void showBatteryPage(void) { uint8_t rowIndex = PAGE_TITLE_LINE_COUNT; if (feature(FEATURE_VBAT)) { tfp_sprintf(lineBuffer, "Volts: %d.%1d Cells: %d", vbat / 10, vbat % 10, batteryCellCount); padLineBuffer(); i2c_OLED_set_line(rowIndex++); i2c_OLED_send_string(lineBuffer); uint8_t batteryPercentage = calculateBatteryPercentage(); i2c_OLED_set_line(rowIndex++); drawHorizonalPercentageBar(SCREEN_CHARACTER_COLUMN_COUNT, batteryPercentage); } if (feature(FEATURE_CURRENT_METER)) { tfp_sprintf(lineBuffer, "Amps: %d.%2d mAh: %d", amperage / 100, amperage % 100, mAhDrawn); padLineBuffer(); i2c_OLED_set_line(rowIndex++); i2c_OLED_send_string(lineBuffer); uint8_t capacityPercentage = calculateBatteryCapacityRemainingPercentage(); i2c_OLED_set_line(rowIndex++); drawHorizonalPercentageBar(SCREEN_CHARACTER_COLUMN_COUNT, capacityPercentage); } }
static void sendFuelLevel(void) { sendDataHead(ID_FUEL_LEVEL); if (batteryConfig->batteryCapacity > 0) { serialize16((uint16_t)calculateBatteryPercentage()); } else { serialize16((uint16_t)constrain(mAhDrawn, 0, 0xFFFF)); } }
void mavlinkSendSystemStatus(void) { uint16_t msgLength; uint32_t onboardControlAndSensors = 35843; /* onboard_control_sensors_present Bitmask fedcba9876543210 1000110000000011 For all = 35843 0001000000000100 With Mag = 4100 0010000000001000 With Baro = 8200 0100000000100000 With GPS = 16416 0000001111111111 */ if (sensors(SENSOR_MAG)) onboardControlAndSensors |= 4100; if (sensors(SENSOR_BARO)) onboardControlAndSensors |= 8200; if (sensors(SENSOR_GPS)) onboardControlAndSensors |= 16416; mavlink_msg_sys_status_pack(0, 200, &mavMsg, // onboard_control_sensors_present Bitmask showing which onboard controllers and sensors are present. //Value of 0: not present. Value of 1: present. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, // 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, // 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, // 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control onboardControlAndSensors, // onboard_control_sensors_enabled Bitmask showing which onboard controllers and sensors are enabled onboardControlAndSensors, // onboard_control_sensors_health Bitmask showing which onboard controllers and sensors are operational or have an error. onboardControlAndSensors & 1023, // load Maximum usage in percent of the mainloop time, (0%: 0, 100%: 1000) should be always below 1000 0, // voltage_battery Battery voltage, in millivolts (1 = 1 millivolt) feature(FEATURE_VBAT) ? vbat * 100 : 0, // current_battery Battery current, in 10*milliamperes (1 = 10 milliampere), -1: autopilot does not measure the current feature(FEATURE_VBAT) ? amperage : -1, // battery_remaining Remaining battery energy: (0%: 0, 100%: 100), -1: autopilot estimate the remaining battery feature(FEATURE_VBAT) ? calculateBatteryPercentage() : 100, // drop_rate_comm Communication drops in percent, (0%: 0, 100%: 10'000), (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) 0, // errors_comm Communication errors (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) 0, // errors_count1 Autopilot-specific errors 0, // errors_count2 Autopilot-specific errors 0, // errors_count3 Autopilot-specific errors 0, // errors_count4 Autopilot-specific errors 0); msgLength = mavlink_msg_to_send_buffer(mavBuffer, &mavMsg); mavlinkSerialWrite(mavBuffer, msgLength); }
