin, tmax, pref);
}