void calc_dt_kernel_min_c_wrapper(double *p_a0, double *p_a1, int x_size,
                                  int y_size) {
  double p_a1_0 = p_a1[0];
#ifdef OPS_GPU
#pragma acc parallel deviceptr(p_a0) reduction(min : p_a1_0)
#pragma acc loop reduction(min : p_a1_0)
#endif
  for (int n_y = 0; n_y < y_size; n_y++) {
#ifdef OPS_GPU
#pragma acc loop reduction(min : p_a1_0)
#endif
    for (int n_x = 0; n_x < x_size; n_x++) {
      calc_dt_kernel_min(
          p_a0 + n_x * 1 * 1 + n_y * xdim0_calc_dt_kernel_min * 1 * 1, &p_a1_0);
    }
  }
  p_a1[0] = p_a1_0;
}
// host stub function
void ops_par_loop_calc_dt_kernel_min(char const *name, ops_block block, int dim, int* range,
 ops_arg arg0, ops_arg arg1) {

  //Timing
  double t1,t2,c1,c2;
  ops_timers_core(&c1,&t1);


  int  offs[2][3];
  ops_arg args[2] = { arg0, arg1};



  ops_timing_realloc(127,"calc_dt_kernel_min");
  OPS_kernels[127].count++;

  //compute locally allocated range for the sub-block

  int start[3];
  int end[3];

  #ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
  if (!sb->owned) return;
  for ( int n=0; n<3; n++ ){
    start[n] = sb->decomp_disp[n];end[n] = sb->decomp_disp[n]+sb->decomp_size[n];
    if (start[n] >= range[2*n]) {
      start[n] = 0;
    }
    else {
      start[n] = range[2*n] - start[n];
    }
    if (sb->id_m[n]==MPI_PROC_NULL && range[2*n] < 0) start[n] = range[2*n];
    if (end[n] >= range[2*n+1]) {
      end[n] = range[2*n+1] - sb->decomp_disp[n];
    }
    else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n]==MPI_PROC_NULL && (range[2*n+1] > sb->decomp_disp[n]+sb->decomp_size[n]))
      end[n] += (range[2*n+1]-sb->decomp_disp[n]-sb->decomp_size[n]);
  }
  #else //OPS_MPI
  for ( int n=0; n<3; n++ ){
    start[n] = range[2*n];end[n] = range[2*n+1];
  }
  #endif //OPS_MPI
  #ifdef OPS_DEBUG
  ops_register_args(args, "calc_dt_kernel_min");
  #endif

  offs[0][0] = args[0].stencil->stride[0]*1;  //unit step in x dimension
  offs[0][1] = off3D(1, &start[0],
      &end[0],args[0].dat->size, args[0].stencil->stride) - offs[0][0];
  offs[0][2] = off3D(2, &start[0],
      &end[0],args[0].dat->size, args[0].stencil->stride) - offs[0][1] - offs[0][0];



  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int off0_2 = offs[0][2];
  int dat0 = args[0].dat->elem_size;

  #ifdef OPS_MPI
  double *arg1h = (double *)(((ops_reduction)args[1].data)->data + ((ops_reduction)args[1].data)->size * block->index);
  #else //OPS_MPI
  double *arg1h = (double *)(((ops_reduction)args[1].data)->data);
  #endif //OPS_MPI

  #ifdef _OPENMP
  int nthreads = omp_get_max_threads( );
  #else
  int nthreads = 1;
  #endif
  //allocate and initialise arrays for global reduction
  //assumes a max of MAX_REDUCT_THREADS threads with a cacche line size of 64 bytes
  double arg_gbl1[MAX(1 , 64) * MAX_REDUCT_THREADS];
  for ( int thr=0; thr<nthreads; thr++ ){
    for ( int d=0; d<1; d++ ){
      arg_gbl1[d+64*thr] = INFINITY_double;
    }
  }
  xdim0 = args[0].dat->size[0]*args[0].dat->dim;
  ydim0 = args[0].dat->size[1];

  ops_H_D_exchanges_host(args, 2);

  //Halo Exchanges
  ops_halo_exchanges(args,2,range);


  ops_timers_core(&c2,&t2);
  OPS_kernels[127].mpi_time += t2-t1;


  #pragma omp parallel for
  for ( int thr=0; thr<nthreads; thr++ ){

    int z_size = end[2]-start[2];
    char *p_a[2];

    int start_i = start[2] + ((z_size-1)/nthreads+1)*thr;
    int finish_i = start[2] + MIN(((z_size-1)/nthreads+1)*(thr+1),z_size);

    //get address per thread
    int start0 = start[0];
    int start1 = start[1];
    int start2 = start_i;

    //set up initial pointers 
    int d_m[OPS_MAX_DIM];
    #ifdef OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d];
    #else //OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d];
    #endif //OPS_MPI
    int base0 = dat0 * 1 * 
    (start0 * args[0].stencil->stride[0] - args[0].dat->base[0] - d_m[0]);
    base0 = base0+ dat0 *
      args[0].dat->size[0] *
      (start1 * args[0].stencil->stride[1] - args[0].dat->base[1] - d_m[1]);
    base0 = base0+ dat0 *
      args[0].dat->size[0] *
      args[0].dat->size[1] *
      (start2 * args[0].stencil->stride[2] - args[0].dat->base[2] - d_m[2]);
    p_a[0] = (char *)args[0].data + base0;

    p_a[1] = (char *)arg1h;


    for ( int n_z=start_i; n_z<finish_i; n_z++ ){
      for ( int n_y=start[1]; n_y<end[1]; n_y++ ){
        for ( int n_x=start[0]; n_x<start[0]+(end[0]-start[0])/SIMD_VEC; n_x++ ){
          //call kernel function, passing in pointers to data -vectorised
          for ( int i=0; i<SIMD_VEC; i++ ){
            calc_dt_kernel_min(  (const double * )p_a[0]+ i*1, &arg_gbl1[64*thr] );

          }

          //shift pointers to data x direction
          p_a[0]= p_a[0] + (dat0 * off0_0)*SIMD_VEC;
        }

        for ( int n_x=start[0]+((end[0]-start[0])/SIMD_VEC)*SIMD_VEC; n_x<end[0]; n_x++ ){
          //call kernel function, passing in pointers to data - remainder
          calc_dt_kernel_min(  (const double * )p_a[0], &arg_gbl1[64*thr] );


          //shift pointers to data x direction
          p_a[0]= p_a[0] + (dat0 * off0_0);
        }

        //shift pointers to data y direction
        p_a[0]= p_a[0] + (dat0 * off0_1);
      }
      //shift pointers to data z direction
      p_a[0]= p_a[0] + (dat0 * off0_2);
    }
  }

  ops_timers_core(&c1,&t1);
  OPS_kernels[127].time += t1-t2;


  // combine reduction data
  for ( int thr=0; thr<nthreads; thr++ ){
    for ( int d=0; d<1; d++ ){
      arg1h[d] = MIN(arg1h[d], arg_gbl1[64*thr+d]);
    }
  }
  ops_set_dirtybit_host(args, 2);


  //Update kernel record
  ops_timers_core(&c2,&t2);
  OPS_kernels[127].mpi_time += t2-t1;
  OPS_kernels[127].transfer += ops_compute_transfer(dim, range, &arg0);
}