static void applyLedFixedLayers() { for (int ledIndex = 0; ledIndex < ledCounts.count; ledIndex++) { const ledConfig_t *ledConfig = &ledStripConfig()->ledConfigs[ledIndex]; hsvColor_t color = *getSC(LED_SCOLOR_BACKGROUND); int fn = ledGetFunction(ledConfig); int hOffset = HSV_HUE_MAX; switch (fn) { case LED_FUNCTION_COLOR: color = ledStripConfig()->colors[ledGetColor(ledConfig)]; break; case LED_FUNCTION_FLIGHT_MODE: for (unsigned i = 0; i < ARRAYLEN(flightModeToLed); i++) if (!flightModeToLed[i].flightMode || FLIGHT_MODE(flightModeToLed[i].flightMode)) { const hsvColor_t *directionalColor = getDirectionalModeColor(ledIndex, &ledStripConfig()->modeColors[flightModeToLed[i].ledMode]); if (directionalColor) { color = *directionalColor; } break; // stop on first match } break; case LED_FUNCTION_ARM_STATE: color = ARMING_FLAG(ARMED) ? *getSC(LED_SCOLOR_ARMED) : *getSC(LED_SCOLOR_DISARMED); break; case LED_FUNCTION_BATTERY: color = HSV(RED); hOffset += scaleRange(calculateBatteryPercentage(), 0, 100, -30, 120); break; case LED_FUNCTION_RSSI: color = HSV(RED); hOffset += scaleRange(rssi * 100, 0, 1023, -30, 120); break; default: break; } if (ledGetOverlayBit(ledConfig, LED_OVERLAY_THROTTLE)) { hOffset += scaledAux; } color.h = (color.h + hOffset) % (HSV_HUE_MAX + 1); setLedHsv(ledIndex, &color); } }
static void showStatusPage(void) { uint8_t rowIndex = PAGE_TITLE_LINE_COUNT; if (feature(FEATURE_VBAT)) { i2c_OLED_set_line(rowIndex++); tfp_sprintf(lineBuffer, "V: %d.%1d ", vbat / 10, vbat % 10); padLineBufferToChar(12); i2c_OLED_send_string(lineBuffer); uint8_t batteryPercentage = calculateBatteryPercentage(); drawHorizonalPercentageBar(10, batteryPercentage); } if (feature(FEATURE_CURRENT_METER)) { i2c_OLED_set_line(rowIndex++); tfp_sprintf(lineBuffer, "mAh: %d", mAhDrawn); padLineBufferToChar(12); i2c_OLED_send_string(lineBuffer); uint8_t capacityPercentage = calculateBatteryCapacityRemainingPercentage(); drawHorizonalPercentageBar(10, capacityPercentage); } #ifdef GPS if (feature(FEATURE_GPS)) { tfp_sprintf(lineBuffer, "Sats: %d", gpsSol.numSat); padHalfLineBuffer(); i2c_OLED_set_line(rowIndex); i2c_OLED_send_string(lineBuffer); tfp_sprintf(lineBuffer, "Fix: %s", gpsFixTypeText[gpsSol.fixType]); padHalfLineBuffer(); i2c_OLED_set_xy(HALF_SCREEN_CHARACTER_COLUMN_COUNT, rowIndex++); i2c_OLED_send_string(lineBuffer); tfp_sprintf(lineBuffer, "HDOP: %d.%1d", gpsSol.hdop / 100, gpsSol.hdop % 100); padLineBuffer(); i2c_OLED_set_line(rowIndex++); i2c_OLED_send_string(lineBuffer); tfp_sprintf(lineBuffer, "La/Lo: %d/%d", gpsSol.llh.lat / GPS_DEGREES_DIVIDER, gpsSol.llh.lon / GPS_DEGREES_DIVIDER); padLineBuffer(); i2c_OLED_set_line(rowIndex++); i2c_OLED_send_string(lineBuffer); } #endif #ifdef MAG if (sensors(SENSOR_MAG)) { tfp_sprintf(lineBuffer, "HDG: %d", DECIDEGREES_TO_DEGREES(attitude.values.yaw)); padHalfLineBuffer(); i2c_OLED_set_line(rowIndex); i2c_OLED_send_string(lineBuffer); } #endif #ifdef BARO if (sensors(SENSOR_BARO)) { int32_t alt = baroCalculateAltitude(); tfp_sprintf(lineBuffer, "Alt: %d", alt / 100); padHalfLineBuffer(); i2c_OLED_set_xy(HALF_SCREEN_CHARACTER_COLUMN_COUNT, rowIndex); i2c_OLED_send_string(lineBuffer); } #endif rowIndex++; char rollTrim[7], pitchTrim[7]; formatTrimDegrees(rollTrim, boardAlignment()->rollDeciDegrees); formatTrimDegrees(pitchTrim, boardAlignment()->pitchDeciDegrees); tfp_sprintf(lineBuffer, "Acc: %sR, %sP", rollTrim, pitchTrim ); i2c_OLED_set_line(rowIndex++); i2c_OLED_send_string(lineBuffer); }